

Optimal Strategies for Live Video Streaming in the Low-latency Regime

Liyang Sun, Tongyu Zong, Yong Liu and Yao Wang, New York University

Haihong Zhu, Futurewei Technologies

Video-over-Ideal-5G

Video-over-5G: real challenges

Application Laye	r User QoE Optimization with Realistic Network Assumptions	
Transport	Users sensitive to video quality and temporal variation	
Network	Video freezes/skips/black-screen detrimental to user QoE	
	Long end-to-end video delay kills interactivity	
Data Link	Users want mobile/wireless video	
Physical	??? Consistently High-throughput/Low-delay from Lower Layers ???	

360-degree Video Streaming Projects (joint with Yao Wang)

- I. Two-tier on-demand 360° video streaming
 - Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)
 - two-tier segment coding/streaming to be robust against b.w. and FoV dynamics

Fraction of area within FoV: $120^{\circ}/360^{\circ} \times 90^{\circ}/180^{\circ}=1/6$

360-degree Video Streaming Projects (joint with Yao Wang)

- I. Two-tier on-demand 360° video streaming
 - Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)
 - two-tier segment coding/streaming to be robust against b.w. and FoV dynamics
- 2. Flocking-based live 360° streaming from edge cloud
 - users watching same live event form a "flock"
 - users with shorter video lag lead flock: populating cache, generating realtime "saliency" map

360-degree Video Streaming Projects (joint with Yao Wang)

- I. Two-tier on-demand 360° video streaming
 - Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)
 - two-tier segment coding/streaming to be robust against b.w. and FoV dynamics
- 2. Flocking-based live 360° streaming from edge cloud
 - users watching same live event form a "flock"
 - users with shorter video lag lead flock: populating cache, generating realtime "saliency" map
- 3. Realtime coding and delivery for interactive streaming
 - frame-level coding and delivery to ensure tens milli-second latency
 - tile-based video rate allocation for FoV quality differentiation

6

360-degree Video Streaming Projects (joint with Yao Wang)

- I. Two-tier on-demand 360° video streaming
 - Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)
 - two-tier segment coding/streaming to be robust against b.w. and FoV dynamics
- 2. Flocking-based live 360° streaming from edge cloud
 - users watching same live event form a "flock"
 - users with shorter video lag lead flock: populating cache, generating realtime "saliency" map
- 3. Realtime coding and delivery for interactive streaming
 - frame-level coding and delivery to ensure tens milli-second latency
 - tile-based video rate allocation for FoV quality differentiation
- 4. Deep-learning based user FoV prediction
 - target user past FoV trajectory, and "future" trajectories from others
 - video content saliency map

Low Latency Live Streaming

- Sports, online gaming broadcast, social live UGC,
- Online live streaming still lags behind TV.
- User live/interactivity experience is ruined by long latency!
- Can we simply shorten latency in live streaming system? No!

Application	Latency (s)
YouTube Live*	7-11
Facebook Live*	~15
Twitch*	~15
FOX, abc**	~7
	*: Online Live Streaming **:TV broadcasting

Low Latency and Buffer Length

- Live streaming system state at time T • Live Time Client Display Time (Server Encoding Time) Segment_i Segment_{i+1} Segment_{i+2} Segment_{i+4} Segment_{i+3} Server Sending Buffer **Client Receiving Buffer Realtime Latency** Video is going to happen in future. Video has already been downloaded but not decoded/rendered. Video is being transmitted on the network. Video has already been decoded/rendered. Video has already been encoded to be download.
- Realtime latency is the upper bound of client buffer length.

Influence of Buffer Length (Latency)

• Goal: Trade-off between latency and other metrics to maximize QoE.

Live Streaming QoE

• QoE Metrics:

TANDON SCHOOL OF ENGINEERING

Model of Live Streaming System

• System Evolution

Choose Initial Latency \rightarrow Choose Rate \rightarrow Download \rightarrow Update System State \rightarrow Choose Rate ...

Optimal Streaming with Network Oracle

• Network condition for future m steps is available.

	gorithm I Optimal Streaming for Horizon-m		
	Input: S_1 : the initial state; m : look-ahead horizon; $\{w_i, rtt_i, i \in [1, m]\}$: future available bandwidth and rtt; \mathcal{R} : available rates; Output: $\{r_i^*, i \in [1, m]\}$: optimal rate sequence. Initialization: The possible states at stage 1: $\Omega_1 = \{S_1\}$.		
1:	: Branch-and-Bound State Expansion		
2:	for each segment $i \in [1, m]$ do		
3:	$\Omega_i = \emptyset$		
4:	for each state S in Ω_{i-1} do		
5:	for each $R_j \in \mathcal{R}$ do		
6:	$\mathcal{S}'_i = oldsymbol{f}(\mathcal{S}, R_j, \{w_i, rtt_i\})$		
7:	if S'_i could be part of the overall optimal solution then		
8:	$\Omega_i \leftarrow \Omega_i igcup \mathcal{S}'_i$		
9:	end if		
10:	end for		
11:	end for		
12:	end for		
13:	Find Optimal Transition $S_1 \xrightarrow{r_1^*} S_2^* \in \Omega_2 \cdots \xrightarrow{r_{m+1}} S_{m+1}^* \in \Omega_{m+1}$ to maximize accumulated QoE $\sum_{i=1}^m QoE(S_i, r_i)$ through DP.		
	notrum a*		

Sliding Window with Horizon-(Small m)

Algorithm 2 Sliding Horizon-*m* Streaming

- Input: S_1 : initial state; α and β : startup parameters; m: lookahead horizon; N: live streaming duration; $\{w_i, rtt_i, i \in [1, N]\}$: available bandwidth and rtt; \mathcal{R} : available rates. Output: $\{r_i, i \in [1, N]\}$: rate sequence for all segments 1: Download the first β segments using predefined rate selection strategy $r_{[1, \dots, \beta]}$, obtain $S_{\beta+1}$ 2: for each segment $i \in [\beta + 1, N]$ do 3: $rr_i^{(m)}$ =Horizon-m($S_i, m, \{w_{[i,i+m-1]}, rtt_{[i,i+m-1]}\}, \mathcal{R})$ 4: $r_i = rr_i^{(m)}[1]$ 5: $S_{i+1} = f(S_i, r_i, \{w_i, rtt_i\})$ 6: end for 7: return $r_{[1, \dots, N]}$
- When latency α =2, small lookahead horizon (m=2) is needed to get high QoE.
- If α =4, similar normalized QoE is achieved when m=10.

If latency is short, future information of short lookahead horizon is needed to achieve close-to-optimal QoE.

Model Predictive Control (MPC) for Live Streaming

- Future network information is NOT available.
- Bandwidth predictions
 - Harmonic Mean, Hidden Markov Model (HMM), Recursive Least Squared (RLS) and LSTM.

MPC based Practical Live Streaming Algorithm

Segment & Chunk based Streaming

15

Trace-driven Experiments and Evaluation

- 4G cellular bandwidth dataset with 150 traces collected in NYC.
- Naïve $(\gamma \widehat{\omega})$, PI-Controller $(\gamma_p \widehat{\omega})$ and MPC (segment and chunk mode).

- MPC based algorithms outperform Naïve and PI-Controller.
- MPC^s suffers more latency (caused by freeze) than MPC^c.
- MPC^c achieves highest QoE with highest bitrate and lowest latency in most cases.

Conclusions & Ongoing Work

- Low latency is crucial, balance between latency and other QoE metrics
- MPC based streaming algorithms can improve the QoE performance with low latency.
- Chunk-based delivery is helpful to support low latency live video streaming.

- Optimal Streaming Policy from Deep Reinforcement Learning (DRL) vs. Model-based RL
- Optimal Playback Pace Adaption

THANK YOU!