TANDON SCHOOL
OF ENGINEERING

NYU

5G Millimeter Wave Wireless:
Trials, Testimonies, and Target Rollouts

Prof. Theodore S. Rappaport
tsr@nyu.edu

B NYU

WIRELESS

Keynote Presentation
First IEEE Workshop on Millimeter-Wave Network Systems
(mmSys)
IEEE Infocom
April 16, 2018
Honolulu, Hawaii

© 2018 NYU WIRELESS



WIRELESS

NYU | meises Outline “‘ NYU

» 4G LTE and 5G: Practical Base Station Deployment Issues
»* How 4G is evolving to 5G and small cells: myth-busting at mmW
»* Recent testimonies and results of 5G Trials in the USA

» Key Regulatory Needs: Inputs for Regulatory Focus at FCC

+*+ Conclusion

© 2018 NYU WIRELESS



[

marketplace npr - Google Search

Q @& gartner hype curve

o

@

gartner hype curve - Google Sea

Gartner Hype Cycle for Emerging Technologies, 2017

/

Expectations

Connected Home

Virtual Assistants

loT Platform
Smart Robots

Edge Computing

Augmented Data
Discovery

Smart Workspace
Conversational

Brain-Computer User Interfaces
Inferface Volumetric
Quantum — Displays
Computing Digital Twin

Serverless

PaaS

56

Human
Augmentation
Neuromorphic ¢
Hardware
Deep Reinforcement

Learning
: Artificial General
4D Printing Intelligence

Deep Leaming

Machine Learning
Autonomous Vehicles
Nanotube Blectronics

Cognitive Computing
Blockchain

Commercial UAVS (Drones)

Cognitive Expert Advisors

Enterprise Taxonomy
and Ontology Management

Ptateau will be reached in:
@ less than 2 years
@ 2Mo5years

@ s5toi0years

A\ more than 10 years




ENvu zesase 4G LTE Base Stations and Antennas [1,2] “ NYU

WIRELESS

Radome 8 x 2 column

2 Antenna Elements

Diplexer

Amplifier

| H Cooling Fins (passive cooling)
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[1] 3GPP TR36.897 V13.0.0: “Study on elevation beamforming / full-dimension (FD) multiple input multiple output (MIMO) for LTE,” Jun. 2015.

[2] 3GPP TR36.884 V13.1.0: “Performance requirements of MMSE-IRC receiver for LTE BS,” Sep. 2016.

[3] https://hackaday.com/2016/04/05/a-field-guide-to-the-north-american-communications-tower/

[4] http://www.dailywireless.org/2010/05/13/mimo-the-paper-war/ © 2018 NYU WIRELESS
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EINvu zemizse Beamforming used in 4G and 5G MiMO \“M

Analog Beamforming Y Digital Beamforming
DAC
One RF chain behind
each antenna
DAC High complexity & cost N,
. > BS
when antenna number is Ny - Nis
large
One RF chain connected to all antennas } |
Huge power consumption of phase shifters ]
DAC RF Chain
B L
. (& Y i i P
Hybrid - _y Why hybrid beamforming for mmWaver
B f . DAC RF Chain
eamiorming » Large numbers of antennas at TX/RX
Y * Reduced number of RF chains, reduced hardware
Much fewer RF complexity & cost
chains than X NEE . e - « Comparable spectral efficiency with digital
antennas A¥g - . Npgs .
; . beamforming
A. Ghosh, et. al., "Millimeter-wave enhanced local area systems: A high-data-rate approach for future wireless
networks,” IEEE J. Sel. Areas in Communications, IEEE Journal on, vol. 32, pp. 1152-1163, June 2014. .
j S. Sun, Rappaport, T. S., Heath, R. W., Nix, A., & Rangan, S. (2014) “MIMO for millimeter-wave wireless
communications: Beamforming, spatial multiplexing, or both?” IEEE Communications Magazine, 52 (12), 110-121.
DAC X. Zhang, A. F. Molisch and Sun-Yuan Kung, "Variable-phase-shift-based RF-baseband codesign for MIMO
antenna selection," IEEE Transactions on Signal Processing, vol. 53, no. 11, pp. 4091-4103, Nov. 2005.

b _4 O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave
MIMO systems,” IEEE Transactions on Wireless Communications, vol. 13, no. 3, pp. 1499-1513, Mar. 2014.

© 2018 NYU WIRELESS 5
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3GPP LTE-Advanced (4G) Downlink Schemes “‘ NYU

[1,2]

Single-user MIMO Single-layer beamforming Multi-user MIMO
(SU-MIMO) (Single-layer BF) (MU-MIMO)

Ex) Ex) Ex) Vd\
&\ 5\ i

& &
o 4 ©
Joint processing CoMP Coordinated scheduling/beamforming-CoMP
(JP-CoMP) (Cs/cB-CoMP)

Ex)

Ko

[1] 3GPP TR36.897 V13.0.0: “Study on elevation beamforming / full-dimension (FD) multiple input multiple output (MIMO) for LTE,” Jun. 2015.
[2] 3GPP TR 36.819 V11.2.0, “Coordinated multi-point operation for LTE physical layer aspects,” Sep. 2013.

© 2018 NYU WIRELESS 6
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e Spectrum shortage in microwave band motivates use of millimeter wave (mmWave) for 5G cellular
* Channel measurements and channel model needed for mmWave communications

Pioneering mmWave propagation measurements in New York City by NYU WIRELESS
28 GHz & 73 GHz urban microcell (UMi), urban macrocell (UMa), small-scale fading, indoor office
measurements, and 73 GHz rural macrocell (RMa) measurements from 2012 to 2017

. L e -d . n
i e B e
> = . @ Receiver Site -
800 MHZ ; 1 I B Receiver Sita 28 GHZ UMI & UMa

behind a buliding

measurements in 2012

Rotatable Horn

Antenna
24.5 dBi; 15 dBi
10.99; 28.80
8.60; 300 g g 23
' - LR
Yes i s i e
T. S. Rappaport et al., "Millimeter wave mobile
communications for 5G cellular: It will work!,"
/m,17m IEEE Access, (1), pp. 335-349, 2013.
15m T. S. Rappaport et al., “Wideband millimeter-
wave propagation measurements and channel
30.1 dBm models for future wireless communication
system design," IEEE Transactions on
178 dB Communications, vol. 63, no. 9, pp. 3029-3056,
Sep. 2015.

© 2018 NYU WIRELESS o ' - 7



Bl NYu | peeas Myth-busting at MmWave

O Atmospheric absorption too high? NO | ,
= 0.06 dB/km at 28 GHz; 0.08 dB/km at 38 GHz == ==
O Rain attenuation too high?
= At 200 m 28 GHz: 1.2 dB; 73 GHz: 2.0 dB
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A

» Antenna gain: G =

= As f increases with constant 4., gain of each e =
antenna increases as a function of the square of © fife i
2 " 7 S
frequency ratio: Gipcrease = (f—z) 5 Aol
N1 .. . 5 . o ;.- — \ Heavy Rainfall @ 73 GHz
= TX A4, constant, Rx order of 4, B. is identical fig N 2 dB attenuation @ 200m
. P = = = Heavy Rainfall @ 28 GHz
= TX/RX A, constant, B. is greater than lower fIll & : = 1298 attonuation @ 200m
J T J, 1

. T. S. Rappaport, et. al., “Millimeter Wave Wireless Communications,” Pearson/Prentice Hall c. 2015 0.01
. T. S. Rappaport, J. N. Murdock, and F. Gutierrez, “State of the artin 60-GHz integrated circuits and systems for wireless communications,”

Proceedings of the IEEE, vol. 99, no. 8, pp. 1390{1436, Aug. 2011.
. T. S. Rappaport et al., “Millimeter Wave Mobile Communications for 5G Cellular: It Will Work!" IEEE Access, vol. 1, pp. 335{349, May 2013. 8

Frequency (GHz )
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UMi-SC LOS Path Loss Models

O Identified inaccuracies with floating-intercept (FI)

o

model compared with close-in (CI) path loss model [1] .|

PLY(fe. d)[dB] = FSPL(f., do) + 10n logy (di) + Xoi for do = 1 m
0

28 GHzFl: ¢ =39, 3=318dB, o =29dB
28GHzCl:n=21,5=35

73 GHz Fl: «=-0.8, #=115.6dB, o = 3.9dB
O Usealmuniversal FSPL reference distance [2, 3] j M il

1 10 20 30 100 200
Distance (m)

73 G]Iélg Omnidirectional PL Model 1 m - Manhattan for Hybrid (RX at 2 m & 4.06 m)

0 Stressed importance of directional PL models [1, 2] e T_'}

e LOS-CI: 11 = 2.0, o = 4.8 dB a
140 ‘w= =wNLOS-Cl:n=34,0=79dB ] 1
== NLOS-Fl: o = 2.9, {1 = 80.6 dB, o = 7.8 dB [ ‘

----- 73 GHz Free Space: n=2 e B E L

O Path loss at mmWaves attenuate with distance itttk BN s ol
similarly to UHF bands [2]. The first meter is the key!

PL™(d)[dB] = 10 - alog,o(d) + 5 + X!

Path Loss (dB)
g

80 -
[1] G. R. MacCartney, Jr., J. Zhang, S. Nie, and T. S. Rappaport, “Path loss models for 5G millimeter wave propagation channels in

urban microcells,” in 2013 IEEE Global Communications Conference (GLOBECOM), Atlanta, GA, Dec. 2013, pp. 3948-3953.

[2] T. S. Rappaport, G. R. MacCartney, Jr., M. K. Samimi, and S. Sun, “Wideband millimeter-wave propagation measurements and
channel models for future wireless communication system design (Invited),” IEEE Transactions on Communications, vol. 63, no. 9, pp.
3029-3056, Sept. 2015.

[3] G. R. MacCartney, Jr., M. K. Samimi, and T. S. Rappaport, “Omnidirectional Path Loss Models in New York City at 28 GHz and 73 10 | L]
GHz,” in 2014 IEEE 25th Annual International Symposium on Personal Indoor and Mobile Radio Communications (PIMRC), Washington, 1 10 20 30 100 200 9
D.C., Sept. 2014, pp. 227-231. T-R Separation (meters)

60 -




Major Differences Between 3GPP/ITU and “ NYU

NYU | meaiiass
NYUSIM Channel Models WIRELESS
1
Number of clusters — Relates to Channel Rank LOS .\ Ti?ﬂié,.‘.d.“‘“dm
Parameter Name and Reference Source LOS NLOS prObablllty 8 .|. fiﬁsgmmljlma
JGPP Number of clusters (3] [ 2 19 | model Z .
¥ e 1 \!
Number of rays per cluster [3] 20 20 § 06 W
A}
Number of time clusters [6] 1 Biscrcte Uniform [1. 6] 1 E ¥ ;
y i iscrete Uni wn 0.4 \
NYUSIM Number of subpaths per time cluster [6] Discrete Uniform [1, 30] 2 ;‘ \\
Number of spatial lobes (departure) [6] Poisson(1.9) Poisson(1.5) - AIANR
Number of spatial lobes (arrival) [6] Poisson(1.8) Poisson(2.1) 0.2+ X
Path loss model e s
Floating intercept, no physical basis % 100 200  300———d480——580—"600
2D Distance (m)

Not PLE

d 1
oo (15 ) O 1071080 (1) + 12" where a> 1 | T
1

PLAPC(f d)[dB] =
) ] ] # Parameters 3

NYUSIM & 3GPP Optional Path Loss Model: Close-in Free Space Reference Distance (Cl) Model : -

PL (f d)[dB] :FbPL('l’l m)[dB] 10 logyo (m) T Xo Computation High Low
d f Complexity

10nlog;, (—) + 20log; (—) + XSIa where d > 1 m Prediction Low High
/ 1 m 1 GHz Accuracy

PLE holds physical meaning, virtually Free space path loss at 1 m & 1 GHz Parameter Stability Low High

independent of frequency . . o
Channel models impact predicted spectral efficiency

3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), TR 38.901 V14.2.0, Sep. 2017.
S. Sun et al., "Investigation of prediction accuracy, sensitivity, and parameter stability of large-scale propagation path loss models for 5G wireless communications," IEEE Transactions on Vehicular Technology, vol. 65, no. 5, pp. 2843-2860, May 2016.

M. K. Samimi and T. S. Rappaport, “3-D millimeter-wave statistical channel model for 5G wireless system design,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2207-2225, Jul. 2016.
S. Sun et al., “A novel millimeter-wave channel simulator and applications for 5G wireless communications,” in Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 2017, pp. 1-7.
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Joint spatial and temporal
cluster in 3GPP/Spatial
lobe in NYUSIM

Base station

: Subpath/Ray in a
~__——» cluster (3GPP) or
- spatial lobe (NYUSIM)

—_Line of sight

User

3GPP, “Study on channel model for frequencies
from 0.5 to 100 GHz,” 3rd Generation
Partnership Project (3GPP), TR 38.901 V14.2.0,
Sep. 2017.

:;,_'_;}‘ _‘__s M. K. Samimi and T. S. Rappaport, “3-D
o Ny )2 millimeter-wave statistical channel model for 5G
3 :E? > -E; wireless system design,” IEEE Transactions on
3N li an Microwave Theory and Techniques, vol. 64, no.
: 2&; E: In NYUSIM, rays from 7, pp. 2207-2225, Jul. 2016.
3 = - . .
3 EE‘}.: g; | dlﬁ:erent Spatlal IObeS may S. Sun et al., “A novel millimeter-wave channel
3 :ﬁi E: | be|0ng to the same time simulator and applications for 5G wireless
N :EL h | i communications,” in Proceedings of the IEEE
b =0 I | cluster. and vice versa International Conference on Communications

N bl 1 .

N Y (ICC), Paris, France, 2017

QP

© 2018 NYU WIRELESS 11
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Time Cluster 1
Duration: 77.9 ns
8 subpaths

NYUSIM Cluster Definition Based on NYU

mmWave Field Measurements WIRELESS
Absolute
Spatial Lobe 2 Spread

00

+—
\j : ' = : 30° \\
———————— | Time Cluster 2 \
50 1 I Duration: 31.6 ns | g _ AOA

1 I 6 subpaths . e R W 1
%_60_1 | Spreacl//
o | |
2 I
] 1 P N 9706 g e 2 N
E 70 I
5 | I
= 1 [ Iy 7 R " Lobe Segment
g 801 I l I- ¥ Y
o [ [ I | 120°

| > | I

90! - : .
: 210%™ ... 150°
400 550 180° | --@-:Data
Absolute Propagation Time (ns)
Void 1: ====-.10 dB Threshold
Duration: 92.5 ns

M. K. Samimi and T. S. Rappaport, “3-D millimeter-wave statistical channel model for 5G wireless system design,” IEEE Transactions on Microwave Theory and Techniques, vol. 64, no. 7, pp. 2207-2225, Jul. 2016.

© 2018 NYU WIRELESS
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3-D AOD Power Spectrum - 28 GHz, UMi NLOS, 450.0 m T-R Separation 3-D AOA Power Spectrum - 28 GHz, UMi NLOS, 450.0 m T-R Separation Omnidirectional Power Delay Profile (FOF)
~120
-125
2 28 GHz UMi NLOS
I -143 dBm I 143 dBm Fo0
I -133 dBm B 133 dBm a 450.0 m T-R Separation
13
=123 dBm 123 dBm § o =338ns

% I P =-119.0 dBm

E -145

o PL = 149.0 dB

o 150

PLE=3.3
-155
-160
1500 2000 2500 3000
Absclute Propagation Time (ns)
Omnidirecti | and Directi | Path L - 28 GHz, UMi NLOS
Directional PDP with Strongest Power Small Scale PDPs - 28 GHz, 800 MHz, UMi NLOS 450.0 m T-R Separation 300 . pan - ath Loss - 28 : ! T
[e] PL‘_m_‘_i TX Ant. HPBW: 107 AZ, 107 EL

2701 | » P TX Ant. Gain: 24.6 dBI

28 GHz UMi NLOS dir R Ant. HPBW: 10° AZ, 10° EL

50 TR Senart sap| |t Plarbes RX Ant. Gain: 24.6 dBi
B 450.0 m T-R Separation _ — =350, =8.0¢B PR
g_‘m o =25ns % 430 aqp | == Mgy =44 oy, = 11868 et e i
S P =-73.6dBm = ) Mr-past =37+ Curpasy = 7908 | Jis .
-110 = ] =180 | i 3
g PL=1528 dB 2 140 2 X2 2
.| PLE = 3.4 a S .
B 7 T 150 -
g TX Ant. HPBW: 10° AZ, 10° EL £ a0 3 -
g-130 ] TX Ant. Gain: 24.6 dBi 8 120 : =
“44‘, | RX Ant. HPBW: 10° AZ, 10° EL « 160 | | | . &
RX Ant. Gain: 24.6 dBi 1400 | | o =
-1 P, 1600 I I | T &0 <
160 L | | ﬂege% 1800 L — 0
1600 1800 2000 2200 2400 2600 2800 3000 3200 D?’;’h sp00 L .--1 \Na"“‘eng 30 — — — BN EERLi
Absolute Propagation Time (ns) S Dg, 2200 0 oot g of 1 10 100 1000 10000
":")',q?s) mc,(e“‘ T-R Separation Distance (m)

All data provided to users in “OmniPDPInfo.txt”, “OmniPDPInfo.mat”, “DirPDPInfo.txt”, and “DirPDPInfo.mat” [1][2]

[1] S. Sun et al., “A novel millimeter-wave channel simulator and applications for 5G wireless communications,” in Proceedings of the IEEE International Conference on Communications (ICC), Paris, France, 2017, pp. 1-7.

[2] NYUSIM download link: http://wireless.engineering.nyu.edu/nyusim/
© 2018 NYU WIRELESS 13
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--- Eigenvalues of HH”

Channel eigenvalues represent power gains of parallel sub-channels, directly related to

spectral efficiency
Eigenvalues of HH” are squares of singular values of H

3GPP: Yields more eigen-channels but with weaker powers in dominant eigen-channels
NYUSIM: Produces few but strong dominant eigen-channels

0.7 1 . |
n‘f B-3GPP ——3GPP A,
N = N’- _ 0.6 ey NYUS_'M . - =NYUSIM A,
Z-'—Rl ?]{ v Rayleigh % 0.8 [ |........ Rayleigh A,
= ' g O E_J] — 3GPP J\z
C(l"_‘u 8 - =NYUSIM ),
??; : i-th largest o 0. @ 0.6 |........ Rayleigh A,
i H e > —_3GPP A
eigenvalue of HH © 3
2 0. 304' — — NYUSIM A,
Ng : minimum of S 5 o -------‘:gi:‘ihf‘s
numbers of TX LR 8 TNYUSW: A
and RX antennas <l x02r” Rayleigh )\:
! D _____ - = -I-' .
2 4 6 8 -40 -20 0 20 40
Eigenvalue Index Largest Four Eigenvalues (dB)

[1] 3GPP, “Study on channel model for frequencies from 0.5 to 100 GHz,” 3rd Generation Partnership Project (3GPP), TR 38.901 V14.2.0, Sep. 2017.
[2] International Telecommunications Union (ITU), \Guidelines for evaluation of radio interface technologies for IMT-2020," REP. Revision 2 to Document 5D/TEMP/347-E, Niagara Falls, Canada, Jun. 2017.
[3] O. E. Ayach, S. Rajagopal, S. Abu-Surra, Z. Pi, and R. W. Heath, “Spatially sparse precoding in millimeter wave mimo systems," IEEE Transactions on Wireless Communications, vol. 13, pp. 1499{1513, Mar. 2014.

[4] T. S. Rappaport, R. W. Heath, Jr., R. C. Daniels, and J. N. Murdock, Millimeter Wave Wireless Communications. Pearson/Prentice Hall 2015.
[5] T. S. Rappaport, S. Sun, and M. Shafi, “5G channel model with improved accuracy and efficiency in mmWave bands,” IEEE 5G Tech Focus, vol. 1, no. 1, Mar. 2017. © 20 18 NYU WIRELESS 14
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Bl NYu | e 4G and 5G BS Antenna Comparison “‘ NYU

AG LTE Advanced Pro [1,2]: 5G NR [3, 4]:

<64 antenna elements > 256 antenna elements (same size)

e 1-2 Gbps data rate BS Placement: site-specific sensitivity

« ~10 ms latency > 10 Gbps data rate
» Digital beamforming « <1 ms latency

Hybrid beamforming [4] (most possible)

[1] 3GPP TR36.897 V13.0.0: “Study on elevation beamforming / full-dimension (FD) multiple input multiple output (MIMO) for LTE,” Jun. 2015.

[2] 3GPP TR 36.819 V11.2.0, “Coordinated multi-point operation for LTE physical layer aspects,” Sep. 2013.

[3] 3GPP TR 38.802 V14.2.0: “Study on new radio access technology — physical layer aspects,” Sep. 2017.

[4] S. Sun, T. S. Rappaport, and M. Shafi, "Hybrid beamforming for 5G millimeter-wave multi-cell networks,” in Proceedings of the IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, USA, Apr. 2018.

© 2018 NYU WIRELESS 15



A Simple Comparison Between LTE and 5G New Radio (NR)

Rj= 5G NR (eMBB)

(¢ NATIONAL
’ INSTRUMENTS"



NYU

TANPON scHooL 5G Multi-tier network [1] \“ ﬁR!El;!

Multi-tier network e,

Air Interface

ronthaul Backhaul

Peer-to-Peer
communication

- ~ Y
~_ (end user
Lk ™ equipment)

B
i

Centralized [R D

Cell site
Internet

Small cells
Macrocell

(end user
equipment)

[1] T. S. Rappaport, Y. Xing, G. R. MacCartney, A. F. Molisch, E. Mellios and J. Zhang, "Overview of Millimeter Wave Communications for Fifth-Generation (5G) Wireless Networks—With a Focus on Propagation Models," in IEEE Transactions on Antennas and

Propagation, vol

. 65, no. 12, pp. 6213-6230, Dec. 2017.

© 2018 NYU WIRELESS 17



weest 5G Base Stations and Network Architecture [1] “ NYU
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5G Massive MIMO, here ten user terminals and

) . . . _ one hundred BS antennas. The antenna array is
5G base stations (Nokia 5G AirScale Base Station [2]). scalable

::::—‘_‘_.—-—J

28\ .

- i i ssive APAA for S5th ne J Primary Carrier Sacondary Carrier

Antenna for 4th-generation base stations gl:::;; tiz; :L:ﬁe :ta?itnns l‘ s:;&??% i_/ﬁp‘l——f-’\%AJ\/ | Primary Carer Seconds ;vs,m.w
Macro eNB
/ v\
i
Beam Terminal /M::‘l:ell\i
UE WiFi Client WiFi Client

The directionality of 5G base stations. Heterogeneous 5G networks, Small cells and WiFi [3]

[1] 3GPP TR 38.802 V14.2.0: “Study on new radio access technology — physical layer aspects,” Sep. 2017.
[2] https://networks.nokia.com/products/airscale-base-station

[3] http://www.openairinterface.org/?page_id=458 © 2018 NYU WIRELESS 18
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EINYU o Multi-Cell Multi-Stream Downlink Hybrid

BNYU
Beamforming for 5G Small Cells “

WIRELESS

Example illustrations showing the difference between non-CoMP and CoMP
(coordinated scheduling/beamforming)

CoMP
Non-CoMP (coordinated scheduling/beamforming) [1]
___TPsexchangeCSI___
s 7 e 5= PR -e:\‘\'\ ) /.: s ‘\‘;. \
gy TP Each TP serves TP W ,’!‘:? ... Each TP serves R 7
Wy [y ® UEs in its own cell gl N0 N

r |
N > 8 B, UEs in its own ceII _g* N
L \\x.--.--- . & ﬁ/‘—
] 2 UES D ‘ \‘/\\\ 1 \\ ,/ ///
D per cell w. :
N 0% n
I
I
|

TP]

[1] 3GPP, “Coordinated multi-point operation for LTE physical layer aspects,” 3rd Generation Partnership Project (3GPP), TR 36.819 V11.2.0, Sep. 2013

© 2018 NYU WIRELESS 19
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e BASE Station Diversity and CoMP \\‘Nyu

Measurements at NYU WIRELESS
NYU Tandon Brooklyn Campus - UMi Open O Measurement Goals:
Sq uare COMP at ‘3 GHZ . — » 7 combinations of 3 TXs to 1 RX

= 7 combinations of 3 RXs from 1 TX

= Transmit across large azimuth TX sector

= Measure impulse responses at RX across
azimuth and elevation planes

= Measure various LOS and NLOS environments

RX Loeation TX Location T-R Dist (m) |
L1 L3.L4L7.L11.L13 | 80 < d < 140
L2 L3.Lo.L12 61 <d<T8 |
| TX height: 4 m L3 _ L2 T
; . L4 L1.L3.L7.L10.L13 | 80 < d < 170
. RX'height: 1.4 m L7 LLL2LLLI0 | 2 <d <72
L3 L1.L7.L9 21 <d <133
Lo L1.L2.L4.L11 63 <d <78
L10 L4L7.L13 50 <d <123
L12 L1.L2L4.L7.L11 | 61 <d <149
L13 L1.L4.L10 50 <d <107 '

Nearest Neighbor TX Distance Stats over all RX Locations

Nearest Neighbor 1 2 3
Mean [m]: d / Median [m]: d 62/61 71/78 03/87
G. R. MacCartney, Jr., T. S. Rappaport, and A. Ghosh “Base Station Diversity Propagation Measurements at STD [m]: a4 18 14 20
73 GHz Millimeter-Wave for 5G Coordinated Multipoint (CoMP) Analysis,” in 2017 IEEE Globecom Workshops i - 1
(GC Wkshps), Singapore, Dec. 2017, pp. 1-7. © 2018 NYU WIRELESS | tange [ml: d & [min. max] [21.80] [41,87] 78,140 20




NYU

TANDOMN SCHOOL
OF ENGINEERIMNG

MmWave CoMP Downlink: Conclusions

NYU
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CDF of Network Spectral Efficiency Gain Relative to Uncoordinated |

; for Full-Interference

O Assuming blockages from pedestrian users (4-state markov)

0.8
O Full-Interference Results (22% of NYU dual BS CoMPM
» 81% of network realizations have SE gain (MMSE) 3%04 | :'
= 16% of network realizations have SE gain (MMSE) = 2 & ol ’,'_5-5 ~ T Forag
Q Partial-Interference Results (35% of NYU dual BS CoMP): I R M;I;Ee -
» 81% of network realizations w/ MMSE have gain ot 10° 10’

) ) ] Network Spectral Efficiency Gain
= 7% of network realizations w/ MMSE have gain = 2

o CDF of Netwe
O Almost half (~43%) of network realizations have no need for

pectral Efficiency Gain Relative to Uncoordinated

coordination; lack interference at mmW! r e A ——
0 CoMP for interference suppression is perhaps not worth W 08F 157
CU processing resources and overhead, similar to LTE. 8 06 | f
. . . ®
= CSlinaccuracies (errors and outdated), synchronization, £ 0 i
resource overhead, etc. g i
w E = = =Zero Forcing

G. R. MacCartney, Jr., T. S. Rappaport, and Sundeep Rangan “Rapid Fading Due to Human 0.2r 7/t Matched Filter
Blockage in Pedestrian Crowds at 5G Millimeter-Wave Frequencies,” 2017 IEEE Global Communications e s
Conference (GLOBECOM), Singapore, Dec. 2017. 0bim === 3 - e ’I """"" .MMSE
G. R. MacCartney, Ph.D. Thesis, “Millimeter-Wave Base Station Diversity and Human Blockage in 10" 109 10"

Dense Urban Environments for Coordinated Multipoint (CoMP) Applications, May 2018, New York University

Network Spectral Efficiency Gain 21



28 GHz Millimeter Wave Cellular Communication
ents for Penetration Loss in and around Buildings in New York City
Cor Received Received
Power - Power - Penetration
Environment | Location | Material | Thickness | Free Space Material Loss
(cm) (dBm) (dBm) (dB)
Tinted
Outdoor ORH | Glass 3.8 -34.9 -75.0 40.1
WWH | Brick 1854 -34.7 -63.1 28.3
Clear
MTC Glass <1.3 -35.0 -38.9 3.9
Tinted
Glass <1.3 -34.7 -59.2 24.5
Indoor WWH | Clear
Glass <1.3 -34.7 -38.3 3.6
Wall 38.1 -34.0 -40.9 6.8
TABLE Il

COMPARISON OF PENETRATION LOSSES FOR DIFFERENT ENVIRONMENTS AT 28 GHZ.
THICKNESSES OF DIFFERENT COMMON BUILDING MATERIALS ARE LISTED. BOTH OF THE HORN

ANTENNAS HAVE 24.5 DBl GAINS WITH 10 HALF POWER BEAMWIDTH
NYU WIRELESS, Rappaport, et. al. “Millimeter Wave Mobile Communications for 5G Cellular, it will work!” IEEE ACCESS Vol. 1, 2013

iCDG - Intel Communication and Devices Group Confidential
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AT&T launched its largest 5G fixed wireless trial in Waco, Texas, at the Silos [1].

5G trial service is distributed through a number of WiFi access points to serve
5,000 people who shop at the Silos[1]. Attenuation by tinted glass is major issue.

« AT&T launched fixed wireless 5G trials to business and residential customers
in Austin, Texas; Kalamazoo, Michigan; and South Bend, Indiana [2].

* More thanl Gbps download rate and less than 10 ms latency (15 and 28 GHz) [2]
using the first release of 3GPP (before 5GNR).

» First commercial roll-outs likely to focus on stand alone “pucks”, fixed
devices that serve as relays/hotspots for WiFi in fixed/indoor use

* First cellphones with 5GNR mmW not expected until late 2018/early 2019 |

[1] http://about.att.com/story/5g_trail_with_magnolia_waco.html
[2] http://about.att.com/story/att_expanding_fixed_wireless_5g_trials_to_additional_markets.html
[3] http://internet-access-guide.com/fixed-wireless-rural-americas-best-choice-for-broadband/
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Verizon Wireless has been trialing fixed 5G in eleven cities [1].

e Ann Arbor, Mich., Atlanta, Ga., Bernardsville, N.J., Brockton, Mass., Dallas and Houston, Texas,
Denver, Colo., Miami, Fla., Seattle, Wash., and Washington DC

* First commercial service available in Sacramento, Calif.,
during the second half of 2018 [1].

» Trials of fixed 5G service are progressing better than expected
(28 and 39 GHz) [2]. Well over 1 Gbps, less than 10 ms

Verizon 5G trial deployment [3].

* These systems use first 3GPP implementation (prior to 5GNR)

[1] https://www.rcrwireless.com/20171219/59/5g-fixed-wireless-access-makes-major-progress-in-2017-tag17-tag99
[2] https://www.sdxcentral.com/articles/news/verizon-says-fixed-5g-trials-performing-better-expected/2017/10/
[3] https://technewstt.com/pr-ericsson-verizon-5g/ 24
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Intel: Examples of Fixed Wireless Access

_ NP ¥ |

Rooftop
5G/LTE . o
Ths Erkasuld b= fixad Wwall [
) 5G for Fld ‘ Mount 8
CPE

I:,r;:_l‘ - .}.::I-.II ‘rﬁ: ormnumlﬁs 5%G- hj
» Typical FWA deployment

-7i:ll 5G far WEE
|
. - » CPE is on rooftop or Wall mounted
* Windows/Wall penetration is difficult

UE SGH wmerendy  Wifi distribution is used inside premise
* Multi Gbps networking is limited to WiFi speed

Examples of FWA deployment alternatives

Excerpt from Ericsson Technology review, 5G & Fixed Wireless Access 10-2016

iCDG - Intel Communication and Devices Group Confidential
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weest FCC WT17-79 Amending Rules for Small Cells ! BNYU
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Projected NHPA/NEPA Costs (2018 to 2026) [2]

Federal Communications Comumission FCC-CIRC1803-01
Before the 2018(F) | 2019(F) | 2020(F) | 2021(F) | 2022(F) | 2023(F) | 2024(F) | 2025(F) | 2026(F)
Feders "l“c:sll?llu;g‘m:]:.agocus CO uu;uusswn
Cumulative
In the Matter of ) Small Cells
Wireless Broadband Dep! by . WT Docket No. 17-79 Deployed 138 200 273 363 468 550 635 722 821
Removing Barriers mmﬁ'astnxmlmestmem by Year End
SECOND REPORT AND ORDER* ( 0005)
Adopted: [] Released: []
Total In-
TABLE OF CONTENTS Year
_— — NHPAINEPA | $241 | 8176 | $218 | $275 | $328 | $263 | $285 | $207 | $349
I INTRODUCTION. 1 costs (Smm)
I BACKEGROUND 8
A. The Need for Reform 10
B. Tribal C¢ h Process 16 . -
e S VTS AR T A RO NEARSVE ) « March 22, 2018—FCC voted to streamline the national
B Legd bty Ve Clarify that Small Wireless Facility o s » 1
i C e e oy i approval process for deploying small cells.
2. Our Amendment of Section 1.1312 of the Rules Is Consistent with the Public

3 IC‘;:};E:Sécnsidemums Raised by Our Pricr Rules and Comments in the Record ...o..oooeeo... 7
IV. STREAMLINING NHPA AND NEPA REVIEW FOR LARGER WIRELESS FACILITIES ..........
A Clarifying the Section 106 Tribal Consultation Process 88 .
1 i = « Removes unnecessary regulatory barriers (NEPA/NHPA)
2. Timeline for Initial Tribal Responses 92
3. Tribal Fee: 106

B R the FCC's E Review Proce 123 t I b db d d I t
e T O wireless broadpana aeployment.
2. Timeframes for Conmission to Act on Envi 138
V. PROCEDURAL MATTERS 146
VI ORDERING CLAUSES 149

. Between 2018-2026, the order would save $1.56 billion.

: : _ « The cost savings alone would allow providers to build in
e e R i LT T excess of 57, 000 extra small cells and create 17,000 jobs.

[1] https://apps.fcc.gov/edocs_public/attachmatch/DOC-349528A1.pdf
[2] https://api.ctia.org/docs/default-source/default-document-library/small-cell-deployment-regulatory-review-costs_3-12-2018.pdf 27
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s Great technology must be deployed rapidly and efficiently (time/$)

s FCC small-cell Order is excellent first step, but must aggressively auction
more prime (< 6 GHz) and mmW spectrum: want39 GHz w/24 & 28 GHz 2018

+» Efforts needed to streamline deployment shot clock and reduce fees for
deployment of 5G technology in the Right of Way (ROW), on poles, lamps.

* Avoid zoning if infrastructure falls within a specific physical size or
within a prescribed acceptable aesthetic footprint on lamp posts, ROW.

% Create new interference and radiation rules for directional antennas,
since OOBE and similar interference regs. are based on EIRP/omni antennas

© 2018 NYU WIRELESS 29
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Federal ¢ ications

FCC CIRCIS02.01

Before the
Federal Communications Commission
Washingron, D.C. 20554

In the Matter of
Spectrum Horizons ET Docket No. 18-21
Battelle Memorial Institute Petition for

Rulemaking to Adopt Fixed Service Rules in the
102-109.5 GHz Band

BM-11713
(Termunated)

WT Docket No. 15245
(Termunated)

Request for Waiver of ZenFi Networks, Inc. and
Geneva Communications LLC

James Edwm Whedbee Pelition for Rulemaking to
Allow Unlicensed Operation m the 95-1,000 GHz
Band

BM-11795

NOTICE OF PROPOSED RULEMAKING AND ORDER”

Adopted: |]

By the Commussion.

Heading

I INTRODUCTION

II. BACKGROUND

Released: []
Comment Date: (30 days after date of publication in the Federal Repister)
Reply Comment Date: (45 days after date of publication in the Federal Register)
TABLE OF CONTENTS
Paragraph #
1
2
A, Allocations and authorized use 3
B. Commission procesdings 5
. Technology developments 10

https://apps.fcc.gov/edocs_public/attachmatch/DOC-348982A1.pdf

FCC RM-11795 Proposes ‘Spectrum Horizons’ \“M

WIRELESS

2 4 8 B8

300 GHz

275 GHz

40 frequency bands

February 22, 2018—FCC initiated a proceeding to
expand access to spectrum above 95 GHz.

Seeks comment on making a total 102.2 GHz of
spectrum available for licensed point-to-point services,
15.2 GHz of spectrum available for use by unlicensed
devices.

Seeks comment on creating a new category of
experimental licenses available in spectrum between
95 GHz and 3 THz.

30
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NYU | @eenisse Conclusions ‘w‘ NYU

% 4G LTE morphing into 5G; MU-MIMO and CoMP offer 5 bps/Hz> UC

» Interference much less of concern w/directional arrays — CoMP for IC?
» Myth-busting at mmW shows greater data rates, greater coverage!

* Recent testimonies, results of 5G Trials in the USA —its real!

% Key Regulatory Needs: Small Cells and Auctions for Spectrum

» mmW is “tip of the iceburg” as FCC, other countries move to THz

© 2018 NYU WIRELESS
31
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Thank You!
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