THEODORE (Ted) S. RAPPAPORT
NYU WIRELESS FOUNDING DIRECTOR
David Lee/Ernst Weber Professor
Prof. of Electrical and Computer Eng, NYU Tandon
Prof. of Computer Science, NYU Courant
Prof. of Radiology Medicine, NYU Langone
New York University
Phone: | 646.997.3403 · 646.997.3404 |
Email: | pat.donohue@nyu.edu · tlw335@nyu.edu |
Office: | 370 Jay Street, 9th Fl, Brooklyn, NY 11201 |
mmWave
The vast amount of radio spectrum available, combined with recent improvements in semiconductors and antennas, make millimeter wave (mmWave) spectrum a promising candidate for amazing new capabilities for future wireless communication networks. Our work at NYU WIRELESS has demonstrated that mmWave wireless is quite feasible to achieve bandwidths that are thousands of times greater than today’s 4G LTE wireless systems, and we have an active research program with support from our NYU WIRELESS industrial affiliates companies.
The following list of references give insights into the early work aimed at developing mmWave wireless, and the potential it offers for the fifth generation (5G) of wireless technologies (5G mmWave). Possible use cases and exciting new applications can be seen in the 2012 IEEE Vehicular Technology Conference Plenary talk, and many industry and academic leaders are conducting pioneering work in this field, as seen below.
NYU WIRELESS on 6G and beyond: 100 GHz up to Terahertz
FCC Presentation: Wireless Communication and Applications Above 100 GHz:Opportunities and Challenges for 6G and Beyond – March 15, 2019
Download Ted Rappaport’s presentation here.
Landmark vision paper on 6G and Beyond. Moving to Terahertz
Theodore (Ted) Rappaport Presents Wireless Communication and Applications Above 100 GHz- mmWave Coalition – Feb 28, 2019
Future Wireless Technologies: mmWave, THz, & Beyond – mmWave Coalition, Oct 2018
NYU WIRELESS comments at FCC for 14-177 on 5G above 24 GHz
- Filing by NYU WIRELESS in 14-177 on 01/14/2015
- Filing by NYU WIRELESS in 14-177 on 01/13/2015
- Reply to comments filing by NYU WIRELESS in Proceeding 14-177 on 2/18/2015
mmWave Keynotes and Presentations
- September 2014 IEEE spectrum: Mobile’s Millimeter Wave Makeover
- Microwave Journal Article – MMWAVE measurement results in NYC at 28 and 72 GHz
- Prof. Rappaport’s Keynote Address: International Conference on Communications (ICC’ 14), June 13, 2014, Sydney, Australia
- 2012 IEEE Vehicular Technology Conf. Keynote talk- vision and technologies
- Technical feasibility of IMT in the bands above 6 GHz
- IEEE 2011 Proceedings-vision and many technology issues in-depth
- Samsung Vision at ICC 2013 by Wonil Roh
- Intel Vision at ICC 2013 by Ali Sadri
- NYU Millimeter Wave Beamforming Propagation Channel at ICC 2013 by Ted Rappaport(Millimeter Wave Cellular : A road to 5G)
- 60 GHz technologies
- June 2013 IEEE Spectrum
Video – NYU WIRELESS conducts pioneering 5G cellular measurements in New York City(5G Millimeter Wave)
mmWave Research
Citation |
---|
D.Shakya, M.Ying, T.S.Rappaport, “Using Waste Factor to Optimize Energy Efficiency in Multiple-Input Single-Output (MISO) and Multiple-Input Multiple-Output (MIMO) Systems”, 2024 IEEE Global Communications Conference (GLOBECOM), Cape Town, South Africa, Dec. 2024, pp. 1–6. |
Radio Propagation Measurements and Statistical Channel Models for Outdoor Urban Microcells in Open Squares and Streets at 142, 73, and 28 GHz, |
D. Shakya, T. S. Rappaport, D. Shahrjerdi, M. E. Knox, S. Nie, A. Madanayake, Z. Popovic, H. Wang, ” Exploring Millimeter-Wave and Terahertz Circuits and Systems With a Novel Multiuser Measurement Facility: Multiuser Terahertz Measurement Facility (THz Lab),” IEEE Microwave Magazine, February 2024, DOI: 10.1109/MMM.2023.3320820. |
H. Poddar, A. Chowdary, T. S. Rappaport, M. Chaffi, “Full-Stack End-To-End Sub-THz Simulations at 140 GHz using NYUSIM Channel Model in ns-3.”, IEEE WCNC 2024 – IEEE Wireless Communications and Networking, April 2024. |
H. Poddar, S. Ju, D. Shakya, and T. S. Rappaport, “A Tutorial on NYUSIM: Sub-Terahertz and Millimeter-Wave Channel Simulator for 5G, 6G and Beyond,” IEEE Communications Surveys and Tutorials, December 2023, DOI: 10.1109/COMST.2023.3344671 |
S. Ju, D. Shakya, H. Poddar, Y. Xing, O. Kanhere, and T. S. Rappaport, “142 GHz Sub-Terahertz Radio Propagation Measurements and Channel Characterization in Factory Buildings,” IEEE Transactions on Wireless Communications, November 2023, DOI: 10.1109/TWC.2023.3337601 |
D. Shakya, H. Poddar, T. S. Rappaport, “A Sub-Terahertz Sliding Correlator Channel Sounder with Absolute Timing using Precision Time Protocol over Wi-Fi”, IEEE GlobeCom 2023, Kuala Lumpur, Malaysia, December 4-8, 2023. |
M. Ying, D. Shakya, H.Poddar, T.S. Rappaport, “Noise Factor vs. Waste Factor: A New Metric for Evaluating Power Efficiency in any Cascade”, IEEE GlobeCom 2023, Kuala Lumpur, Malaysia, December 4-8, 2023. Winner of the Globecom 2023 Best Paper Award (BPA) in the Green Communication Systems and Networks Symposium. |
H. Poddar, T. Yoshimura, M. Pagin, T. S. Rappaport, A. Ishii, and M. Zorzi, “ns-3 Implementation of Sub-Terahertz and Millimeter Wave Drop-based NYU Channel Model (NYUSIM),” Workshop on ns-3 (WNS3), Washington, DC, June 28, 2023. |
Y. Xing, and T. S. Rappaport. “Millimeter wave and terahertz urban microcell propagation measurements and models.” IEEE Communications Letters 25, no. 12 (2021): 3755-3759. |
S. Ju, Y. Xing, O. Kanhere, and T. S. Rappaport. “Sub-terahertz channel measurements and characterization in a factory building.” In ICC 2022-IEEE International Conference on Communications, pp. 2882-2887. IEEE, 2022. |
S. Ju, and T. S. Rappaport. “142 GHz Multipath Propagation Measurements and Path Loss Channel Modeling in Factory Buildings.” 2023 IEEE International Conference on Communications (ICC), May. 2023, pp. 1-6. |
H. Poddar, T. Yoshimura, M. Pagin, T. S. Rappaport, A. Ishii, and M. Zorzi. “Full-Stack End-To-End mmWave Simulations Using 3GPP and NYUSIM Channel Model in ns-3.” 2023 IEEE International Conference on Communications (ICC), May. 2023, pp. 1-6 |
H.Poddar, T. Yoshimura, M. Pagin, T. S. Rappaport, A. Ishii and M. Zorzi, “Full-Stack End-To-End mmWave Simulations Using 3GPP and NYUSIM Channel Model in ns-3” in ICC 2023 – 2023 IEEE International Conference on Communications, Rome, Italy, May 2023, pp. 1–6, DOI: 10.1109/ICC45041.2023.10278890 |
O. Kanhere and T. S. Rappaport, “Calibration of NYURay, a 3D mmWave and sub-THz Ray Tracer using Indoor, Outdoor, and Factory Channel Measurements,” in ICC 2023 – 2023 IEEE International Conference on Communications, Rome, Italy, May 2023, pp. 1–6, DOI: 10.1109/ICC45041.2023.10279044 |
S. Ju and T. S. Rappaport, “142 GHz Multipath Propagation Measurements and Path Loss Channel Modeling in Factory Buildings,” 2023 IEEE International Conference on Communications (ICC), May. 2023, pp. 1-6, DOI: 10.1109/ICC45041.2023.10278815 |
D. Shakya, D. Chizhik, J. Du, R. A. Valenzuela, T. S. Rappaport, “Dense Urban Outdoor-Indoor Coverage from 3.5 to 28 GHz”, ICC 2022 – IEEE International Conference on Communications, Seoul, South Korea, May 2022, pp. 932-937, DOI: 10.1109/ICC45855.2022.9838919. |
Lota, S. Ju, O. Kanhere, T. S. Rappaport, A. Demosthenous, “mmWave V2V Localization in MU-MIMO Hybrid Beamforming,” IEEE Open Journal of Vehicular Technology, Vol. 3, pp. 210-220, 2022, DOI: 10.1109/OJVT.2022.3170522. |
Y. Xing, O. Kanhere, S. Ju, T. S. Rappaport, “Sub-Terahertz Wireless Coverage Analysis at 142 GHz in Urban Microcell,” ICC 2022 – IEEE International Conference on Communications, Seoul, South Korea, May 2022, pp. 3942-3947, DOI: 10.1109/ICC45855.2022.9838922. |
A. Chopra, A. Thornburg, O. Kanhere, S. S. Ghassemzadeh, M. Majumdar, and T. S. Rappaport, “A Real-Time Millimeter Wave V2V Channel Sounder,” 2022 IEEE Wireless Communications and Networking Conference (WCNC), April 2022, pp. 2607-2612, DOI: 10.1109/WCNC51071.2022.9772001. |
N. Akram et al., “Frequency-Multiplexed Array Digitization for MIMO Receivers: 4-Antennas/ADC at 28 GHz on Xilinx ZCU-1285 RF SoC,” IEEE Access, Vol. 9, October 2021, pp. 142743-142753, DOI: 10.1109/ACCESS.2021.3120704. |
Y. Xing and T. S. Rappaport, “Millimeter Wave and Terahertz Urban Microcell Propagation Measurements and Models (Invited Paper),” IEEE Communications Letters, Vol. 25, No. 12, December. 2021, pp. 3755-3759, DOI: 10.1109/LCOMM.2021.3117900. |
N. Akram, V. Ariyarathna, S. Mandal, L. Belostotski, T. S. Rappaport, A. Madanayake, “Spacetime Frequency-Multiplexed Digital-RF Array Receivers With Reduced ADC Count,” IEEE Transactions on Circuits and Systems II: Express Briefs, Vol. 68, No. 8, August 2021, pp. 2840-2844, DOI: 10.1109/TCSII.2021.3073059. |
Y. Xing, O. Kanhere, S. Ju, and T. S. Rappaport, “Indoor Wireless Channel Properties at Millimeter Wave and Sub-Terahertz Frequencies: Reflection, Scattering, and Path Loss,” in Proc. IEEE 2019 Global Communications Conference, pp. 1–6, Dec. 2019. |
T. Liansheng, T. S. Rappaport, et al. “Stability and throughput of FAST TCP traffic in bidirectional connections.” Resource Allocation and Performance Optimization in Communication Networks and the Internet. Vol. 21. No. 4. Fort Monmouth, NJ: Springer, 2018. 1-20. |
S. Ju, T. S. Rappaport, “Millimeter-wave Extended NYUSIM Channel Model for Spatial Consistency,” in IEEE 2018 Global Communications Conference, Dec. 2018, pp.1-6. |
Y. Xing, T. S. Rappaport, “Propagation Measurement System and Approach at 140 GHz–Moving to 6G and Above 100 GHz,” in IEEE 2018 Global Communications Conference, Dec. 2018, pp.1-6. |
O. Kanhere, T. S. Rappaport, “Position locationing for millimeter wave systems,” in IEEE 2018 Global Communications Conference, Dec.2018, pp. 1–6. |
Y. Xing, O. Kanhere, S. Ju, T. S. Rappaport, G. R. MacCartney Jr., “Verification and calibration of antenna cross-polarization discrimination and penetration loss for millimeter wave communications,” 2018 IEEE 88th Vehicular Technology Conference (VTC2018-Fall), Chicago, USA, Aug. 2018, pp. 1-6. |
S. Ju, T. S. Rappaport, “Simulating motion – incorporating spatial consistency into the nyusim channel model,” in 2018 IEEE 88th Vehicular Technology Conference Workshops, Aug. 2018, pp. 1–6. |
S. Sun, T. S. Rappaport, M. Shaft, “Hybrid beamforming for 5G millimeter-wave multi-cell networks,” IEEE INFOCOM 2018 – IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, 2018, pp. 589-596. |
S. Sun, T.S. Rappaport, M. Shafi, P. Tang, J. Zhang, P. J. Smith, “Propagation Models and Performance Evaluation for 5G Millimeter-Wave Bands,” in IEEE Transactions on Vehicular Technology, June 2018. |
T. S. Rappaport, V. Ariyarathna, A. Madanayake, X. Tang, D. Coelho, R. J. Cintra, L. Belostotski, S. Mandal, “Analog Approximate-FFT 8/16-Beam Algorithms, Architectures and CMOS Circuits for 5G Beamforming MIMO Transceivers,” in IEEE Journal on Emerging and Selected Topics in Circuits and Systems. May 2018. |
T. S. Rappaport, “5G Millimeter Wave Wireless: Trials, Testimonies, and Target Rollouts,” IEEE Infocom Keynote Presentation, Honolulu, Hawaii, April 16, 2018. |
T.S. Rappaport, S. M. Perera, V. Ariyarathna, N. Udayanga, A. Madanayake, G. Wu, L. Belostotski, Y. Wang, S. Mandal, R.J. Cintra, “Wideband N-Beam Arrays using Low-Complexity Algorithms and Mixed-Signal Integrated Circuits,” in IEEE Journal of Selected Topics in Signal Processing. Apr. 2018. |
G. R. MacCartney, Jr., T. S. Rappaport and A. Ghosh, “Base Station Diversity Propagation Measurements at 73 GHz Millimeter-Wave for 5G Coordinated Multipoint (CoMP) Analysis,” 2017 IEEE Globecom Workshops, Singapore, Dec. 2017, pp. 1-7. |
G. R. MacCartney, Jr., T. S. Rappaport, and Sundeep Rangan, “Rapid Fading Due to Human Blockage in Pedestrian Crowds at 5G Millimeter-Wave Frequencies,” 2017 IEEE Global Communications Conference, Singapore, Dec. 2017. |
T. S. Rappaport, Y. Xing, G. R. MacCartney, Jr., A. F. Molisch, E. Mellios, and J. Zhang, “Overview of millimeter wave communications for fifth-generation (5G) wireless networks,” IEEE Transactions on Antennas and Propagation, 2017, Dec. 2017. |
T. S. Rappaport, G. R. MacCartney, Jr., S. Sun, H. Yan, and S. Deng, “Small-scale, local area, and transitional millimeter wave propagation for 5G communications,” IEEE Transactions on Antennas and Propagation, Dec. 2017 |
J. Lota, S. Sun, T. S. Rappaport, and A. Demosthenous, “5G Uniform linear arrays with beamforming and spatial multiplexing at 28 GHz, 37 GHz, 64 GHz and 71 GHz for outdoor urban communication: A two-level approach,” IEEE Transactions on Vehicular Technology, Sep. 2017. |
T. S. Rappaport, S. Sun, M. Shafi, “Investigation and comparison of 3GPP and NYUSIM channel models for 5G wireless communications,” in 2017 IEEE 86th Vehicular Technology Conference (VTC Fall), Sep. 2017, pp. 1-5. |
G. R. MacCartney, Jr. and T. S. Rappaport, “Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications,” in IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1663-1677, July 2017. |
Y. Wang, S. Mao and T. S. Rappaport, “On Directional Neighbor Discovery in mmWave Networks,” 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, June 2017, pp. 1704-1713. |
S. Sun, G. R. MacCartney Jr., and T. S. Rappaport, “A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications,” 2017 IEEE International Conference on Communications (ICC), May 2017. |
S. Sun, H. Yan, G. R. MacCartney Jr., and T. S. Rappaport, “Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario,” 2017 IEEE International Conference on Communications (ICC), May 2017. |
J. Ryan, G. R. MacCartney, Jr., and T. S. Rappaport, “Indoor Office Wideband Penetration Loss Measurements at 73 GHz,” in 2017 IEEE International Conference on Communications Workshop (ICCW), Paris, France, May 2017, pp. 1-6. |
G. R. MacCartney, Jr. and T. S. Rappaport, “Study on 3GPP Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications,” in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1-7. |
T.S. Rappaport, S. Sun and M. Shafi, “5G channel model with improved accuracy and efficiency in mmWave bands,” IEEE 5G Tech Focus, Mar. 2017. |
A.I. Sulyman, A. Alwarafy, G.R. MacCartney, T.S. Rappaport, A. Alsanie, “Directional Radio Propagation Path Loss Models for Millimeter-Wave Wireless Networks in the 28-, 60-, and 73-GHz Bands,” IEEE Transactions on Wireless Communications, vol. 15, no. 10, pp. 6939-6947, Oct. 2016. |
G. R. MacCartney, S. Sun, and T. S. Rappaport, Y. Xing, H. Yan, J. Koka, R. Wang, and D. Yu, “Millimeter Wave Wireless Communications: New Results for Rural Connectivity,” All Things Cellular’16: 5th Workshop on All Things Cellular Proceedings, in conjunction with ACM MobiCom, Oct. 7, 2016. |
H. Yan, G. MacCartney Jr., S. Sun, T. S. Rappaport, “5G Millimeter-Wave Channel Model Alliance Measurement Parameter, Scenario Parameter, and Measured Path Loss Data List,” September 2016. |
S. Deng, G. R. MacCartney Jr., T. S. Rappaport, “Indoor and Outdoor 5G Diffraction Measurements and Models at 10, 20, and 26 GHz,” 2016 IEEE Global Communications Conference (GLOBECOM), Washington, DC, 2016, pp. 1-7. |
G. R. MacCartney Jr., S. Deng, S. Sun, T. S. Rappaport, “Millimeter-Wave Human Blockage at 73 GHz with a Simple Double Knife-Edge Diffraction Model and Extension for Directional Antennas,” 2016 IEEE 84th Vehicular Technology Conference Fall (VTC 2016-Fall), Sept. 2016. |
M.K. Samimi, T.S. Rappaport, “3-D Millimeter-Wave Statistical Channel Model for 5G Wireless System Design,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2207-2225, July 2016. |
S. Sun et al., “Propagation Path Loss Models for 5G Urban Micro- and Macro-Cellular Scenarios,” Proc. IEEE Vehicular Technology Conference (VTC Spring), Nanjing, 2016, pp. 1-6. |
S. Sun, T.S. Rappaport, T. Thomas, A. Ghosh, H. Nguyen, I. Kovacs, I. Rodriguez, O. Koymen, A. Partyka, “Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843 – 2860, May 2016. |
K. Haneda, L. Tian, H. Asplund, J. Li, Y. Wang, D. Steer, C. Li, T. Balercia, S. Lee, Y. Kim, A. Ghosh, T. Thomas, T. Nakamura, Y. Kakishima, T. Imai, H. Papadopoulas, T. S. Rappaport, G. R. MacCartney Jr., M. K. Samimi, S. Sun, O. Koymen, S. Hur, J. Park, C. Zhang, E. Mellios, A. F. Molisch, S. S. Ghassamzadah, A. Ghosh “Indoor 5G 3GPP-like Channel Models for Office and Shopping Mall Environments,” in 2016 IEEE International Conference on Communications Workshops (ICCW), May 2016. |
S. Sun, G.R. MacCartney, T.S. Rappaport, “Millimeter-Wave Distance-Dependent Large-Scale Propagation Measurements and Path Loss Models for Outdoor and Indoor 5G Systems,” in the 10th European Conference on Antennas and Propagation (EuCAP 2016), April 2016. |
S. Sun, et al., “Propagation Path Loss Models for 5G Urban Micro- and Macro-Cellular Scenarios,” in 2016 IEEE 83rd Vehicular Technology Conference (VTC2016-Spring), May 2016. |
M.K. Samimi, T.S. Rappaport, S. Sun, G. R. MacCartney, Jr. “28 GHz Millimeter-Wave Ultrawideband Small-Scale Fading Models in Wireless Channels,” in 2016 IEEE Vehicular Technology Conference (VTC2016-Spring), 15-18 May, 2016 |
G. R. MacCartney Jr., S. Deng, T. S. Rappaport, “Indoor Office Plan Environment and Layout-Based MmWave Path Loss Models for 28 GHz and 73 GHz,” in the 2016 IEEE 83rd Vehicular Technology Conference Spring (VTC2016-Spring), May 2016. |
M.K. Samimi, S. Sun, T.S. Rappaport, “MIMO Channel Modeling and Capacity Analysis for 5G Millimeter-Wave Wireless Systems,” in the 10th European Conference on Antennas and Propagation (EuCAP’2016), April 2016. |
S. Sun, G. R. MacCartney, Jr., M. K. Samimi, and T. S. Rappaport, “Synthesizing Omnidirectional Antenna Patterns, Received Power and Path Loss from Directional Antennas for 5G Millimeter-Wave Communications,” in 2015 IEEE Global Communications Conference (GLOBECOM), Dec. 2015. |
Sun, Shu, G. R. MacCartney, Mathew K. Samimi, and Theodore S. Rappaport. “Synthesizing omnidirectional Antenna Patterns, received power and path loss from directional measurements at millimeter-wave frequencies.” In 2015 IEEE Global Telecommunications Conference (GLOBECOM 2015), pp. 3948-3953. 2015. |
S. Sun, Theodore S. Rappaport et al., “Path Loss, Shadow Fading, and Line-Of-Sight Probability Models for 5G Urban Macro-Cellular Scenarios,” to appear in 2015 IEEE Global Communications Conference Workshop (Globecom Workshop), Dec. 2015. |
C. Nicolas Barati, S. Amir Hosseini, Marco Mezzavilla, Parisa Amiri-Eliasi, Sundeep Rangan, Thanasis Korakis, Shivendra S. Panwar, Michele Zorzi, “Directional initial access for millimeter wave cellular systems,” 2015 49th Asilomar Conference on Signals, Systems and Computers, Pacific Grove, CA, 2015, pp. 307-311. |
C. N. Barati, S. A. Hosseini, M. Mezzavilla, P. Amiri-Eliasi, S. Rangan, T. Korakis, S. S. Panwar, M. Zorzi,“Directional initial access for millimeter wave cellular systems, Proc. IEEE Asilomar Conf. on Signals, Systems and Computers, Pacific Grove, CA, pp. 307-311, November 2015. |
G. R. MacCartney Jr., T.S. Rappaport, S. Sun, S. Deng, “Indoor office wideband millimeter-wave propagation measurements and channel models at 28 GHz and 73 GHz for ultra-dense 5G wireless networks,” IEEE Access, vol. 3, pp. 2388-2424, Dec. 2015. |
G.R. MacCartney Jr., T.S. Rappaport, M.K. Samimi, S. Sun, “Millimeter-wave omnidirectional path loss data for small cell 5G channel modeling,” IEEE Access, vol. 3, pp. 1573-1580, Sept. 2015. |
G. R. MacCartney Jr., et al., “Exploiting directionality for millimeter-wave wireless system improvement,” in 2015 IEEE International Conference on Communications (ICC), pp. 2416-2422, 8-12 June 2015. |
T. Wu, T. S. Rappaport, C. M. Collins, “The Human Body and Millimeter-Wave Wireless Communication Systems: Interactions and Implications”, IEEE International Conference on Communications, Jun. 2015. |
T.S. Rappaport, G.R Maccartney Jr., M.K. Samimi, S. Sun, “Wideband Millimeter-Wave Propagation Measurements and Channel Models for Future Wireless Communication System Design,” IEEE Transactions on Communications, vol.63, no.9, pp. 3029-3056, Sept. 2015. |
M. K. Samimi, T. S. Rappaport, G. R. MacCartney, Jr., “Probabilistic Omnidirectional Path Loss Models for Millimeter-Wave Outdoor Communications”, IEEE Wireless Communications Letters, August 2015, Vol. 4, No. 4, pp. 357-360. |
T. Wu, T. S. Rappaport, C. M. Collins, “Safe for generations to come: considerations of safety for millimeter waves in wireless communications”, IEEE Microwave Magazine, vol. 16, no. 2, pp. 65-84, Mar. 2015. |
S. Sun, T. S. Rappaport, T. A. Thomas and A. Ghosh, “A preliminary 3D mm wave indoor office channel model,” 2015 International Conference on Computing, Networking and Communications (ICNC), Garden Grove, CA, 2015, pp. 26-31. |
M. K. Samimi, T. S. Rappaport, “Ultra-Wideband Statistical Channel Model for Non Line of Sight Millimeter-Wave Urban Channels”, IEEE Global Communications Conference, Exhibitions & Industry Forum (GLOBECOM), 8-12 December 2014. |
J. Murdock, T.S. Rappaport, “Consumption Factor and Power-Efficiency Factor: A Theory for Evaluating the Energy Efficiency of Cascaded Communication Systems” Selected Areas in Communications, IEEE Journal, Vol. 32, No. 12, December 2014. |
S. Sun, T. S. Rappaport, R. W. Heath, A. Nix, S. Rangan, “MIMO for millimeter-wave wireless communications: beamforming, spatial multiplexing, or both?” IEEE Communications Magazine, vol. 52, no. 12, pp. 110-121, December 2014. |
S. Deng, C. J. Slezak, G. R. MacCartney Jr., T. S. Rappaport, “Small wavelengths – big potential: millimeter wave propagation measurements for 5G,” Microwave Journal, vol. 57, no. 11, pp. 4–12, Nov. 2014. |
A. Thomas, H. C. Nguyen, G. R. MacCartney, Jr., and T. S. Rappaport, “3D mmWave Channel Model Proposal,” accepted in Vehicular Technology Conference (VTC Fall), 2014 IEEE 80th, Sept 14 – 17, 2014. |
H. C. Nguyen, G. R. MacCartney Jr., T. A. Thomas, T. S Rappaport, B. Vejlgaard, and P. Mogensen, “Evaluation of Empirical Ray-Tracing Model for an Urban Outdoor Scenario at 73 GHz E-Band,” Vehicular Technology Conference (VTC Fall), 2014. |
A. I. Sulyman, A. T. Nassar, M. K. Samimi, G. R. MacCartney, Jr., T. S. Rappaport, and A. Alsanie, “Radio Propagation Path Loss Models for 5G Cellular Networks in the 28 GHz and 38 GHz Millimeter-Wave Bands,” IEEE Communications Magazine, vol. 52, no. 9, pp. 78–86, Oct. 2014. |
G. R. MacCatney, M. K. Samimi, T. S. Rappaport, “Omnidirectional Path Loss Models in New York City at 28 GHz and 73 GHz,” IEEE Personal, Indoor, and Mobile Radio Communications (PIMRC), September 2-5, 2014. |
T. S. Rappaport, W. Roh, and K. Cheun, “Mobile’s millimeter-wave makeover,” IEEE Spectrum, vol. 51, pp. 34-58, Sep. 2014. |
S.Nie, M.K.Samimi, T.Wu, S.Deng, G. R. MacCartney, Jr., T.S. Rappaport “73 GHz Millimeter-Wave Indoor and Foliage Propagation Channel Measurements and Results,” Tech. Rep. 2014-003, NYU WIRELESS: Department of Electrical Engineering and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, New York, July 2014. |
M. K. Samimi, T. S. Rappaport, “Characterization of the 28 GHz Millimeter-Wave Dense Urban Channel for Future 5G Mobile Cellular,” Tech. Rep. 2014-001, NYU WIRELESS: Department of Electrical Engineering and Computer Engineering, NYU Tandon School of Engineering, Brooklyn, New York, June 2014. |
M.R. Akdeniz, Y. Liu, S. Sun, S. Rangan, T.S. Rappaport, E. Erkip “Millimeter Wave Channel Modeling and Cellular Capacity Evaluation,” IEEE J. Selected Areas in Communications, vol. 32, no. 6, pp. 1164–1179, June 2014. |
S. Sun, T. S. Rappaport, “Antenna Diversity Combining and Beamforming at Millimeter Wave Frequencies,” NYU WIRELESS Technical Report TR 2014-002, June 2014. |
A. Ghosh et al., “Millimeter-Wave Enhanced Local Area Systems: A High-Data-Rate Approach for Future Wireless Networks,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1152-1163, June 2014. |
Sun, S., Rappaport, T. S., “Wideband mmWave channels: Implications for design and implementation of adaptive beam antennas,” IEEE International Microwave Symposium (IMS2014), Orlando, FL, June 1~6, 2014. |
S. Sun, G. R. MacCartney, Jr., S. Nie, and T. S. Rappaport, “Millimeter wave multi-beam antenna combining for 5G cellular link improvement in New York City,” in 2014 IEEE International Conference on Communications (ICC), June 2014, pp. 5468–5473. |
S. Nie, G. R. MacCartney, Jr., S. Sun, and T. S. Rappaport, “28 GHz and 73 GHz signal outage study for millimeter wave cellular and backhaul communications,” in 2014 IEEE International Conference on Communications (ICC), June 2014, pp. 4856–4861. |
G. R. MacCartney, Jr. and T. S. Rappaport, “73 GHz millimeter wave propagation measurements for outdoor urban mobile and backhaul communications in New York City,” in 2014 IEEE International Conference on Communications (ICC), June 2014, pp. 4862–4867. |
A. Adhikary et al., “Joint Spatial Division and Multiplexing for mm-Wave Channels,” IEEE Journal on Selected Areas in Communications, vol. 32, no. 6, pp. 1239-1255, June 2014. |
S. Rangan, T.S. Rappaport, E. Erkip, “Millimeter Wave Cellular Wireless Networks: Potentials and Challenges,” Proceedings of the IEEE, vol. 102, no. 3, pp. 366-385, March 2014. |
S. Sun, and T.S. Rappaport, “Multi-beam Antenna Combining for 28 GHz Cellular Link Improvement in Urban Environments,” IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9-13 Dec. 2013. |
G.R. MacCartney, J. Zhang, S. Nie, and T.S. Rappaport, “Path Loss Models for 5G Millimeter Wave Propagation Channels in Urban Microcells,” accepted by 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, USA, 9-13 Dec. 2013. |
S. Nie, G. R. MacCartney, Jr., S. Sun and T. S. Rappaport, “72 GHz Millimeter Wave Indoor Measurements for Wireless and Backhaul Communications,” in 2013 IEEE 24th International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Sept. 8-11, 2013, pp. 2429–2433. |
R. Mayzus, S. Sun, M.K. Samimi, J.K. Schulz, Y. Azar, K. Wang, G. N. Wong, F. Gutierrez, T. S. Rappaport “28 GHz Millimeter Wave Cellular Communication Measurements for Reflection and Penetration Loss in and around Buildings in New York City,” 2013 IEEE International Conference on Communications (ICC), Budapest, 2013, pp. 5163-5167. |
Y. Azar, G. N. Wong, K. Wang, R. Mayzus, J. K. Schulz, H. Zhao, F. Gutierrez, D. Hwang, and T. S. Rappaport, “28 GHz propagation measurements for outdoor cellular communications using steerable beam antennas in New York City,” in IEEE International Conference on in Communications (ICC), pp. 5143-5147, June 2013. |
M.K. Samimi, K. Wang, Y. Azar, G.N. Wong, R. Mayzus, H. Zhao, J.K. Schulz, S. Sun, F. Gutierrez, T.S. Rappaport, “28 GHz Angle of Arrival and Angle of Departure Analysis for Outdoor Cellular Communications using Steerable Beam Antennas in New York City,” in 2013 IEEE Vehicular Technology |
T. S. Rappaport, S. Sun, R. Mayzus, H. Zhao, Y. Azar, K. Wang, G. N. Wong, J. K. Schulz, M. Samimi, F. Gutierrez, “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!” IEEE Access, vol.1, pp. 335-349, May 2013. |
T.S. Rappaport, F. Gutierrez, E. Ben-Dor, J.N. Murdock, Qiao Yijun, J.I. Tamir , “Broadband Millimeter-Wave Propagation Measurements and Models Using Adaptive-Beam Antennas for Outdoor Urban Cellular Communications,” Antennas and Propagation, IEEE Transactions, 2013. |
Theodore S. Rappaport, Eshar Ben-Dor, James N. Murdock, Yijun Qiao “38 GHz and 60 GHz Angle-dependent Propagation for Cellular & Peer-to-Peer Wireless Communications,” 2012 IEEE International Conference on Communications, Ottawa, Canada. |
J. N. Murdock, E. Ben-Dor, Y. Qiao, J. I. Tamir, T. S. Rappaport, “A 38 GHz Cellular Outage Study for an Urban Outdoor Campus Environment,” IEEE Wireless Communications and Networking Conference (WCNC), April 2012. |
T.S. Rappaport, E. Ben-Dor, J.N. Murdock, Y. Qiao, J. Tamir, “Cellular and Peer-to-Peer Broadband Millimeter Wave Outdoor propagation measurements and Angle of Arrival characteristics using adaptive beam steering,” IEEE Radio and Wireless Week (RWW) 2012, Santa Clara, CA, Jan. 15, 2012. |
E. Ben-Dor, T.S. Rappaport, Y Qiao, S. Lauffenberger, “Millimeter-wave 60 GHz Outdoor and Vehicle AOA Propagation Measurements using a Broadband Channel Sounder,” 2011 IEEE Global Communications Conference (Globecom), December 2011, Houston, TX, 6 pp. |
J. N. Murdock, T. S. Rappaport, “Consumption Factor: A Figure of Merit for Power Consumption and Energy Efficiency in Broadband Wireless Communications,” IEEE Global Communications Conference (Globecom), Broadband Wireless Workshop, December 2011, Houston, TX. |
T.S. Rappaport, J.Murdock, F.Gutierrez, Jr., “State of the Art in 60-GHz Integrated Circuits and Systems for Wireless Communications,” Proceedings of the IEEE, vol. 99, no.8, pp.1390-1436, Aug. 2011. |
J. Murdock, E. Ben-Dor, F. Gutierrez, Jr., T.S. Rappaport, “Challenges and Approaches to On-chip Millimeter Wave Antenna Measurements,” 2011 IEEE MTT-S International Microwave Symposium (IMS), Baltimore, MD, June 5-10. |
|
F. Gutierrez, T. S. Rappaport, J. Murdock, “Millimeter-Wave CMOS Antennas and RFIC Parameter Extraction for Vehicular Applications,” IEEE 72nd Vehicular Technology Conference Fall (VTC), Ottawa, Canada, Sept. 6-9, 2010, pp.1-6. |
T. S. Rappaport, F. Gutierrez, T. Al-Attar, “Millimeter-Wave and Terahertz Wireless RFIC and On-Chip Antenna Design: Tools and Layout Techniques,” Proceedings of IEEE First Workshop on Millimeter Wave and Terahertz Communications, in conjunction with IEEE Global Communications Conference (Globecom), Honolulu, HI, November 30-December 4, 2009. |
F. Gutierrez, S. Agarwal, K. Parrish, T. S. Rappaport, “On-Chip Integrated Antenna Structures in CMOS for 60 GHz WPAN Systems,” IEEE Journal on Selected Areas in Communications, Vol. 27, Issue 8, October 2009, pp.1367-1378. |
L. Ragan, A. Hassibi, T. S. Rappaport, C. L. Christianson, “Novel On-Chip Antenna Structures and Frequency Selective Surface (FSS) Approaches for Millimeter Wave Devices,” IEEE 66th Vehicular Technology Conference (VTC), Baltimore, MD, Oct. 1-3, 2007, pp. 2051-2055. |
C. R. Anderson and T. S. Rappaport, “In-Building Wideband Partition Loss Measurements at 2.5 and 60 GHz,” IEEE Transactions on Wireless Communications, Vol. 3, No. 3, May 2004, pp. 922-928. |
H. Xu, V. Kukshya, T. S. Rappaport, “Spatial and Temporal Characteristics of 60 GHz Indoor Channels,” IEEE Journal on Selected Areas in Communications, Vol. 20, No. 3, April 2002, pp. 620-630. |
H. Xu, D. A. Wolf, T. S. Rappaport, “Experimental and Theoretical Study of Short-terni Signal Variation During Rain,”April 14, 2000. |
H. Xu, T. S. Rappaport, D. A. de Wolf, “Experimental and Theoretical Study of Short-Term Signal Variation during Rain for Millimeter-Wave Point-to-Multipoint Applications,” AP2000 Millennium Conference on Antennas & Propagation, April 9-14, 2000, pp. 1534-1538. |
H. Xu, T. S. Rappaport, V. Kukshya, Ho. Izadpanah, “Multipath measurements and modeling for fixed broadband point-to-multipoint radio wave propagation links under different weather conditions,” The Bradley Dept. of Electrical and Computer Engineering, Feb 25, 2000. |
H. Xu, T. S. Rappaport, R. J. Boyle, J. H. Schaffner, “38 GHz Wideband Point-to-Multipoint Radio Wave Propagation Study for a Campus Environment,” 49th Annual International IEEE Vehicular Technology Conference, Houston, TX, May 16-19, 1999, pp. 1575-1579. |
G. D. Durgin, T. S. Rappaport, H. Xu, “Measurements and Models for Radio Path Loss and Penetration Loss in and Around Homes and Trees at 5.85 GHz,” IEEE Transactions on Communications, Vol. 46, No. 11, November 1998, pp. 1484-1496. [Paper is the winner of the 1999 IEEE Communications Society Stephen O. Rice Prize Paper Award] |
G. D. Durgin, T. S. Rappaport and Hao Xu, “Partition-based path loss analysis for in-home and residential areas at 5.85 GHz,” IEEE GLOBECOM 1998 (Cat. NO. 98CH36250), Sydney,NSW, 1998, pp. 904-909 vol.2 |
J. H. Schaffner, H. Izadpanah, D. Gregoire, H. P. Hsu, H. Xu, R. J. Boyle, T. S. Rappaport, “Millimeter Wave Wireless Technology and Testbed Development for Wideband Infrastructure Access,” Session WCC-98TA7, Yd International Wireless Communications Conference, November l998, San Diego, CA. |
T. S. Rappaport, K. Blankenship, H. Xu, “Propagation and radio system design issues in mobile radio systems for the GloMo project,” Mobile and Portable Radio Research Group, Bradley Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State University, 1997. |
T.S. Rappaport, “The Wireless Revolution,” IEEE Communications Magazine, 29 (11), November 1991, pp. 52-71. |
Contact
NYU WIRELESS
370 Jay Street, 9th Floor, Office 907
Brooklyn, NY 11201
Teresa Wang
NYU WIRELESS Center Administrator
Email: tlw335@nyu.edu
Pat Donohue
NYU WIRELESS Administrative Director
Email: pat.donohue@nyu.edu
Quick Links
NYUSIM: Open Source Channel Simulator
NYU WIRELESS Newletter
Publications Library
Popular Publications
Wireless Communications Principles and Practice - 2nd Edition from Ted Rappaport
Prentice Hall Communications Engineering and Emerging Technologies Series from Ted Rappaport
Millimeter Wave Wireless Communications
By Ted Rappaport, Robert W. Heath Jr., Robert C. Daniels, James N. Murdock
Smart Antennas for Wireless Communications
By Ted Rappaport, Joseph Liberti
Wireless Communications: Principles and Practice
By Ted Rappaport
Principles of Communication Systems Simulation with Wireless Applications
By Ted Rappaport, William H. Tranter, K. Sam Shanmugan, Kurt L. Kosbar