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NYU | meaisee: Electromagnetic Spectrum & Applications “‘ NYU
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[1] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Alkhateeb, G. C. Trichopoulos, A. Madanayake, S. Mandal, “Wireless Communications and Applications
Above 100 GHz: Opportunities and Challenges for 6G and Beyond (Invited),” IEEE ACCESS, submitted Feb. 2019. 3
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[2] T. S. Rappaport et al. “State of the art in 60-GHz integrated circuits and systems for wireless communications,” Proceedings of the IEEE, vol. 99, no. 8, pp. 1390—

1436, Aug. 2011.

[3] Q. Zhao and J. Li, “‘Rain attenuation in millimeter wave ranges,’” in Proc. IEEE Int. Symp. Antennas, Propag. EM Theory, Oct. 2006, pp. 1-4.

[4] mmWave Coalition’s NTIA Comments, Filed Jan. 2019. http://mmwavecoalition.org/mmwave-coalition-millimeter-waves/mmwave-coalitions-ntia-comments/

[29] J. Ma et. al., “Channel performance for indoor and outdoor terahertz wireless links,” APL Photonics, vol. 3, no. 5, pp. 1-13, Feb. 2018. 4
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NYU|aeizne  FCC Proposes “Spectrum Horizons” > 95 GHz “‘ %

Federal Communications Commission FCC-CIRC1903-01

Before the
Federal Communications Commission
Washington, D.C. 20554

Report and Order ET Docket 18-21 published on
Feb 22", 2019
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«  Experimental licenses for 95 GHz to 3 THz - Spectrum Horizons.

* 21.2 GHz Unlicensed Spectrum to be allocated.

*  Rules on Licensed spectrum deferred until sufficient technical and market data is obtained.

http://mmwavecoalition.org/wp-content/uploads/2019/02/DOC-356297A1-FCC-Report-Order.pdf
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NYU @i FCC First Report and Order—ET Docket 18-21

Caution required — sharing spectrum!

Unlicensed Operation

Spectrum Horizons Experimental Radio Licenses Maximum EIRP of 40 dBm (average) and 43 dBm (peak)

o for mobile.
*  Frequency within 95 GHz to 3 THz
) ] ] *  Maximum EIRP of 82-2*(51-Gy) dBm (average) and
* No interference protection from pre-allocated services. 85-2*(51-Gry) dBm (peak) for fixed point-to-point.

*  Interference analysis before license grant. «  Out-of-band emission limit 90 pW/cm? at three meters.

Frequency Band Contiguous Bandwidth
(GH2) (GH2z2)

116-123
FCC will Vote on March 15" 2019! 74,5182 s
“Behold the Ides of March” 165190 .
244-246 2
Total 21.2

http://mmwavecoalition.org/wp-content/uploads/2019/02/DOC-356297A1-FCC-Report-Order.pdf
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NYU | seaians mmWave Coalition

«  Frequencies above 95 GHz are seriously under-developed in the U.S. because of a lack of an adequate regulatory
framework for their use. http://mmwavecoalition.org/

The mmWave Coalition is a group advocating for the FCC to open several large contiguous blocks of spectrum
from 95 — 275 GHz [4].

«  The mmWave Coalition is proposing rules for commercialization of fixed and mobile systems above 95 GHz with
the goal of creating a global ecosystem for these systems

*  Current members are Nokia, ACB Inc., Nuvotronics, Keysight, Virginia Diodes, RaySecur, Azbil, Global
Foundries, Qorvo, NYU.

*  Annual Contribution is $5k for a large company, $100 for an Academic Institution, and $1.5k for others. Each

member can nominate one person to act as its “Principal” representing it on the Steering Committee (currently chaired

by Nokia).

[4] mmWave Coalition’s NTIA Comments, Filed Jan. 2019. http://mmwavecoalition.org/mmwave-coalition-millimeter-waves/mmwave-coalitions-ntia-comments/
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» Europe: ETSI ISG mWT: studying applications/use cases of millimeter wave spectrum (50 GHz - 300 GHz).

ETSI GS mWT 002 v1.1.1 2o15-08)
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and more above 90GHz

» ITU-R: WRC-19 Agenda Item 1.15 will identify applications in the frequency range 275-450 GHz,
in accordance with Resolution 767 (WRC-15).

ITLUL -2 Asia-Pacific Telecommunity (APT)
275-1000 GHz
WRC-15
European Conference of Postal and

Report 1ITU-R RA.21789
C1o/2010)

Telecommunications Administrations
(CEPT) 275-1000 GHz

Sharing between the radio astronomy
service and active services in the frequency
range 275-3 000 GHz
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mmWave & THz Applications—the potential for 6G [1]

Robotic Control [27, 28]
Drone Fleet Control [27]

Air quality detection [5]

Sensing Personal health monitoring system [6]

Gesture detection and touchless smartphones [7]
Explosive detection and gas sensing [8]

Wireless Cognition

See in the dark (mmWave Camera) [9]
Imaging High-definition video resolution radar [10]
Terahertz security body scan [11]

Wireless fiber for backhaul [12]
Intra-device radio communication [13]
Connectivity in data centers [14]
Information shower (100 Gbps) [15]

Communication

Positioning Centimeter-level Positioning [9,16]

[1] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Alkhateeb, G. C. Trichopoulos, A. Madanayake, S. Mandal, “Wireless Communications and Applications
Above 100 GHz: Opportunities and Challenges for 6G and Beyond (Invited),” IEEE ACCESS, submitted Feb. 2019.
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Query the cloud for better accuracy?
Latency vs. Accuracy vs. Power ...

Holographic Imaging and Spatial cognition

WAy

Wireless Cognition
(Network Offloading)
[17]

https://www.independent.co.uk/life-style/gadgets-and-tech/driverless-cars-travel-technology-government-control-autonomous-cars-a8413301.html

https://smallbiztrends.com/2016/03/delivery-drones-grounded-by-faa.html
https://www.arabianbusiness.com/technology/397057-ai-to-add-182bn-to-uae-economy-by-2035

[171 Chinchali S. et. al., Network Offloading Policies for Cloud Robotics: a Learning-based Approach. arXiv preprint arXiv:1902.05703. 2019 Feb 15.
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Plot of THz intensity (proportional to the square of amplitude)
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[1] http://terasense.com/products/body-scanner/
[17] C. Jordens, F. Rutz, M. Koch: Quality Assurance of Chocolate Products with Terahertz Imaging; European Conference on Non-Destructive Testing, 2006 — Poster 67

[18] M. Aladsani, A. Alkhateeb, and G. C. Trichopoulos, "Leveraging mmWave Imaging and Communications for Simultaneous Localization and Mapping," International
Conference on Acoustics, Speech, and Signal Processing (ICASSP), Brighton, UK, May 2019.
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NYU | soesise: Wireless Communications “‘ %

100 Gbps ~ 1 Tbps backhaul
links over rooftops [12]

Short-range THz wireless
connectivity in data centers [2]

L ‘w/‘«:‘”‘“ Loo6ie- 1Hz
N
|| 8 ))) 2 On-chip & chip to chip Terahertz
2| g . communication links [20]
£ L=

[2] http://terapod-project.eu/wp-content/uploads/2018/03/Re-imagining-data-centres-with-THz.pdf
[12] T. S. Rappaport, et al., “Overview of millimeter wave communications for fifth-generation (5G) wireless networks-with a focus on propagation models,”

IEEE Trans. on Ant. and Prop., vol. 65, no. 12, pp. 6213-6230, Dec. 2017.
[20] S. Abadal, A. Marruedo, et al., "Opportunistic Beamforming in Wireless Network-on-Chip", in Proceedings of the ISCAS ’19, Sapporo, Japan, May 2019. 12
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cm-level localization at mmWave and THz, assuming materials are perfect reflectors [1,18]

1.  mmWave image of surrounding environment constructed

2. User location is projected on the constructed mmWave image. _ _
User Location Base Station

N,

TransmitteANten Gl v ' ) |
41&\'“.'%{ %

IVIS) (BS) & —
60
\ d, = 124.5cm

X dy + d, + d3 = total range = 278 cm
20 40 60 80 100 120 140 160 180 200
X (cm)

80.1 cm

L wopgL ="

Deype

Drywall

Experimental Setup mmWave image Drywall 1

[1] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Alkhateeb, G. C. Trichopoulos, A. Madanayake, S. Mandal, “Wireless Communications and Applications

Above 100 GHz: Opportunities and Challenges for 6G and Beyond (Invited),” IEEE ACCESS, submitted Feb. 2019.
[18] M. Aladsani, A. Alkhateeb, and G. C. Trichopoulos, “Leveraging mmWave Imaging and Communications for Simultaneous Localization and

Mapping,” in International Conference on Acoustics, Speech, and Signal Processing (ICASSP), May 2019, pp. 1-4. 13
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Precise Positioning (2/2)

G,

« cm-level localization with map, AoA, and ToF information CL“‘;\\
at mmWave & THz [1]. T
*  Materials not assumed to be perfect reflector at mmwWave
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[1] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Alkhateeb, G. C. Trichopoulos, A. Madanayake, S. Mandal, “Wireless Communications and Applications Above

100 GHz: Opportunities and Challenges for 6G and Beyond (Invited),” IEEE ACCESS,

submitted Feb. 2019.

[16] O. Kanhere and T. S. Rappaport, “Position locationing for millimeter wave systems,” in IEEE 2018 Global Communications Conference, Dec. 2018, pp. 1-6.
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Conducting measurements [21] 140 GHz broadband channel sounder demo
| at Brooklyn 5G Summit [22]

W NYU WIR. ?
= A '}
N- s

B AN
[21] Y. Xing and T. S. Rappaport, “Propagation Measurement System and approach at 140 GHz- Moving to 6G and Above 100 GHz,” IEEE 2018 Global Communications

Conference, Dec. 2018, pp. 1-6.
[22] https://ieeetv.ieee.org/event-showcase/brooklyn5g2018 15
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Free Space Path Loss at 28, 73, 140 GHz WIRELESS
NYU 140 GHz Channel Sounder System FSPL verifications following the proposed method
- —— at 28, 73, and 140 GHz [23] (after removing antenna gains)
—140 GHz FSPL ' | '
LO Frequency 22.5 GHz X6 =135 GHz 105( ¢ 140 GHz Measured data
- - 140 GHz Cl model, n = 2.02, o =0.37
i i 100!/—73 GHz FsPL
IF Frequency 5-9 GHz (4 GHz bandwidth) e GH:Measmddm 140 GHz
95 H- - 73 GHz Cl model, n = 1.96, o =0.09
RF Frequency 140-144 GHz § 90 ZBGH:FS;‘: "
Upconverter IF input -5 dBm typically B =i 73 GHz_—
10 dBm (damage limit) o 85 — 0
< 80 28 GHz
Downconverter RF input -15 dBm typically & ;
0 dBm (damage limit) 7 o
7 .
TX output power 0 dBm
65
Antenna Gain 25 dBi/ 27 dBi 60 . . 1 1
Antenna HPBW 10°/ 8° ! % T-R digtance (r:) % 10
Antenna Polarization Vertical / Horizontal As expected, FSPL at 140/73/28 GHz follows the Laws of Physics

and satisfies Friis’ equations with antenna gains removed.

[23] Y. Xing, O. Kanhere, S. Ju, T. S. Rappaport, G. R. MacCartney Jr., “Verification and calibration of antenna cross-polarization discrimination and penetration loss for
millimeter wave communications,” 2018 IEEE 88th Vehicular Technology Conference, Aug. 2018, pp. 1-6.
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the Proposed Methods at 28, 73, and 140 GHz
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Theovretivqa}lr Rece'ived .PO‘,’V"?T vs. Distances

==28 GHz
(i) TX/RX directional
20 / (iijTxdirectional | ™ 736Hz |
= _RX omni-directional |==140 GHz
50
3
m
2
D-!_
-100 -
Antenna gain: G =
A, =2.9cm?, constantover f (i) TX/RX omni-directi
GZSGHZ = 15 dBl
Gr36hz = 23.3dBi % TXdirectional, RX omni : P,. is identical
Giaocuz = 29dBi % TX/RX directiPnal: P, is greater at higher f
_150 1 1 PR R | H Il H P | 1 H P N
1 3 5 10 30 50 100 200 500 1000
d(m)

DIRECTIONAL ANTENNAS WITH EQUAL APERTURE HAVE MUCH
LESS PATH LOSS AT HIGHER FERQUENCIES ([24] Ch.3 Page 104) !!

Penetration Loss at 28, 73, and 140 GHz

Frequency Material Thickness | Penetration Loss
(GHz) Under Test (cm) (dB)
Clear glass No.1 12 3.60
= 28 Clear glass No.2 1.2 3.90
Drywall No.1 381 6.80
Clear glass No.3 0.6 1.0
- 73 Clear glass No.4 0.6 7.10
Drywall No.2 145 10.06
Clear glass No.3 0.6 8.24
Clear glass No.4 0.6 9.07
= 14() Drywall No.2 145 1502
Glass door 13 16.20
Drywall with Whiteboard 17.1 16.69

[24] T. S. Rappaport, et. al., “Millimeter Wave Wireless Communications,” Pearson/Prentice Hall c. 2015.
[21] Y. Xing and T. S. Rappaport, “Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz,” in IEEE 2018 Global

Communications Conference, Dec. 2018, pp. 1-6.

PENETRATION LOSS INCREASES WITH FREQUENCY BUT
THE AMOUNT OF LOSS IS DEPENDENT ON THE MATERIAL [21]
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i | e v, | o

TN omers

f{ TX Location

|j @® RX Location
)

65.5m

Maps of 2 MetroTech Center 9th floor. There are 9 TX locations (stars) and 37 RX locations (dots).
The 140 GHz indoor measurement campaign will use the same measurement locations as used at
28 and 73 GHz, providing 48 TX-RX combinations ranging from 4 to 48 m [25, 21].

[25] G. R. Maccartney, T. S. Rappaport, S. Sun and S. Deng, "Indoor Office Wideband Millimeter-Wave Propagation Measurements and Channel Models at 28 and 73 GHz
for Ultra-Dense 5G Wireless Networks," in IEEE Access, vol. 3, pp. 2388-2424, 2015.

[21] Y. Xing and T. S. Rappaport, “Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz,” in IEEE 2018 Global
Communications Conference, Dec. 2018, pp. 1-6.

18



NYU | zeiiase: Scattering Measurements at 140 GHz NS NYU

WIRELESS

. -20 — -20
,;% - Direct Scatteded Model 05 = Direct Scafteded Model
2 .40 hY g 40 “+Measured data
o +Measured data . g
E’ -60 - < 60
o B
2 8 80
8 80 _ 5
()
@ ? 100 - -
-100 0 50 100 150 200
0 50 100 150 200 Scattered angles (%)
Scattered angles ()
Hi - 10° 9i == 30°
-20¢ T ' =20 . .
Scatter Pattern at 140 GHZ 5 = Direct Scatteded Model 5 = Direct Scatteded Model
. 80 90 100" . = 40 #Measured data = 4o Measred data
., 70 110 R g g RN
. 60 120 ) 5 5 7
50 6; = 80° 130 % 60 0 -60 ARR
40° A l g; = 60° s o o 9 =t- .
\ 140 2 .80 L g, ot N
° Incident \ 1503 g - - g -
=30° 93] - - | w L L |
\ directions 0 50 100 150 200 0 50 100 150 200
160" Scattered angles (°) Scattered angles (°)
e \‘ 170 6; = 60° 6; = 80°
0 _90 80 -70 -60 _50’ 40 _3380° Comparison between measured data and the dual-lobe Directive
Scattered Power (dBm) Scattering (DS) model at 142 GHz [1,26].

[1] T. S. Rappaport, Y. Xing, O. Kanhere, S. Ju, A. Alkhateeb, G. C. Trichopoulos, A. Madanayake, S. Mandal, “Wireless Communications and Applications Above 100 GHz:
Opportunities and Challenges for 6G and Beyond (Invited),” IEEE ACCESS, submitted Feb. 2019.
[26] S. Ju et al., “Scattering Mechanisms and Modeling for Terahertz Wireless Communications,” 2019 IEEE International Conference on Communications, May. 2019, pp. 1-7.
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Partition Loss Measurements using the NYU

140 GHz channel sounder WIRELESS

' rywall with a
whiteboard

[21] Y. Xing and T. S. Rappaport, “Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz,” in IEEE 2018 Global

Communications Conference, Dec. 2018, pp. 1-6.
[23] Y. Xing et al., “Verification and calibration of antenna crosspolarization discrimination and penetration loss for millimeter wave communications,” in 2018 IEEE 88"

Vehicular Technology Conference, Aug. 2018, pp. 1-6. 20
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Penetration Loss at 28, 73, and 140 GHz
Frequency Material Thickness | Penetration Loss
(GHz) Under Test (cm) (dB) Penetration loss increases
Clear glass No.1 1.2 3.60 with frequency but the
= 18 Clear glass No.2 L2 3% amount of loss is dependent
Drywall No.1 38.1 6.80 .
on the material.
Clear glass No.3 0.6 7.70
— 73 Clear glass No.4 0.6 7.10
Drywall No.2 14.5 10.06
Clear glass No.3 0.6 8.24
Clear glass No.4 0.6 907 Penetration loss is constant
= 14() Drywall No.2 145 15.02 over T-R separation distances
Glass door 13 16.20 for co-polarized antennas.
Drywall with Whiteboard 17.1 16.69

[21] Y. Xing and T. S. Rappaport, “Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz,” in IEEE 2018 Global

Communications Conference, Dec. 2018, pp. 1-6.
[23] Y. Xing et al., “Verification and calibration of antenna crosspolarization discrimination and penetration loss for millimeter wave communications,” in 2018 IEEE 88t

VTC, Aug. 2018, pp. 1-6. 21
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» New rulemaking report and order (ET Docket 18-21)
« 21.2 GHz of unlicensed spectrum.
95 GHz - 3 THz for experimental licenses.
* Novel use cases for sub-THz and THz: wireless cognition, imaging, and communications.

« Early results for precise positioning at sub-THz and THz: < 10 cm positioning accuracy.

 Initial scattering and partition loss measurement results at 140 GHz.

22
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