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Abstract—Shadow fading has been proven to be a significant
contributor to channel variations in wireless communication. In
most cases shadow fading is assumed to have a log-normal fading
distribution to model the loss at a certain location. However, in
a mobile network, it is also important to know how shadow
fading is correlated both in space and in time, which can greatly
affect application layer behavior and service quality. This paper
is an attempt to characterize shadow fading so as to accurately
study its impact on the application layer quality of service. If
the correlation is strong over time and space, shadow fading
can result in a long outage. In this paper, we assume shadow
fading is exponentially correlated in space. To study correlated
shadow fading and its resultant outage durations, a first-order
Markov chain model is developed and validated. The Markov
chain model is constructed by partitioning the entire shadow
fading range into a finite number of intervals. The state transition
matrix of the Markov chain is derived from the joint probability
distribution of correlated log-normal shadow fading. Based on
the proposed Markov chain model, the frequency and duration
of outage near the edge of a single cell is analyzed. To validate
the Markov chain model, correlated Gaussian random fields are
simulated to analyze the outage frequency and durations due
to correlated shadow fading. Comparing the simulation results
with the Markov chain model results, we can conclude that the
proposed Markov chain model is an efficient way to describe the
channel variations, and the user experienced outage behavior of
the channel.

I. INTRODUCTION

In the past few decades, fading in wireless communication
systems has been studied extensively in the literature. Fading
phenomena can substantially affect the performance of a
wireless communication system. In general, fading can be
divided into two categories: large-scale fading and small-scale
fading. A signal transmitted from source to destination will
experience both large-scale and small-scale fading. Small-scale
fading is caused by multipath propagation. Large-scale fading,
which is also known as shadow fading, is caused by obstacles
(trees, buildings, etc.) in the propagation path. Shadow fading
is approximated by an independent log-normal distribution [1]
in most cases. Researchers have also shown that shadow fading
is spatially correlated at different positions on the propagation
path [2], [3]. The spatial correlation of shadow fading is
important when studying the quality of service of a mobile
system since it will result in long-lasting outage durations,
which will deteriorate the performance of the applications
running on the network. For example, in Figure 1, the user
is moving behind a row of tall buildings which block the
signals from the base station. These tall buildings result in deep

Fig. 1. An example of building blockage.

shadow fading, and the shadow fading of different positions
behind these buildings are closely correlated.
The spatial correlation of shadow fading has been investi-

gated by numerous researchers. Based on empirical measure-
ments, different autocorrelation models have been proposed for
different scenarios and radio frequencies [2, 4, 5]. Szyszkow-
icz et al. [6] studied shadow fading correlation models and
investigated the feasibility of all these models. Among all
these models, the analytical model proposed by Gudmundson
[2] based on empirical measurements of 900MHz frequen-
cy is the one which is widely used in channel estimation.
This model shows that shadow fading can be modeled as
a first-order autoregressive process AR(1), which indicates a
spatial exponential decaying autocorrelation function. Given
this model, we propose a Markov chain model that can be
constructed to capture the variation of shadow fading. The
Markov chain models can in turn be used to accurately model
the impact of shadow fading on higher layer protocols and
applications. Since the shadow fading statistically follows a
log-normal distribution, we can divide the entire range of
shadow fading, which is [−∞,+∞] into a finite number of
intervals. Each interval is considered as a state of the Markov
chain model. When the shadow fading falls in a particular
interval, it is assigned to be in this particular state. The number
of intervals (states) defines the granularity of the Markov
chain model. The higher the number of states, the higher
the precision in modeling the shadow fading. Correlated log-
normal shadow fading has different variances with regard to
different scenarios. For example, urban and suburban areas
have different standard deviations based on empirical measure-
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ments. Different standard deviations of the log-normal shadow
fading will result in different state transition matrices of the
Markov chain model.
Outage events happen when the channel state is poor, and

the received signals are not strong enough for the receiver
to decode. Outage probability and the length of outage du-
ration are important performance measurements of a wireless
communication system over fading channels. Considering the
applications which require low latency where buffer size is
small, a long outage duration will drop the connection and
lower the quality of service. To study the outage behavior of
a communication system under correlated shadow fading, a
well designed Markov chain model is a powerful tool. With a
Markov chain model, the channel state in the next user position
can be estimated from the current channel state given the
current user position. Therefore, the system performance can
be evaluated efficiently. Fading is a significant factor which
causes dramatic channel state variations. Correlated shadow
fading will result in long-lasting outage durations which is
harmful to delay-sensitive real-time application and result in
loss of quality of service. The Markov chain model can be
used to analyze the probability distribution of outage events.
The distribution and behavior of outage events will provide us
the necessary information to improve wireless communication
systems further. For example, efficient cooperative commu-
nication schemes can be designed to mitigate the outage
behavior.
The main focus of this paper is how to design a first-

order Markov chain model to reflect the spatial correlation of
shadow fading, and the study of outage behavior of a single
cell wireless communication system given correlated shadow
fading. The key contributions of this paper are summarized
below.

• Constructed a Markov chain model based on correlated
shadow fading.

• Analyzed the outage frequency and outage duration of a
single cell wireless communication system over correlat-
ed shadow fading.

The remaining sections of this paper are organized as follows.
The channel model with spatial correlated shadow fading is
described in Section II. Section III shows how to construct
the Markov chain model from the correlated shadow fading.
Analysis of outage behavior is demonstrated in Section IV.
Simulation to validate the Markov chain model is illustrated
in Section V. Section VI summarizes and concludes the paper.

II. CHANNEL MODEL WITH CORRELATED SHADOW
FADING

To simplify the problem, we consider a single 4G LTE
cell without any intercell interference in Figure 2(b). Due
to the high bandwidth of OFDM systems, LTE networks are
more resilient to frequency selective fading [1], therefore in
this paper small-scale fading is ignored and shadow fading
becomes the most important fading factor. There is a Base
Station(BS) at the center of the cell. A Mobile Station (MS)
is moving on a certain trajectory within the cell. The received

signal on a link (S → D) between source and destination is
given by:

yD = GSDxS + nD. (1)

where xS is the signal transmitted by the source and yD is
the signal received by the destination. nD ∼ CN (0, N0) is
additive white Gaussian noise. GSD is the channel gain from
source to destination including path loss and shadow fading.
SNR � P ∗ G2

SD/N0, is the end-to-end received signal-to-
noise ratio (SNR). The destination successfully receives the
signals if no outage event happens, i.e., log2(1 + SNR) ≥
R, where R is the required data rate. From the definition of
SNR, no outage event happens as long as G2

SD > β, where
β = (2R−1)∗N0

P
. Therefore the channel gain from transmitter

to receiver determines if an outage will occur.
Here we rewrite the channel gain in the following form:

GdB = PL(d) + S, where GdB is GSD in dB, PL denotes
the propagation pathloss in dB, d is the distance from BS
to MS and S denotes shadow fading factor. In most cases,
shadow fading is modeled as an independent log-normal dis-
tribution [7] with a standard deviation derived from empirical
measurements. In this model, the probability distribution of
pathloss GdB is given by:

p(GdB) =
1√

2πσGdB

exp[− (GdB − μGdB)2

2σ2
GdB

]. (2)

where μGdB
is the average pathloss which is equal to PL(d)

and σGdB
denotes the standard deviation of pathloss. Since

shadow fading is the only fading factor that is considered
here, σGdB

is determined by the standard deviation of shadow
fading. This model fails to capture the spatial correlations in
shadow fading. For examples, in Figure 2(c), shadow fading
factors of two close positions A and B, which are SA and SB ,
are not independent but correlated to each other. Empirical
measurements showed that shadowing has significant correla-
tions in several realistic scenarios and the correlated shadow
fading can affect system performance [8]. Among all models
derived from empirical measurements for correlated shadow
fading, exponentially decaying correlation [2] is widely used.
In this paper, we choose this model to do further analysis. Fig-
ure 2(a) is an example of exponentially correlated shadowing
field which is generated from the Graziano model [8]. This
figure shows a 50× 50m2 shadow fading area and illustrates
that deep shadowing area is clustered and correlated (the blue
area).
In Figure 2(c), the entire space is discretized. The MS

moves on the lattice as shown. A and B are two neighbouring
points. Assume the shadow fading (in dB) is N(0, σ2) where
σ is the standard deviation, the spatial correlation between SA

and SB will be given by

ρA,B =
E[SASB]

σ2
= e

−
dA,B
d0 (3)

where dA,B is the distance between A and B, d0 denotes
the de-correlation distance [9], which means if the distance
between two points are substantially greater than d0, the
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Fig. 2. (a) A typical exponential correlated shadow fading field in a 50m × 50m area. The color bar denotes the value of the shadow fading in dB. (b) A
single cell model with a MS moving on a fixed trajectory. (c) A locally generated correlated shadowing field for a fixed trajectory from point a to point b.

two shadow fading will be independent to each other. d0 is
determined by the environment, therefore urban and suburban
areas have different de-correlation distances. An exponential
correlation implies the shadow fading samples can be written
as an AR(1) process as follows [10]:

SB = ρSA + (1− ρ)nA (4)

where nA denotes the channel noise at A. From this we
conclude that the next channel state can be determined from
the current channel state and the distance MS moves.

III. MARKOV CHAIN MODEL

In this section, we will construct a Markov chain model
for exponential correlated shadow fading. First of all, we will
discretize the space. In Figure 2(c), the space was partitioned
into unit square spaces of 5 × 5m2 (This granularity is used
to describe the Markov chain model while in the simulation
we uses a finer granularity). The MS moves on the lattices
from point to point, the distance between each two neighboring
points are considered as a unit distance δd. We prove that
shadow fading factors of any two points that can be connected
by a trajectory having jointly Gaussian distribution.
Lemma 1: Exponential correlated shadow fading factors of

any two points that can be connected by a trajectory have a
jointly Gaussian distribution.

Proof: Suppose the two points are a and b, since there ex-
ists a trajectory connecting a and b like in Figure 2(c), we can
assume there are n positions on this trajectory (t1, t2, . . . , tn).
Then follow equation (4), we have the following:

Sb = ρStn + (1 − ρ)ntn

= ρ(ρStn−1
+ (1− ρ)ntn−1

) + (1− ρ)ntn

= . . . . . .

= ρnSt1 +

n∑

i=1

ρn−i(1− ρ)nti

= ρn+1Sa + ρ(1− ρ)na +

n∑

i=1

ρn−i(1− ρ)nti

(5)

Let X = αSa + βSb, from equation 5, the following can be
derived:

X = αSa+β(ρn+1Sa+ρ(1−ρ)na+

n∑

i=1

ρn−i(1−ρ)nti) (6)

Since Sa, nti and na are all independent and Gaussian random
variables, we conclude that X is also Gaussian, which implies
that Sa and Sb are jointly Gaussian.
Given the above conclusion, a Markov chain model can be

constructed as follows:
• Divide the entire shadow fading range

[−∞,+∞] into a finite number of intervals
{[−∞, S0], [S0, S1], . . . , [SN ,+∞]}. Each interval
represents a state of the Markov chain model.

• Derive the state transition matrix of the Markov chain
model from the probability distribution of the correlated
shadow fading.

• Derive the steady-state probability from the state transi-
tion matrix of the Markov chain model.

To derive the state transition matrix of the Markov chain
model, we first investigate the probability density function
of the correlated shadow fading. Since we have discretized
the entire space into unit distances, here the state transition
probability from point A to point B will be defined and used to
calculate the state transition matrix of the Markov chain. Since
SA and SB are jointly Gaussian with a correlated coefficient
ρ0, according to [11], we have

fSA|SB=sB (sA) =
fSA,SB

(sA, sB)

fSB
(sB)

=
1

σA

√
2π(1− ρ20)

exp{− (sA − (μA + σAρ0(sB − μB)/σB))

2σ2
A(1− ρ20)

}
(7)

where μA and μB are expectations of log-normal shadow
fading SA and SB , which is typically set to 0, while σA and
σB are standard deviations, which are assumed to be equal to
σ0. Based on these assumptions, we can rewrite the equation



as follows:

fSA|SB=sB (sA) =
1

σ0

√
2π(1− ρ20)

exp{− sA − ρ0sB
2σ2

0(1− ρ20)
}
(8)

Assume there are N states of the Markov chain model
ST1, ST2, · · · , STN where STi corresponds to the interval
(Si−1, Si]. Then we have the state transition probability as
follows:

Pi,j = P (SA ∈ STj|SB ∈ STi)

=
P (SA ∈ STj, SB ∈ STi)

P (SB ∈ STi)

=

∫ Si

Si−1

(
∫ Sj

Sj−1

f(SA|SB=sB (sA)dsA)f(sB)dsB
∫ Si

Si−1

f(sB)dsB

(9)

From equation (9), the state transition matrix of the Markov
chain can be derived. The steady-state transition matrix can
be determined by P .

IV. ANALYSIS OF OUTAGE BEHAVIOR
In this section we analyze the outage behavior of the

communication system using the Markov chain model of
correlated shadow fading. The outage duration of a system
is a significant factor influencing system performance. Given
a fixed mobile trajectory, the Markov chain model described
in Section III provides an efficient way to study the outage
events. In Figure 2(c), a fixed trajectory is given from point
a to b through several intermediate points. Considering two
consecutive points A and B, we have GA = PLA(dA) + SA

and GB = PLB(dB)+SB in dB. The probability that A and
B are both in an outage area can be written as:

P (GA < γ,GB < γ)

= P (SA < γ − PLA(dA), SB < γ − PLB(dB))
(10)

If SA < γ−PLA(dA) ∈ STi and SB < γ−PLB(dB) ∈ STj ,
we can infer that, to avoid outage, the lower bound of the
shadow fading factor SA is in state STi and for SB is in state
STj . State STi and STj are called lower bound states. Based
on this approximation, the above probability can be written
as:

P (GA < γ,GB < γ) =

i∑

m=0

j∑

n=0

P (STm) • P (STm, STn)

(11)
where P (STm) is the probability that SA is in the range of
STm which can be calculated from the Gaussian distribution.
P (STm, STn) can be found from the state transition matrix.
Following this, the probability of an outage duration of length
l > L can be derived in below:

P (G1 < γ, . . . , GL < γ) =
M1∑

m1=0

· · ·
ML∑

mL=0

P (STm1
) • P (STm1

, STm2
)

• · · · • P (STmL−1
, STmL

)

(12)

where Mi, i ∈ {1, . . . , L} are corresponding lower bound
states of each position on the trajectory.

TABLE I
SIMULATION CONFIGURATION PARAMETERS

Okumura-Hata Model BS Height: 100m
MS Height: 1m

Correlated Shadow Fading

De-Correlation Distance d0: 20m
Standard Deviation σ0: 8dB

Markov Chain Model
Number of States:

50, 18, 8
(3 ∗ σ0/n ∗ 2 + 2, n = 1, 3, 8)

MS Trajectory Unit Distance δd: 1m
Shadowing Field 50× 50m2

Radio Frequency f : 1024MHz
BS Transmission Power P : 30dbm
SNR Requirement 10dB

V. SIMULATION RESULTS

In this section, we employ Monte-Carlo simulation to
validate our Markov chain model. To start the simulation, a
large number of correlated shadowing fields are generated. As
shown in Figure 2(b) and (c), instead of generating shadowing
fields for the entire cell, we pick up a MS trajectory and
generated shadowing fields that covers that trajectory. In this
paper, we choose the urban environment as the case to study.
In this case, the shadow fading and Markov chain parameters
are set as in Table I. The standard deviation of shadow fading
is chosen to be 8dB following [6]. The number of states of the
Markov chain is set to be 3∗σ0/n∗2+2, where n = 1, 3, 8 is
the size of each range (state) in dB except the two above 3σ0.
n in this case represents different granularities in the area of
[−3σ0, 3σ0]. The state transition matrices are calculated with
regard to each n. For example, when n = 8, the states of the
Markov chain model are:

[(−∞,−24], (−24,−16], (−16,−8], (−8, 0],

[0, 8], [8, 16), [16, 24), [24,+∞)]
(14)

and the state transition matrix is given in (13).
To validate our Markov chain models, the probability distri-

butions of outage durations corresponding to MS trajectories
of length l > 1m up to l > 9m are studied given different
number of states. Since there is a trade-off between the number
of states and the complexity of the simulation computation, the
simulated results also provide us information about the proper
granularity of the Markov chain model to most accurately ap-
proximate the real channel. The simulation also confirms that
correlated shadow fading indeed can cause long-lasting outage
durations. In our simulation, the MS moves on a straight track
which is around 900m away from the BS. Let l denote the
outage duration in meters, Figure 3 shows the probability of
l > L. Comparing the two cases: with and without correlation,
we can conclude that correlated shadow fading can result in
severe long-lasting outage durations. Take L = 5 for example,
the correlated case gives P (l > L) = 12%, while in the non-
correlated case the probability is around 0%. This illustrates
the correlation between shadow fading cannot be neglected in
mobility models. The MS speed is approximately the same as
pedestrian speed which is 1m/s (Since the edge length of the
lattice is 1m, the MS moves one grid (unit distance) every



P =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0.5580 0.3627 0.0757 0.0036 3.5243×10
−5

0 0 0

0.1587 0.4404 0.3359 0.0624 0.0026 2.3466×10
−5

0 0

0.0184 0.1788 0.4546 0.2980 0.0484 0.0018 1.4485×10
−5

0

0.0007 0.0258 0.2165 0.4624 0.2573 0.0361 0.0012 8.4341×10
−6

8.4341×10
−6

0.0012 0.0361 0.2573 0.4624 0.2165 0.0258 0.0007

0 1.4485×10
−5

0.0018 0.0484 0.2980 0.4546 0.1788 0.0184

0 0 2.3466×10
−5

0.0026 0.0623 0.3359 0.4404 0.1587

0 0 0 3.5243×10
−5

0.0036 0.0757 0.3627 0.5580

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

(13)
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Fig. 3. Probabilities of outage duration greater than L.

second). Assuming this, the user will experience an outage of
more than 9 seconds with a probability of 7%.
To find out the proper number of states of the Markov

chain model, three different Markov chain models with dif-
ferent number of states are tested. Basically we divide the
[−3σ0, 3σ0] area with different granularity, which is repre-
sented by n = 1, 3, 8. When n = 1, the interval STi

except (−∞, S0] and [SN ,+∞) is 1dB. The results showed
in Figure 3 indicates that when n = 1, the curve is close
to the correlation curve, which means that the Markov chain
model becomes a good approximation of the channel to study
the outage behavior of the system. Generally, more Markov
states lead to more precise models. When the interval [Si, Sj ]
becomes relatively large with regarding σ0, the Markov chain
model will fail to be a useful tool to study the outage behavior
of the system. For example, in Figure 3, when n = 8, P (l > 1)
is almost twice the correct P (l > 1). The prediction of
the outage behavior of the system is not precise and useful
anymore.

VI. CONCLUSIONS
In this paper, we investigated how shadow fading at different

positions in a cellular network is correlated. In an environment
where the correlation is high, shadow fading will result in
long-lasting outage durations which can lead to a significant
deterioration in system performance. To model spatially cor-
related shadow fading we divided the entire range of shadow
fading into a finite number of intervals. A Markov chain model
is then constructed, where each interval becomes a state of

the Markov chain model. This model can be used to analyze
the outage behavior at the application layer. We demonstrated
that a well designed Markov chain model with an appropriate
number of states corresponding to the standard deviation of
the shadow fading is indeed a powerful tool to study system
performance. In future work, we will use this model to study
the impact of shadow fading at the transport and higher layers.
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