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Video-over-Ideal-5G
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Video-over-5G: real challenges

??? Consistently High-throughput/Low-delay from Lower Layers ???

 Users sensitive to video quality and temporal variation

 Video freezes/skips/black-screen detrimental to user QoE

 Long end-to-end video delay kills interactivity

 Users want mobile/wireless video 
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360-degree Video Streaming Projects (joint with Yao Wang)

1. Two-tier on-demand 360° video streaming
• Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)
• two-tier segment coding/streaming to be robust against b.w. and FoV dynamics

2. Flocking-based live 360° streaming from edge cloud
• users watching same live event form a “flock”
• users with shorter video lag lead flock: populating cache, generating realtime “saliency” map   

3. Realtime coding and delivery for interactive streaming
• frame-level coding and delivery to ensure tens milli-second latency
• tile-based video rate allocation for FoV quality differentiation 

4. Deep-learning based user FoV prediction
• target user past FoV trajectory, and “future” trajectories from others 
• video content saliency map Fraction of area within FoV: 120°/360° x 90°/180°=1/6
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Low Latency Live Streaming

• Sports,  online gaming broadcast, social live UGC, 

• Online live streaming still lags behind TV.

• User live/interactivity experience is ruined by long latency!

• Can we simply shorten latency in live streaming system? No!

*: Online Live Streaming
**: TV broadcasting

Application Latency (s)

YouTube Live* 7-11

Facebook Live* ~15

Twitch* ~15

FOX, abc** ~7
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• Live streaming system state at time T

• Realtime latency is the upper bound of client buffer length.

Client Receiving Buffer Server Sending Buffer

Low Latency and Buffer Length

Video has already been decoded/rendered.

Video has already been downloaded but not decoded/rendered.

Video has already been encoded to be download.

Video is going to happen in future.

Segment𝑖𝑖 Segment𝑖𝑖+1 Segment𝑖𝑖+2 Segment𝑖𝑖+3 Segment𝑖𝑖+4

Live Time 
(Server Encoding Time)Client Display Time

Realtime Latency

Video is being transmitted on the network.
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• Shortening latency negatively impact all the other QoE metrics.

• Goal: Trade-off between latency and other metrics to maximize QoE.

Influence of Buffer Length (Latency)

t

t

Network 
Throughput

Network 
Throughput

t1 t2 t3 t4 t5 t6 t7 t8

t1 t2 t3 t4 t5 t6 t7 t8

Buffer
(Latency)

Video
Quality

Buffer
(Latency)

Rate 
Fluctuationbuffer

Current
Time

buffer

Current
Time

buffer

Current
Time

buffer

Current
Time

Freeze!

Buffer
(Latency)

Risk of 
Freeze

No freeze



© 2020 NYU WIRELESS

10

Live Streaming QoE

• QoE Metrics:

𝑄𝑄𝑄𝑄𝑄𝑄 = 𝑎𝑎1𝑄𝑄 𝑟𝑟𝑖𝑖 − 𝑎𝑎2 𝑄𝑄 𝑟𝑟𝑖𝑖 − 𝑄𝑄 𝑟𝑟𝑖𝑖−1 − 𝑎𝑎3𝑥𝑥𝑖𝑖 − 𝑎𝑎4𝑛𝑛𝑖𝑖 − 𝑎𝑎5𝒈𝒈 𝑙𝑙𝑖𝑖
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Model of Live Streaming System

• System Evolution

Client Player 
System

Live Streaming 
Server

Rate Selector
Network 

Environment
(RTT & 

Bandwidth)

Video Rate r𝑖𝑖

Video Segment i

S𝑖𝑖 → S𝑖𝑖+1
Buffer length
Freeze
Latency
Skip
Last video rate

→ Download → Choose Rate → Update System State → Choose Rate …

Adaptive Streaming 
Algorithms

Choose Initial Latency

Choose Initial 
Latency 𝛼𝛼
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• Network condition for future m steps is available.

• Large m causes state explosion.

Optimal Streaming with Network Oracle

S1Initial
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Sliding Window with Horizon-(Small m)

S𝑖𝑖 S𝑖𝑖+1 S𝑖𝑖+2 ……

Horizon-m
(m=3) { r𝑖𝑖 r𝑖𝑖+1 r𝑖𝑖+2}

Horizon-m
(m=3) { r𝑖𝑖+1 r𝑖𝑖+2 r𝑖𝑖+3}

Horizon-m
(m=3) { r𝑖𝑖+2 r𝑖𝑖+3 r𝑖𝑖+4}

• When latency 𝛼𝛼=2, small lookahead horizon (m=2) is needed to get high QoE. 

• If 𝛼𝛼=4, similar normalized QoE is achieved when m=10.

If latency is short, future information of short lookahead 
horizon is needed to achieve close-to-optimal QoE.
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• Future network information is NOT available.

• Bandwidth predictions

• Harmonic Mean, Hidden Markov Model (HMM), Recursive Least Squared (RLS) and LSTM.

Model Predictive Control (MPC) for Live Streaming

S𝑖𝑖 S𝑖𝑖+1 S𝑖𝑖+2 ……

Predict 
Bandwidth { r𝑖𝑖 r𝑖𝑖+1 r𝑖𝑖+2}

Horizon-m

{ r𝑖𝑖+1 r𝑖𝑖+2 r𝑖𝑖+3}

Predict
Bandwidth { r𝑖𝑖+2 r𝑖𝑖+3 r𝑖𝑖+4}

Horizon-m

Predict 
Bandwidth

Horizon-m

MPC based Practical Live Streaming Algorithm
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• Segment Mode

• Server-wait Mode

• Chunk Mode

Segment & Chunk based Streaming
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Trace-driven Experiments and Evaluation

• 4G cellular bandwidth dataset with150 traces collected in NYC.

• Naïve (𝛾𝛾 �𝜔𝜔), PI-Controller (𝛾𝛾𝑝𝑝 �𝜔𝜔) and MPC (segment and chunk mode).

• MPC based algorithms outperform Naïve and PI-Controller.

• MPC𝑠𝑠 suffers more latency (caused by freeze) than MPC𝑐𝑐 .

• MPC𝑐𝑐 achieves highest QoE with highest bitrate and lowest latency in most cases. 
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Conclusions & Ongoing Work

• Low latency is crucial, balance between latency and other QoE metrics

• MPC based streaming algorithms can improve the QoE performance with low latency.

• Chunk-based delivery is helpful to support low latency live video streaming.

• Optimal Streaming Policy from Deep Reinforcement Learning (DRL) vs. Model-based RL 

• Optimal Playback Pace Adaption 



© 2020 NYU WIRELESS

18

THANK YOU!


	Optimal Strategies for Live Video Streaming in the Low-latency Regime
	Video-over-Ideal-5G
	Video-over-5G: real challenges
	360-degree Video Streaming Projects (joint with Yao Wang)
	360-degree Video Streaming Projects (joint with Yao Wang)
	360-degree Video Streaming Projects (joint with Yao Wang)
	360-degree Video Streaming Projects (joint with Yao Wang)
	Low Latency Live Streaming
	Low Latency and Buffer Length
	Influence of Buffer Length (Latency)
	Live Streaming QoE
	Model of Live Streaming System
	Optimal Streaming with Network Oracle
	Sliding Window with Horizon-(Small m)
	Model Predictive Control (MPC) for Live Streaming
	Segment & Chunk based Streaming
	Trace-driven Experiments and Evaluation
	Conclusions & Ongoing Work
	THANK YOU!

