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Video-over-ldeal-5G

24K, 360 Degree, Volumetric

ADVIEWS | HOLOSYS Volumetric Video Capture System
Application
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Video-over-5G: real challenges

Application Laygr User QoE Optimization with Realistic Network Assumptions

Transport ¢ Users sensitive to video quality and temporal variation

¢ Video freezes/skips/black-screen detrimental to user QoE
Network

*¢ Long end-to-end video delay kills interactivity

Data Link .

*» Users want mobile/wireless video

, 22! Consistently High-throughput/Low-delay from Lower Layers ???
Physical
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360-degree Video Streaming Projects (joint with Yao Wang)

|. Two-tier on-demand 360° video streaming
* Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)

* two-tier segment coding/streaming to be robust against b.w. and FoV dynamics
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Fraction of area within FoV: 120°/360° x 90°/180°=1/6 A ’q
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360-degree Video Streaming Projects (joint with Yao VWang)

|. Two-tier on-demand 360° video streaming
* Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)

* two-tier segment coding/streaming to be robust against b.w. and FoV dynamics

2. Flocking-based live 360° streaming from edge cloud
* users watching same live event form a “flock”

 users with shorter video lag lead flock: populating cache, generating realtime “saliency” map
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360-degree Video Streaming Projects (joint with Yao VWang)

|. Two-tier on-demand 360° video streaming
* Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)

* two-tier segment coding/streaming to be robust against b.w. and FoV dynamics

2. Flocking-based live 360° streaming from edge cloud
* users watching same live event form a “flock”

 users with shorter video lag lead flock: populating cache, generating realtime “saliency” map

3. Realtime coding and delivery for interactive streaming

* frame-level coding and delivery to ensure tens milli-second latency

* tile-based video rate allocation for FoV quality differentiation
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360-degree Video Streaming Projects (joint with Yao VWang)

|. Two-tier on-demand 360° video streaming
* Field-of-View (FoV) streaming to reduce b.w. requirement (1/6)

* two-tier segment coding/streaming to be robust against b.w. and FoV dynamics

2. Flocking-based live 360° streaming from edge cloud
* users watching same live event form a “flock”

 users with shorter video lag lead flock: populating cache, generating realtime “saliency” map

3. Realtime coding and delivery for interactive streaming

* frame-level coding and delivery to ensure tens milli-second latency

* tile-based video rate allocation for FoV quality differentiation

others’ future

4. Deep-learning based user FoV prediction ¢- e ‘
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* target user past FoV trajectory, and “future” trajectorles from others

* video content saliency map Cohm
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Low Latency Live Streaming

Application Latency (s)
Vid Mobile YouTube Live* 7-11
ideo
Camera 7 Devices Facebook Live* ~15
/
V) ! = Twitch* ~15
I
JLIVEL] FOX, abc** ~7
N\ *: Online Live Streaming
! L > *:TV broadcasting
¢, Upload J Encode "Download! Decode 1'__
1 Package Render 2
D3 Voulube [P
. . 1 LIVE Live .
* Sports, online gaming broadcast, social live UGC, fLIvE TikTok
* Online live streaming still lags behind TV.
* User live/interactivity experience is ruined by long latency! WD

* Can we simply shorten latency in live streaming system?! No!
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Low Latency and Buffer Length

* Live streaming system state at time T
Live Time

Client Display Time (Server Encoding Time)

{

nt; .3 Segment; 4

o

: Client Receiving Buffer “Server Sending Buffer :

P o
¢ >

Realtime Latency

Video is going to happen in future. - Video has already been downloaded but not decoded/rendered.
- Video has already been decoded/rendered. Video is being transmitted on the network.

- Video has already been encoded to be download.

* Realtime latency is the upper bound of client buffer length.
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Influence of Buffer Length (Latency)

Current Current

Time w Time w Rate 1
Network Fluctuation

Throughput]

«— Buffer ]

i;'eez (Latency)
! t Video |
t t t3 ty ts te Quality
Current Current
Time x [
Network >
Throughput «—— Buffer
Latenc
Risk of 1 (Latency)
Freeze
| t‘
t8 g >
. . . . «—  Buffer
* Shortening latency negatively impact all the other QoE metrics. (Latency)

* Goal: Trade-off between latency and other metrics to maximize QoE. 7
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Live Streaming QoE

* QoE Metrics:

QoE = a;Q(ry) — a,|Q(ry) — Q(ri—1)| — asx; — aun; — asg(l;)
® @ ® ® ®
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Model of Live Streaming System

* System Evolution

Choose Initial Latency — Choose Rate - Download — Update System State — Choose Rate ...

Adaptive Streaming Video Rate r;
Algorithms  _ % ——————————————— . g
i | Rate Selector |
! : Network : —
Chogis e—J'S'}Jr a : % i Environment Live Streaming
L Yefioth |! i (RTT & Server
Freeze | Client Player | Bandwidth)
Latency ! System :
ik'P . e S Video Segment i
ast video rate




@ TANDON SCHOOL . -
NYU | oFeNGineerine ©2020 NYU WIRELESS

Optimal Streaming with Network Oracle

* Network condition for future m steps is available.

Algorithm 1 Optimal Streaming for Horizon-m

Input: S;: the initial state; m: look-ahead horizon; {w;, rtt;, i €
[1,m]}: future available bandwidth and rtt; R: available rates;
Output: {r;,7 € [1, m]}: optimal rate sequence.
Initialization: The possible states at stage 1: Q1 = {S1}.
Branch-and-Bound State Expansion

for each segment i € [1,m] do

Algorithm
Horizon-m

Initial S,

for each state S in 2;,_1 do
for each R; € R do
S; — f(87 Rj7 {wi7 Ttt’t})
if S/ could be part of the overall optimal solution then
Qié—-QiLJS£
end if
end for
end for
: end for

S31 S32 S33 S35 S36
. Find Optimal Transition S; — 85 € Qg -+ — Sk, €

534
. : . Oe1 to maximize accumulated QoE Z:’;l QoE(Si,r:)

. : through DP.
QOE 14: return rj .
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Optimal Solution: { R; R; R;...... }

* Large m causes state explosion. m 12




@ TANDON SCHOOL . -
NYU | oFeNGineerine ©2020 NYU WIRELESS

Sliding Window with Horizon-(Small m)

Algorithm 2 Sliding Horizon-m Streaming

Input: S;: initial state; o and (: startup parameters; m: look-

Horizon-m ahead horizon; N live streaming duration; {w;, rtt;,i € [1, N]}:
(m=3) —> {[rit1|ris2 riss} available bandwidth and rtt; R: available rates.
Output: {r;,7 € [1, N]}: rate sequence for all segments
1: Download the first S segments using predefined rate selection
strategy 71 ... 3], obtain Sgi1
S; :@ N e T 2: for each segment i € [+ 1, N| do
3: rrgm) =Horizon-m(S;, m, {w(i i+ m—1], Tt} itm—11}, R)
4: 1= rrgm)[l]
Horizon-m Horizon-m L, 500 Siy1 = f(Si,ri, {wi, rtti})
(m=3) (m=3) {lrit2|ri+s rival 6: end for
7. return r[y ... N)
1
o * When latency a=2, small lookahead horizon (m=2) is needed to get high QoE.
wo|
80 5 * If a=4, similar normalized QoE is achieved when m=10.
|
N
S04y ) . .
5 If latency is short, future information of short lookahead
0.2 . . . .
horizon is needed to achieve close-to-optimal QoE.
O L L
1 2 3
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Model Predictive Control (MPC) for Live Streaming

* Future network information is NOT available.

* Bandwidth predictions
* Harmonic Mean, Hidden Markov Model (HMM), Recursive Least Squared (RLS) and LSTM.

,| Horizon-m \

Predict
Bandwidth {Irisalrisz riss}
Si =@ MSipf—> eeenn
Predict Predict
Bandwidth {lrilries ris2} Bandwidth {lrisz|riss rival

\I Horizon-m / ‘I Horizon-m /

MPC based Practical Live Streaming Algorithm | 4
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Segment & Chunk based Streaming

¢ Segment Mode Server Segment; Segment;, ¢ -
I MPD % Download t
|
. REQ Segment;
| / R
Client . 222 | | . R
51 t, t3 t4 s 6 t; t
e Server-wait Mode Server , Segment; Segment; R
MPD ) ” Download t
. REQ ‘ | Segment;
Client . oy ! — R
! t 3 T t
O Segment; >
* Chunk Mode Server Cio | Ci2 ) i3z | Cia | Cis | Civra| Citr2] Cit13] Civra] Citas R
[ Download I t
| I -c |
Client ' ' — - >
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Trace-driven Experiments and Evaluation

* 4G cellular bandwidth dataset with 150 traces collected in NYC.

* Naive (y@), PI-Controller (y,,@) and MPC (segment and chunk mode).

1.0 1.0 e
0.8} 0.8 0.8}
, 0.6 w 0.6/ . 0.6
(a] (a)] 8
“ 0.4} “ 0.4f 0.4/
--- Naive --- Naive
2 — Pl 0.2 0.2 — Pl
0.2 -~~~ MPCV | - - -~ MPC
! —  MPC —  MPC"
%% 100 200 300 283 2 4 6 95 4.0 45 5.0
Accumulate QoE Average Bitrate (Mbps) Average Latency (s)

* MPC based algorithms outperform Naive and Pl-Controller.
« MPC?® suffers more latency (caused by freeze) than MPC°.

* MPCF achieves highest QoE with highest bitrate and lowest latency in most cases.
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Conclusions & Ongoing Work

Low latency is crucial, balance between latency and other QoE metrics

MPC based streaming algorithms can improve the QoE performance with low latency.

Chunk-based delivery is helpful to support low latency live video streaming.

Optimal Streaming Policy from Deep Reinforcement Learning (DRL) vs. Model-based RL

Optimal Playback Pace Adaption
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THANK YOU!
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