

Massive MIMO: It Really Works!

Thomas L. Marzetta NYU WIRELESS New York University Tandon School of Engineering

October 26, 2017

The future: augmented reality everywhere

□Throughputs: 100 – 1000x

□Latency: 1/10 – 1/100x

Timeless truths about wireless

Demand for wireless throughput, both mobile and fixed, will always increase: 10x, 100x, 1000x

The quantity of available electromagnetic spectrum will never increase

- The best spectrum is below 5 GHz
- $^{\circ}$ you can't lay down more of this!

Spectrum below 5 Ghz: the most valuable resource in the world!

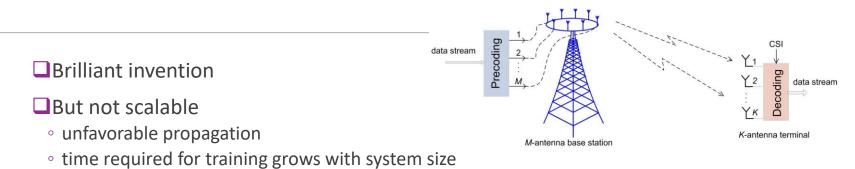
□ FCC AWS-3 spectrum auction, January 2015

- ° 65 MHz: 1695-1710 MHz, 1755-1780 MHz, 2155-2180 MHz
- \$41.3 billion
- \$630/Hz

Outline

Taxonomy of MIMO

- □How to distinguish Massive MIMO from impostors
- □Numerical case studies
- □New research directions


Taxonomy of MIMO

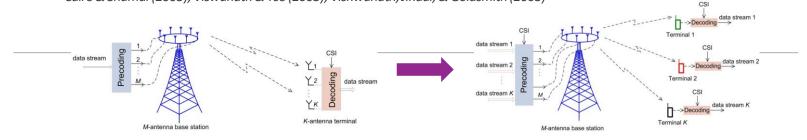
Point-to-Point MIMO

Roy & Ottersten (1991); Paulraj & Kailath (1993); Foschini (1995); Raleigh & Cioffi (1998); Telatar (1999)

disappointing multiplexing gains at cell edges

8x4 link,	-3.0 d	B SNR
-----------	--------	-------

# base station antennas	1	2	4	8
bits/second/Hz	1.51	1.83	2.06	2.19


In every wireless standard, but no further practical development possible

Multi-User MIMO

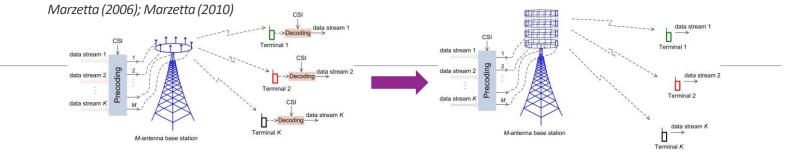
Caire & Shamai (2003); Viswanath & Tse (2003); Vishwanath, Jindal, & Goldsmith (2003)

■Splitting the multi-antenna user into autonomous single-antenna users doesn't decrease the sum-throughput!

Only single-antenna terminals required

Propagation is almost always favorable

□ But not scalable in its original form


- dirty-paper coding/decoding needed
- both ends of link have to know channel state information (CSI)

Dual CSI requirement \rightarrow fundamentally unscalable

Massive MIMO

Add many more base station antennas

□CSI isn't everything: it's the only thing!

- channel state information (CSI) only available to the base station
- use linear pre-coding/de-coding instead of dirty-paper
- users don't do any signal processing

A practical Massive MIMO system can be much bigger than an orthodox-Shannon system

Benefits of Massive MIMO

□Area spectral efficiency (bits/sec/Hz/square-kilometer)

Scalability

Great service to *all* users via power control

□Energy efficiency (bits/Joule)

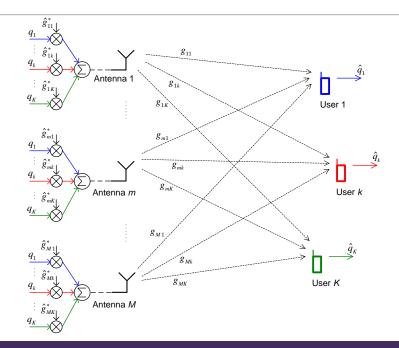
Simplicity

A game-changer

How to Distinguish Massive MIMO From Impostors

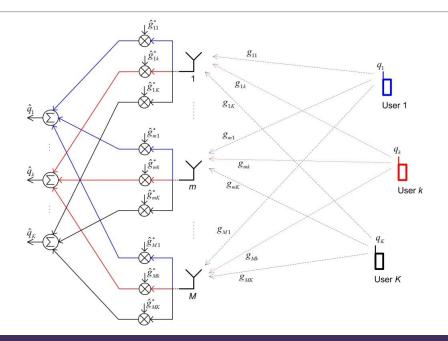
More than just many antennas

□ Many physically small, low power, individually controlled antennas


- channel orthogonality
- channel hardening
- Create parallel flat virtual connections between base station and terminals
 - every terminal uses *all* time/frequency resources
- Utilize *measured* channels rather than *assumed* channels

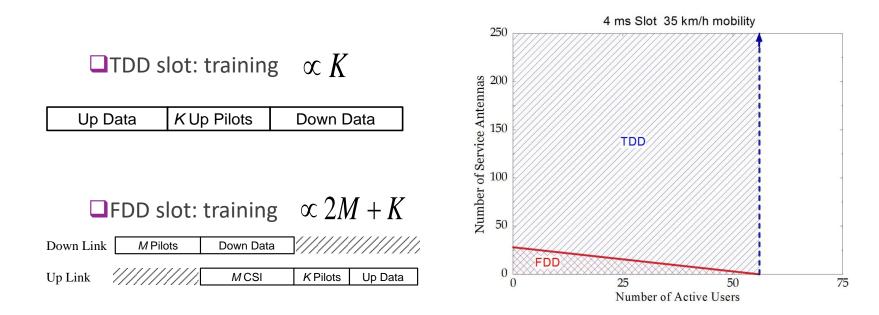
Downlink data transmission: Maximum-Ratio

antennas transmit the weighted message-bearing symbols to arrive in-phase at the intended user & out-of-phase elsewhere


The simplest possible pre-coding, but often very effective

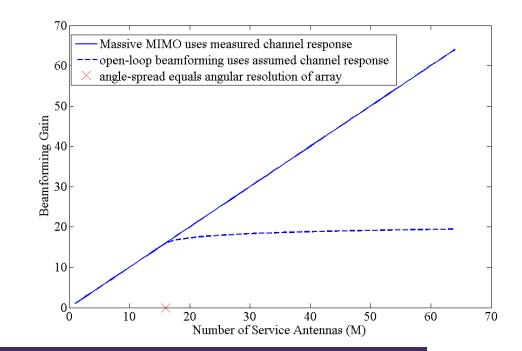
Uplink data transmission: Maximum-Ratio

base station weights and adds received signals for constructive reinforcement of the transmission from each user



Maximum-ratio permits decentralized signal processing

TDD slot structure ensures timely CSI: *M* service-antennas, *K* users, unlimited *M*


Mobility limits the number of active users; FDD is a disaster!

Why so important to utilize *measured* propagation?

- Measured channels
 - scalable
 - gain grows linearly with number of antennas
 - irrespective of noisiness of CSI
 - no tightening of array tolerance required
- Assumed channels
 - not scalable
 - gain eventually grows only logarithmically

If channels are assumed, then not Massive MIMO!

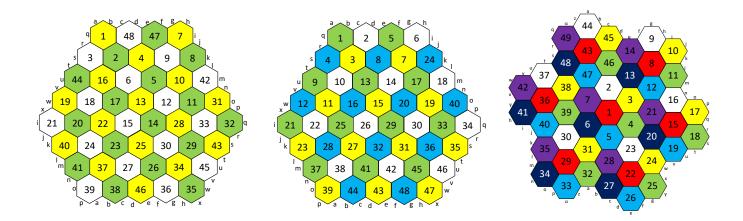
Scientific foundations of Massive MIMO

- Using *measured* channels: Beamforming gain grows linearly with number of antennas, irrespective of the noisiness of the measurements
- □ Frequency-independent power control: Based solely on long-scale (slow) fading; exceedingly effective
- Pilot contamination: Ultimate limitation in non-cooperative multicell systems

No new mathematics, but a new philosophy!

Experimental validation of Massive MIMO

	Service antennas	Terminals	System spectral efficiency (b/s/Hz)
Bristol University / Lund University	128	12	80 →140
Bell Labs "FutureCell"	64	2 →10	20 →100
Facebook "Project ARIES"	96	24	71 → 100
Google	32	32	20



Numerical Case Studies

Mitigation of pilot contamination: Pilot re-use Factor 3, 4, 7 re-use of pilot sequences causes coherent inter-cell interference

The cost: extra training overhead

Dense-urban/suburban cellular access

optimum pilot re-use factor? maximum-ratio Or zero-forcing?

	Dense Urban	Suburban
Carrier frequency(GHz)	1.9	1.9
TDD spectral bandwidth (MHz)	20	20
Slot duration (ms)	2	1
User allowed mobility (km/h)	71	142
Uplink radiated power/user (mW)	200	200
Number of service antennas	64	256
Total downlink radiated power (W)	1	1
Active users/cell	18	18
Cell radius (km)	.50	2.0
Power control	Max/min	Max/min
Pilot re-use factor	7	3
Pre-coding/de-coding	Maximum-ratio	Maximum-ratio
95% likely throughput/terminal Mb/s	4.5 down, 3.1 up	3.2 down, 1.1 up

Max-min power control: uniformly good service everywhere!

Fixed wireless access: 3000 rural homes, each 20 Mbps down, 10 Mbps up

- 3000 homes randomly distributed over 11.3 km radius
- Target down-link throughput: 20 Mbps for every home simultaneously
- Target up-link throughput: 10 Mbps for every home simultaneously
- □10 W total downlink radiated power
- □1 W uplink radiated power per terminal
- □50 ms coherence time
- **300** MHz carrier frequency
- □20 MHz spectral bandwidth

How many antennas are needed?

How many antennas are needed?

Zero-forcing: 3200 antennas (11m x 11m)
Maximum ratio: 8200 antennas (17m x 17m)

Total system throughput: 90 Gbs; 4500 b/s/Hz !!!

New Research Directions

Massive MIMO extensions

- Unlicensed spectrum operation
 - mitigation of non-cooperative interference
- Massive MIMO of Things: MMOT
 - huge numbers of things
 - sporadic service
 - $^{\circ}\,$ short-duration messages
- Limit behavior of Cell-Free Massive MIMO
 - continuum of access points (*holographic MIMO*)

"a mathematical theory of communication" \rightarrow "a physical theory of communication" is 10x beyond Massive MIMO possible?

□ Rigorously combine electromagnetic theory with communication theory

Re-examine old concepts

- Super-directivity
- Resonant evanescent wave coupling
- □ Meta-materials (negative dielectric constant) for antenna arrays
- ■What is the minimum power that we have to draw from an antenna? Eb/N0 > In 2: a purely *mathematical* construct
- Concepts from near-field optical sub-wavelength imaging?

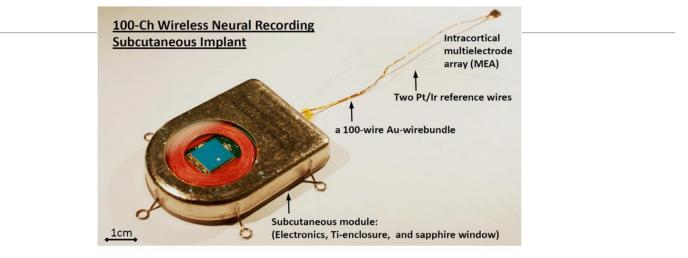
Multidisciplinary effort: wave propagation, electronics, mathematics, ...

Resonant evanescent wave coupling

WITRICITY (MIT, 2007): 60 Watts, 2 meters, @ 10 MHz, 40% efficient

□ Wavelength 30 meters

□Near-field dominated by evanescent waves


- Exponential decay
- Reactive power only

Wireless neurosensing: implantable intercranial transmitter

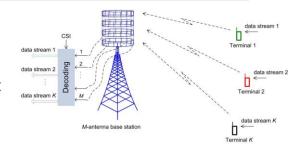
Yin, Borton, Aceros, Patterson, & Nurmikko, IEEE Trans. Biomed. Circuits Syst., April 2013

□ 100 7.8 kHz neural channels: 3.2 – 3.8 GHz

Could MIMO handle 1000, 10000, ... channels?

Uhat are the ultimate limitations of near-field wireless communication?

Massive sensor telemetry

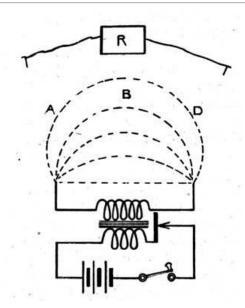

Continuous recording of signals from vast numbers of sensors

"Sensor networks" paradigm

- $\,\circ\,$ Impossible to collect all data wirelessly at one access point
- $\,\circ\,$ We couldn't process so much data, even if we could collect it
- $^\circ~$ We have to pre-process and prune data
- □ Massive MIMO changes the game!
 - $\,\circ\,$ We can collect all of the data, intact
 - Data governed by mathematical physics should be sampled at the Nyquist rate
 - $\circ~$ Big Data easier to process than Small Data (computer tomography, SAR, seismic exploration)

Potential applications of Massive Sensor Telemetry

- 3D exploration seismic surveys
- $^\circ\,$ Monitoring of volcanoes
- Structural health monitoring



MIMO in nonstandard media

Electromagnetic propagation isn't the only way

Still more hyperbolic MIMO

- Acoustic waves
- Elastic waves
- Parabolic MIMO: heat equation
 - $\,\circ\,$ Time scales as the square of distance
 - Nanocommunications?
- Elliptic MIMO: electrical conduction
 - $\circ~$ Updated version of Ground Telegraphy
 - Lee Deforest, Arnold Sommerfeld, Richard Courant

Conclusions

- □ Future apps, such as Augmented Reality will require revolutionary developments at the physical layer
- Massive MIMO is the only technology that can fully utilize the sub-5 GHz bands
- ■Wireless communications will continue to be a vital research area, **BUT** future breakthroughs will result from multi-disciplinary collaborations

