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Cellular Generations

[ 16
Anolog voice Digital voice Internet data Broadband data ?
1981 1991 2000 2008 2020
AMPS GSM, 1S-95 WCDMA, LTE, WiMax

CDMA2000

TANDON SCHOOL NYU
NYU OF ENGINEERING WIRELESS




Success of 4G
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Data wraffic grew
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What Will 5G Do?

Usage scenarios of IMT for 2020 and beyond D M a ny new use cases for ce | | u |a r

Enhanced mobile broadband

Gigabytes ina second 1.

o Massive connectivity
> AR/ VR

3D video, UHD screens o Autonomous driving
; Work and play in the cloud o
Industry automation

. n Mission critical application

Smart home/building

Voice

Smart city Self driving car
Massive machine type Ultra-reliable and low latency IMT Vision — Framework and overall
communications communications

objectives of the future development
of IMT for 2020 and beyond, Sept 2015

TANDON SCHOOL NY
NYU OF ENGINEERING WLEls!




5G Requirements: Many Dimensions

Deep coverage

To reach challenging locations Strong security
Ultra-low energy e.g. Health / govemment/ financial trusted

10+ years of battery life

Ultra-high reliability
<1 out of 100 million packets lost

Ultra-low complexity MaSSNe Internet

10s of bits per second i Of Th”‘]gs Mission critical
control Ultra-low latency

Ultra-high density As low as 1 millisecond

1 million nodes per Km?

Erhanced

Extreme capacity  ggiliaslele]|[=Holger:ToloL:]qle!

10 Tbps per Km? \
Extreme user mobility
Y Or no mobility at all

Deep awareness
Discovery and optimization

Extreme data rates
Multi-Gigabits per second

LFrom Roberto Padovani, “The Road to 5G”, Jack Wolf Lecture, NYU, Sept 2016.
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Understanding Rate

| Cellular user experience a distribution of rate
ol — Nkt | o Variability due to many factors
— Apt .
08 : o Interference, location, blockage, ...
o7 o Loading, density / layout of cells, ...
;90‘6-
EOAS
&

Various metrics for rate
o Peak rate

o Average rate
5 10 15 2 o Edge of cell (5%)
SINR (dB)

Rangan, New strategies for
femto-macro cellular
interference control, 2013
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How to Increase Rate in Cellular?

LShannon Formula
c = W log,(1 + SINR)

“ | \

Rate per user Bandwidth per user, Spectral efficiency

antenna degrees of freedom

W Current coding methods close to spectral efficiency bound

Most techniques for 5G: Increase degrees of freedom

o Number of cells Densification, greater bandwidth per user in each cell
o Bandwidth Millimeter wave

o Number of antennas Massive MIMO, higher spatial degrees of freedom

NYU
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Reducing Network Latency

S AR T | IR NI N TR e DSG g0a|S'
_erehcyal Difrenk Techiciggies > 1 to 4 ms data plane latency (user already connected)
| > 10 ms control plane (user starts in idle mode)

s ¥ | U Total delay has multiple components

s B

Az — —

Processing Faster decoding, hardware

GrfRk CDOD S0GE WD A Cwofwed HEOPA HIPA §6GPA.  LTT
EpEd Reida Sl i Rws FDGOE
s bt P s

. —
A s e s s Queuing mmmm)  Simplified network,
—>
—>

congestion control

Rysavy Research, Transmission Higher data rate, HARQ, MAC

Mobile Broadband Explosion:

3GPP Broadband Evolution to IMT-Advanced Bring content C|oser’ less hops

Propagation
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Small Cells and Densification

dCell splitting
o Key driver for capacity increase up to 4G

Different small cell deployment scenarios

Indoor: 10-100mwW
Qutdoor: 0.2-1W
Coverage radius: 10s of meters

Home Home

Creates heterogeneous networks

‘(;::::I‘g;r: gg‘jﬂz’mw e .
Coverage radius: 10s of meters \T'E' ° Ce” SlzeS / pOwer
R T © Backhaul
Indoor: 1CIEI 250mW ° Indoor / OUtdOOI’
Outdoor:
Coverage radlus 1 Os of meters &
e oW (dConsiderable work in 4G / LTE-A
Coverage radius: 100s of meters
Qb o Intercellular interference coordination
Qutdoor: =10wW
Coverage radius: kilometer(s) Macro o Self_orgaanIng networks

£ Mokia Slemens Neteons 2012

Practical challenges
o Backhaul

o Site acquisition

Via: 3g4g.blogspot.com
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Massive MIMO

Lund-NI massive MIMO prototype
128 elements, 30.72 Mbps in 20 MHz

Erik Luther, 5G Massive MIMO Testbed:

From Theory to Reality, ni.com

TANDON SCHOOL
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Massive number of antennas
o Typically > 100

ULarge number of spatial streams
o Tens of UEs simultaneously
o Spatial division multiple access

UTargeted for macro base station
o 1-2 meter panel

Emil Bjornson, Radio Resource
Management in Massive MIMO
Communication Systemes,
Linkoping Univ
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Capacity Gains via Massive MIMO

10 users per cell

2x4 MIMO, 20 MHz @ 2 GHz

— 2x4 MIMO, 80 MHz @ 4 GHz

0.7 -— 24x4 MIMO. 80 MHz @ 4 GHz

Significant capacity gain:

“

Average cell throughput =
808 Mbps in 80 MHz

CDF

@
(]

o

L
+

P L

e
=4 ¢

Significant gain in cell
edge user throughput

Massive MIMO trial system,

. . Woodstock, VA. PCS band
Qualcomm simulation, AR

BLUE DANUBE"
Macro site 1.7km ISD NN NUB

i 4x12x2 elements, 52 dBm TX
46 dBm transmit power

Image courtesy Blue Danube
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Millimeter Wave

3GHz 57 64 300 GHz
i S4GHz 98 GHz 90 GHz
ottt f
All cellu laf' m?hile Potential 252 GHz
suninnunmalunrs available bandwidth
60 GHz Oxvaen Water wapar (HaO)
absorption band absorption band

From Khan, Pi “Millimeter Wave Mobile Broadband:
Unleashing 3-300 GHz spectrum,” 2011

@ TANDON SCHOOL
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(J1-10 mm wavelength = 30 to 300 GHz
LUp to 100x bandwidth

Very high-dimensional antenna arrays

This talk:
o MmWave = above 10 GHz

o (10-30 GHz sometimes called cm-wave)

0.705 inch

Qualcomm® VIVE™ 802.11ad technology
with a 32-antenna array element

NYU
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Massive Bandwidth with MmWave

System Cell throughput Cell edge rate LSim assumptions:
antenna (Mbps/cell) (Mbps/user, 5%) o 10 UEs per cell
DL UL

DL uL > Hex cell layout, ISD=200m

mmW 1 GHz 28 4x4 UE 1514 1468 28.5 19.9 o LTE estimates for 36.814
TDD 8x8 eNB 0 _ _ _
73 8x8 UE 1435 1465 24.8 19.8 Further §ains with spgtlal
3x8 eNB mux, subband scheduling
and wider bandwidths
Current  20+20 2.5 (2x2 DL, 53.8 47.2 1.80 1.94
LTE MHz 2x4 UL)
FDD
Akdeniz, Mustafa Riza, et al. "Millimeter wave \ Y k Y }
channel modeling and cellular capacity _ _
evaluation." IEEE JSAC, 2014 ~25x gain ~ 10x gain
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NFV and SDN

T sty W Network function virtualization
M l SEdden™g DrchpliEH'mDr —
wrvol USoftware defined networking
! wVinim-am
| = ' -Ii VINF

Manager
N E RN Lo Hrewmmme | M | |oes LReconfigurable resources
: 1 : 1 VNF — VNF
| 1 | 1 I
Do L e ” LMove content closer to edge
| . ! R nfrastructure
: o i Hra e T > Reduce backhaul
I i I " {vim)

NP-MANO U Distributed mobility

U Multiplexing of resources
From 3GPP 32.842
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5G “New Radio”

[Single unified framework for diverse applications

LNot backward compatible with LTE

Diverse Diverse services

spectrum and devices
UPhase 1 (Rel 15, 2018) S ity '
o Non-standalone 5 S
> Focus below 40 GHz R

Phase 2 (Rel 16, 2019)
o Standalone

o |Include above 40 GHz Diverse
deployments

From wide area macro (o
indoor | autdoor holspols

Device-lo-device, mesh,
relay network topologies

From Qualcomm blog, Acceleration of the 5G NR global
standard gains industry momentum, Sept 2016
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Timelines

Vi ' hedul
3GPP Roadmap L Very aggressive schedule

Three key studies
o Requirements
o Architecture
o RAN

I
SA1 Rel16

(JSA1-RAN interaction

RAN

From Giovanni Romano, TIM, 3GPP progress on “5G”, 2016
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Selected Use Cases in 3GPP 38.913

Carrier (GHz) | Bandwidth (GHz)

<6 >6 <6 >6
Indoor hotspot 4 30,70 200M 1 ISD 20m, 20 UEs per TRP
Dense urban 4 30 200M 1 ISD 200m, micro+macro, 10-20 UEs per TRP
Rural 2,4 20,200M ISD 1732, 5000m, mobility
Urban macro 4 30 200M 1G ISD 500m, Focus on ubiquitous coverage
Extreme rural <3 40M 100km cell range, up to 160km/h
Massive connection <3 TBD 1732, 500m, Connection density TBD
Highway <6 TBD Inter-RSU 100m, macro 500m
Urban grid for <6 TBD RSU at each intersection, Macro 500m

connected car

TANDON SCHOOL NY
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Example: Urban Connected Car

Lane width: 3.5m §

Sidewalk width: 3m §___ [

Street width: 20m

Road grid

TANDON SCHOOL
OF ENGINEERING

Macro only or Macro + road-side unit (RSU)

U Currently focused below 6 GHz

Carrier Frequency
NOTE1

Aggregated system
bandwidth NOTE4

BS antenna elements

UE antenna elements

User distribution and
UE speed

Traffic model

Values or assumptions
Macro only: Below 6 GHz (around 6 GHz)
Macro + RSUs NOTE2:
1) For BS to RSU: Below 6 GHz (around 6 GHz) NOTE3
2) RSU to vehicles or among vehicles: below 6 GHz
[TBD] MHz (DL+UL)

Option 1: Macro only

Option 2: Macro + RSUs NOTE2

Macro cell: ISD = 500m

Inter-RSU distance = [100m] NOTE5

Tx: Up to [32 Tx]

Rx: Up to [32 Rx]

RSU Tx: Up to [32 Tx]

RSU Rx: Up to [32 Rx]

Vehicle Tx: Up to [8 Tx]

Vehicle Rx: Up to [8 Rx]

100% in vehicles

Average inter-vehicle distance (between two vehicles’ center) in the same lane is [1sec * average
vehicle speed] (average speed: [100-300km/h])

[50 messages] per 1 second with absolute average speed of [100-250 km/h] (relative speed: 200 —
500km/h)

NYU
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Initial NYU MmWave Measurements

Legend
£y Transmitter Site

G © o OMillimeter wave: It can work!

behind a buldng

o First measurements in urban canyon environment
o Distances up to 200m
o Propagation via reflections

QSufficient for cellular system at current density
o Measurements made urban macro-cell type deployment
o Rooftops 2-5 stories to street-level

00 "'"'/ £ __J/ Rappaport, Theodore S., et al. "Millimeter wave mobile communications for 5G
[ | cellular: It will work!." IEEE access 1 (2013): 335-349.

| @ sSignal Acquired
A Signal Detected
| 3 Mo Signal Detected

TANDON SCHOOL
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Key Challenges for mmWave

UDirectionality
o High isotropic path loss

http://www.miwaves.eu/

o Compensated by directional beams
o Impacts all aspects of cellular design

N - P
4G

i
Macro Geil Bachhaul Small Cell

UBlockage =
o MmWave signals blocked by many common materials \ ﬁ
o Brick >80 dB, human body > 25 dB

o Leads to highly intermittent channels

TANDON SCHOOL NY
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3GPP 38.900: Initial Channel Model Spec

Massive industry effort at wide range of bands, scenarios -:,-‘ \ & . |: : M
QFocus on four key scenarios: N e O *

> Urban macro M% @\ ‘*

> Urban micro .,

° Indoor Hotspot (open and mixed office) » f:

o Rural macro (up to 7 GHz supported) ' N !

. I\ wil f "?.-éff

dWide range of bands .__% o |

4

LSome use cases may need further study

o Vehicular (including below 6 GHz
( 8 ) https://www.siradel.com/portfolio-item/hetnet-

o Massive connection, ... deployment-strategy/

See discussion in Ericsson, Telstra, Vodafone, CMCC,
5G channel modeling way forward,RP161179, June 2016
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Path Loss and Fading

UMi SC NLOS ABG, . =35,p=244dB,y=1.9,0=8.0dB

Nokia/AAU 2 GHz
Qualcomm 2.9 GHz
Nokia/AAU 10 GHz
Nokia/AAU 18 GHz
NYU 28 GHz
Qualcorhm 29 GHz
J NYU 73.5 GHz

200+

-
w
o

Path Loss (dB)
=
o o
P .
N /NN

50+
10° : )
o » 10°
10 g - 10°
Frequency (GHz) 10° 10° Distance (m)

U Mi pathloss models
Sun et al, Propagation Path Loss Models for

5G Urban Microand Macro-Cellular
Scenarios, I[EEE VTC 2016

TANDON SCHOOL

OF ENGINEERING

Path loss, propagation, I-O penetration
LJAntenna models

L Extends 3GPP spatial cluster channel model
o Captures spatial characteristics of the channel

o Essential for high-dimensional arrays

From TR 25.996

NYU
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LOS and Outage

- pLDS
[::]pNLDS
- pnutage

---pLDS

(L 10 B + 1
pLDS pNLDS

p, (1.d)

0 100 200 300 400
Tx—Rx separation (d in m)

Akdeniz, Mustafa Riza, et al. "Millimeter wave channel modeling
and cellular capacity evaluation." IEEE journal on selected areas
in communications32.6 (2014): 1164-1179.

W TANDON SCHOOL
NYU OF ENGINEERING

U Three state link models:
o LOS, NLOS and outage

W Captures loss of signals from blockage

(J3GPP has detailed LOS models
o Various scenarios

° Includes spatial consistency

L Outstanding issues:
o Correlations in multiple cells
o Required for macro-diversity



Blockage and Channel Dynamics

—Tolfil Ru:;‘l;:;P::n;l;n—l-—DKEn Non-Cofumhlq:;;;; ::Ean.Bast.Cuchhnru.m ;;—;403!:5‘?5.“:::!CnuCohumm DMmWave Signals blocked by many materials
g, g, 2., > Body, hand, cars, ...
é_zu. é.zo 1 éen
el P Y — . (JKey cause of intermittency
Time (sec.) Time (sec.) Time (sec.)
Meas 44: 2.0 m Meas 45: 2.5 m Meas 46: 3.0 m . .
g ——V—— g e\ e g o dSeveral new studies to understand time scales
Ea Y E | i
T {3 | Uintegrated to 3GPP 38.900
Yoo ety e oo o Analytic models (e.g. knife edge diffraction)
g\ [y /M g‘z"\/k o Simplified models with mobility
E_ é.zo ng-ﬂl 1
&‘ 2.6 28 - 3 32£.3:25 28 3 3.2 éj: 27 28 29 3 31‘
I Tirlne {sec.) I I ;I'ime (sec.) I I 'i'ims I{sec.; I

5 @) @) @) G. R. MacCartney, Jr., S. Deng, S. Sun, and T. S. Rappaport, “73 GHz Millimeter-
? ? ﬁa) ? ? T ? ? T Wave Human Blockage and Dynamic Measurements,” IEEE 84t Vehicular

05 mf Om 1.5m 2.0m 25m 3.0m 3.5m 4.0m 4.5m RX Technology Conference Fall (VTC 2016-Fall), Sept. 2016.
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OFDM Waveform Options

Many flavors of OFDM considered:

A B C D E F
_— . o CP-OFDM
zeros at hea —>
L N > WOLA (windowed overlap and add)
do, dy, - dv-1-hn Zero- ] ? OFDM_ CP/Zero . . N . .
ki wiesa| |1 MDFT| ) |Symthess =y g [~ Windowl—> R > o UFMC (universal filter multi-carrier)
nzerwsattaiIJ—> " 03 o GFDM
(o)
Owerlap IFFT Cutput IFFT Cutput
extension (Syrrbol 1) (Syrrbal 2) .
Key issues

o CP overhead flexibility

(8sin previous 2ep)

N\

e i o QOut of band / adjacent carrier
> PAPR
[ e Y e o Multiplexing flexibility

(o)

Equalization complexity
Qualcomm, R1-162199, “Waveform candidates”, Apr 2016

TANDON SCHOOL
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DFT-Spread OFDM

-I-. e - A h
o N- i M- W . |
: - Subcarrier . . Add DAC/
o || e | || SRR P R N
-L.n. o N —p " L. o
Channel
N N ] j’
h N- Subcarrier M- o /l/
Detect [#={2 point Demapping/ point =} ‘_Reg}c):ve‘_ Egé
o IDFT ‘-L Equalization DFT %]
L J*L *
Ne SC-FOMA: ) +
* 8.30-P: Serlal-wo-Parallel
» Pi0-8; Paralel-i-Serlal oFomA: ()

Image from “Single-Carrier FDMA”,
https://en.wikipedia.org/wiki/Single-carrier FDMA

@ TANDON SCHOOL
NYU | oscioe:

LDFT followed by IDFT
L Effectively signals in time-domain

(JReduce PAPR
o For QPSK modulation

° Important in mmWave
Low PA efficiency

But, reduced multiplexing flexibility
Equalize in frequency-domain

LUsed in LTE uplink
o control and data channels

NYU
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Frame Structure

(JFlexible frame structure
o Scalable TTI

o Scalable subcarrier spacing
(15 kHz x 2”n)

o Common framework
WAN, D2D, Multicast, ...

o Puncturing for short control

#*—& fixed 50us sf DNYU StUdieS
yr—— '-“'—: f?xn: inﬂussf . . .
IR oy e doous o o Can achieve <1 ms airlink latency
: L/ B8 var 100us sf
oaf- 2 / o Significant benefit control signaling
% E 10° —
osf- I s S 1. Qualcomm, NYU Talk, Sept 2016
— S b—a——8— . . -
L i i s SRS P £ . . 2. Ford et al, Achieving Ultra-Low Latency in 5G Millimeter Wave
1] Cellular Networks, 2016
wm—— ) 3. Dutta et al, MAC layer frame design for millimeter wave cellular
(a) Num UL flows system, 2016

TANDON SCHOOL NY
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Directionality and MIMO Architectures

Directional transmissions essential for mmWave

Need high-dimensional arrays

UThree dominant architectures
o Analog BF: Low power, but “look” in one direction

o Digital BF: High power, but most flexible
o Hybrid: Combination of both

dSignificant impact in PHY and MAC
o Channel tracking,
o Cell search

o Control signals

Sun, Shu, et al. "MIMO for millimeter-wave wireless communications:
beamforming, spatial multiplexing, IEEE ComMag, 2014

TANDON SCHOOL NYU
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Directional Initial Access

Uinitial access:

UE .
o Establish connection from idle mode
BS cell 2]
- = UChallenges for mmWave:
Sync signal _ [Jj Detects BS > Must find directions of communications
Learns .
Random directi ° More widely-used
rection dio link failure, handover, idle mode t
Detects UEe_2ccess Radio link failure, handover, idle mode to save power
Learns . . .
rect U Also central problem in massive connection / loT
irection UL grant |
Scheduled Latency Airlink RTT Current | Target for 5G
. transmission measurement LTE
Data plane UE in connected mode 22 ms 1to4 ms
Control UE begins in idle mode 80 ms 10 ms

TANDON SCHOOL NYU
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Fast Search with Fully Digital

Sync Delay ) o
ULow resolution fully digital
o i > One ADC per element
o | ;. 000 and CODG High SNR ﬁ-m.:
10E A By Lo COGOG 1% ENR (T, = 50u5) H
e s L L LAY > Compensate power via low
5 1"--“ et aans, resolution (2-3 bits)
[ bl TS
2 | "'u....“".. .
serteens L Dramatically better performance
I T . = o o Cell search
Bt m— o Control signal multiplexing
E T Owhmey o Channel tracking
m Sync delay RA delay Infinite
A .
Analog BF only 32 ms 128 ms SNR w/ resolution

o quantization
Low power digital 4 ms

2 ms

/F;
C. N. Barati et al., "Initial Access in Millimeter Wave Cellular Systems," IEEE Transactions on

resolution
Wireless Communications, Dec. 2016.

» SNR

@ TANDON SCHOOL
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5G Network Architecture

Harmonization across multiple RANs

r}"‘;‘ﬁp‘e?itar_f: \f i Operators share virtualized I Y Rei 3 )
| e Operator 2 i mmWave Base Stationsto | l=fe) e Bk ° 4G SG “ee
! e Operator 3! | ovide dense coverage r ~ lagaolfp i} Coveroge where ! !
| Dy —o it e I Lo s e e Eitn:l fiber backhaul not e —-

! Operator or 3rd-party | Virtual core network and routing available o WI FI

| _data center in MEC I infrastructure shared by operators N

e and dynamically provisioned for load
’ N
s N

Gatowayme A~ Transports, gl Ry, Mobile Heterogeneous services
| connections in case of I SN
| o Cellular, loT, ...

{__sudden link failure J'
. Sudcen nk fesure
-~

(JFlexible architecture

L
GW and Mobility
Management Entity closer

Content

oo SN . . .
1o adge for Gt Gar-to-ar and D20 | o Network virtualization
\ Servers mobility anchoring N N minimizes latency I
BILES N SO\ L_overthear | o> Flexible depl f .
i it peelnng fpccmenty f Caching at or near ] Radio frame numerology and control eXI e e p Oy m e nt O s e rV I Ces
i between third-party content !
I

| BaseStation |
{__ BaseStation |

[
|
providers and network operators_| CDN Server 1* Sﬂ?&‘.’él??ﬁ"ﬁiﬁfﬁ:ﬁi’?&& o Cachine. edee services
\_ Public DataNetwork ) Core Network A Radio Access Network / INg, g Vi

Ford et al, Achieving Ultra-Low Latency in 5G Millimeter Wave Cellular
Networks, 2016
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P i‘ayer/EPC Iiia yer
l I l a Ve n S O u e 1 MmWaveEnbNetDevice T MmWaveUeNetDevice
| LteEnbRrc__| | LteUeRrc |
i
. I LteP;jcp I I LteFl‘dcp l =
UFirst, open-source mmWave module (Do) TR
MacSchedule
D End'tO'end | MmWaveEnbMac | | MmWaveUeMac |
o Detailed channel models (statistical, ray tracing, ...) JMmWaIveEanhyI I_l_leWav?UePhy
o Customizable MAC including adaptive HARQ, ... NmWavnzSpectrumthi Mm
. MultiModelS Channel
> RLC, PDCP, realistic RRC e
. . MmWaveBeamforming]|
o Configurable core networking
o Handover (inter-5G and 4G/5G) E/ﬂv;

Qhttps://github.com/mmezzavilla/ns3-mmwave

Control | User
Plane |, Plane

1
MME : S-GW

NAS ,
"""""""" === 4l
Mezzavilla, Marco, et al. "5G mmwave module for the ns-3 network e RRC LTE
PDCP
simulator." Proceedings of the 18th ACM International Conference on Modeling, é/é\ é RiC
MAC 5G
Analysis and Simulation of Wireless and Mobile Systems. ACM, 2015. L i A\ Py mmW

NYU

W TANDON SCHOOL
NYU | oscioe: ML




Insights from Simulations

Wissues for 5G
o Can TCP adapt in mmWave?

o Architectures
o Traffic patterns in new applications

Statistical Models  Ray Tracing models
Courtesy Andy Nix, U Bristol

.LIQOO
T M
£ o | r USimulations reveal several issues
= ol & "l | | o Buffer bloat
£,1500¢ =08 I 1000° 20 40 60 80
Ewon ! = =000 ' [ o TCP start Iag
2T B R e e T R 1
‘-g': 500 | §r L: ,‘: | “:“E %:.5 l; :E:I,’;:l_:.:-_:':‘:', 1::; | : mrm E sz 405 rrrmmnT l.;;I ...H.‘_ r} ° ContrOI / ACK Overhead
_E ) E”:?;_-f";i 5 U "ﬂ'l:?‘l i:#_?"'no -':‘f | 100} i r:"—q:] = of - '. - s = - o CN delay
0 5 10 15 20 25 * Time (s
& 15l T ' ' | ' ' (a) SINR (b) TCP performance (3 m/s)
300} o el L
5.200_‘°5MM$ e L { [Come Network|
(T R |
Ri0or Hlomal fiF1 P M. Zhang et al., "Transport layer performance in 5G mmWave
% - < T cellular," INFOCOM WKSHPS, April 2016

15
Time (s)

NYU
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Summary

L5G will enable large numbers of use cases:
> Massive mobile broadband, vehicular, AR/VR

o But, we still don’t know what will be the killer app

LBuilds on the massive success of earlier systems

Many new technologies
o Millimeter wave, Massive MIMO, core network evolution, densification

QSignificant research but no forseeable show stoppers
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