

NYU WIRELESS PULSE

In this issue

NYU WIRELESS Poised for Growth
Page 3

**Keysight Donates Largest In-Kind
Gift to NYU WIRELESS**
Page 5

**New Dean at NYU Tandon School
of Engineering**
Page 6

**NSF Award Recipients to Study
360° Degree Video**
Page 8

**Brooklyn 5G Summit 2019:
Beyond 5G**
Page 10 - 11

Cover Photo: NYU Tandon Dean Jelena Kovačević applauds new students at orientation (Sept. 2018)

The world's first academic research center combining Wireless, Computing, and Medical Applications.
www.nyuwireless.com

About NYU WIRELESS

NYU WIRELESS is a vibrant academic research center that is pushing the boundaries of wireless communications, sensing, networking, and devices.

Centered at NYU's Tandon School of Engineering and involving leaders from industry, faculty and students throughout the entire NYU community, NYU WIRELESS offers its industrial affiliate sponsors, students, and faculty members a world-class research environment that is creating fundamental knowledge, theories, and techniques for future mass-deployable wireless devices across a wide range of applications and markets.

CONTENTS

Page 3	Welcome from the Director
	NYU WIRELESS Rotates Directorship: Poised for New Growth
Page 4	Fourth Annual RCN mmWAVE Conference Held at NYU WIRELESS
Page 5	Keysight Donates Largest In-Kind Gift to NYU WIRELESS and NYU Tandon Engineering School
Page 6	Jelena Kovačević Named Dean of Tandon School of Engineering
Page 7	Students Win Best Student Paper Award at IEEE VTC
	Wireless Updates for Industrial Affiliate Members
Page 8	Manufacturing Randomness
	NSF Award Recipients to Study 360° Degree Video
Page 9	Streaming Live this Fall: “Circuits: Terahertz and Beyond” — The Next Frontier for Communications and Electronics
Page 10	NYU WIRELESS Spotlights Student Research on Recruitment Day
Page 10 - 11	Brooklyn 5G Summit 2019 (B5GS)
Page 12 - 13	NYU WIRELESS Faculty
Page 14	NYU WIRELESS Welcomes Back Students with a Visit from the Dean
	Faculty News
Page 15	The mmWave Coalition - A New U.S.-Centered Group
	Ted Rappaport Meets with FCC Chairman Ajit Pai
Page 16	NYU WIRELESS Participates in the NGMN Alliance
	NYU WIRELESS Hosts First ITU Meeting to Envision Path to Year 2030
Page 17 - 22	NYU WIRELESS Publications (2017 - 2018)
Page 23	About NYU WIRELESS

WELCOME FROM THE DIRECTOR

In August 2012, when a handful of faculty founded NYU WIRELESS, my students and I had in our possession the world's first massive collection of 28 GHz propagation data from the streets of New York City. We knew that millimeter wave wireless communications would work better in mobile environments than anyone would believe, and we were convinced that millimeter wave spectrum was the only way the wireless world could keep up with consumer demand. A handful of companies believed in our vision, and our first generation of NYU WIRELESS students pioneered the theory, simulations, and measurements that proved to the world that, indeed, 5G would be the millimeter wave era. Those students are now working at many of our Industrial Affiliate companies, leading the way to 5G commercialization.

I had the honor and privilege of serving as the founding director of NYU WIRELESS from 2012 through 2015, and watched our center rapidly grow during those years, from a relatively unknown research group at Brooklyn Polytechnic to a globally renowned wireless research center. By 2015, when I stepped down as director, we had about 10 major companies on our In-

dustrial Affiliates board, and the merger between NYU and Brooklyn Polytechnic was nearly complete. Professor Sundeep Rangan took the helm and masterfully continued to grow the center, with the addition of terrific new faculty, major U.S. government awards, and new affiliate sponsors and research thrusts. Over the past few years, NYU's graduate ranking in engineering has ramped rapidly, from 68 to 42, with NYU WIRELESS helping to attract top students and faculty to our campus. Now, six years after launching our center, I believe the best is yet to come.

As I return to the directorship of NYU WIRELESS, I am amazed at how the collective efforts of our faculty, students, and staff have aided our Industrial Affiliate sponsors to create a completely new wireless standard, 5G New Radio, which is delivering multi-gigabit-per-second data to customers. I marvel at the contributions of knowledge that our students and faculty are producing for our sponsors and the research community at large (see the pages 17 - 22 of this newsletter for recent publications). A visioning exercise with our faculty and Industrial Affiliates helped us identify the major challenges for the next decade of wireless, and we have identified six major

Prof. Ted Rappaport, Director of NYU WIRELESS
core thrusts for NYU WIRELESS faculty and students in the coming years (see "NYU WIRELESS Welcomes Back Students with a Visit from the Dean" on page 14). Already, we have secured major funding from federal agencies and our Industrial Affiliates in all of these six thrust areas. As we look to the future of wireless, I invite you and your organization to become part of the excitement at NYU WIRELESS.

*Prof. Ted Rappaport
Director of NYU WIRELESS*

NYU WIRELESS ROTATES DIRECTORSHIP: POISED FOR NEW GROWTH

Professor Theodore (Ted) Rappaport, founding director of NYU WIRELESS, has stepped back into the director role of the research center. Assisting Professor Rappaport will be Associate Directors Professor Sundeep Rangan, and Professor Thomas Marzetta of the ECE department, Professor Dennis Shasha from NYU's Courant Institute for Mathematical Sciences, and Assistant Professor J.R. Rizzo from NYU Langone Health.

Professor Rangan admirably served as director for the past three years of successful operations of NYU WIRE-

LESS, spearheading the center through a very busy time. He worked with all the center's Industrial Affiliate partners, which have taken the mmWave propagation, theoretical analysis, and system design research conducted at NYU to create the 5G technologies that are now set to revolutionize wireless communications, as well as other industries and products that benefit from mobile connectivity.

Amplifying the support from our Industrial Affiliates, several NYU WIRELESS investigators recently received research awards of note. These include

the COSMOS platform, which is part of the PAWR initiative (Platforms for Advanced Wireless Research) funded by the National Science Foundation. COSMOS is a testbed for a new generation of wireless technologies and applications. NYU WIRELESS Associate Director Professor Rangan is leading the project at NYU Tandon School of Engineering, together with colleagues Professor Shivendra Panwar and Research Assistant Professor Thanasis Korakis, as well as with researchers at Rutgers and Columbia in partnership (continued on page 13)

Fourth Annual RCN mmWAVE Conference Held at NYU WIRELESS

*NSF-Sponsored Event Aimed to Spur R&D of mmWave Wireless in Three Areas:
Communication and Signal Processing Techniques,
mmWave Hardware, and Wireless Networking*

NYU WIRELESS was pleased to host RCN's semiannual workshops, on July 12-13, 2018. The NSF-funded Millimeter-Wave Research Coordination Network (RCN) focuses on mmWave wireless networks, and how to best ensure that all aspects of this technology benefit from a coordinated approach to ongoing research. This includes input from indus-

try and academia in the areas of communication and signal processing techniques; mmWave hardware, circuits, antennas, and digital hardware; and wireless networking protocols. With the goal of guiding and accelerating mmWave wireless technology and standards, the group met for two days of talks and break-out sessions on the NYU Tandon School of Engineering campus.

NYU WIRELESS' Associate Director Sundeep Rangan, one the members of the RCN steering committee, was the local host for the meeting, which is chaired by Akbar Sayeed from the University of Wisconsin-Madison.

The steering committee is comprised of 16 leading mmWave researchers from industry and academia, and includes participants from the European mm-MAGIC Project and the NIST 5G Channel Modeling Alliance. The group encourages participation in the workshops so that the state-of-the-art in mmWave R&D technology can advance, with many different perspectives represented.

Workshops are held twice a year, with the next one scheduled for January 28-29, 2019 in Raleigh, NC. Past workshop lectures are available on the group's YouTube channel, *Millimeter-Wave RCN*. The group's web site is mmwrcn.ece.wisc.edu.

Dr. Peter Moosbrugger (Ball Aerospace) presented the HW-CSP Interface: Hardware, Circuits, Antennas, Communication/Signal Processing, & Prototypes/Testbeds

KEYSIGHT DONATES LARGEST IN-KIND GIFT TO NYU WIRELESS AND NYU TANDON ENGINEERING SCHOOL

Cutting-edge Donation Futhers NYU WIRELESS' Path to Leadership in Terahertz Spectrum

Graduate students Ojas Kanhere (left) and Yunchou Xing use the newly donated Keysight equipment

As the industry begins to look beyond 5G, Keysight Technologies, Inc., has made a timely donation that will further NYU WIRELESS' exploration of mmWave and Terahertz (THz) electromagnetic spectra for ultra-fast and high-capacity data transmission.

The gift, made through the **Keysight University Relations** program, is the largest ever for NYU WIRELESS and the largest in-kind donation in the history of the NYU Tandon School of Engineering.

The donation brings together two powerhouses in the race to create new technologies, not only for communications, but for medical imaging, pharmaceutical monitoring, semiconductor testing, new kinds of spectroscopy, and for applications such as synchronized clouds of "smart dust" detectors.

Included in the gift is an array of cutting-edge equipment — including measurement capability up to 110 Gigahertz (GHz) — that promises to accelerate one of the six major thrust areas of NYU WIRELESS: THz communica-

tions and sensing beyond 5G wireless systems.

Keysight, a participant in the creation of the 5G wireless ecosystem worldwide, has been a member of the NYU WIRELESS Industrial Affiliates program since late 2014. Keysight's customers span the worldwide communications ecosystem, aerospace and defense, automotive, energy, and semiconductor and general electronics end markets to help enterprises, service providers, and governments accelerate innovation to connect and secure the world.

"Within six short years, NYU WIRELESS created an internationally recognized hub in Brooklyn that propelled the adoption of technologies that will touch nearly every aspect of our digital lives," said NYU Tandon Dean Jelena Kovačević. "It is exciting to watch as NYU Tandon faculty and students from across the University help drive the next great challenges facing wireless communications."

"The generosity of Keysight, a long-standing industrial affiliate partner of NYU

WIRELESS, will bring cutting-edge equipment to students and faculty, helping us write our most exciting chapter yet: advanced research into the rarefied areas of the electromagnetic spectrum above 100 GHz," NYU WIRELESS Director Ted Rappaport said. "Our student and faculty researchers, as well as our Industrial Affiliate sponsors and the research community at large, will all benefit from this gift."

Roger Nichols, 5G program manager at Keysight Technologies, as well as a member of NYU WIRELESS' advisory board, explained that the gift aims to identify and encourage collaborative research in the most promising technologies. In addition to the gift, he and his extended team will serve as mentors to NYU WIRELESS students.

"We are excited to be part of what the team at NYU is doing," Nichols said. "Our work in 5G with market and technology leaders such as Dr. Rappaport has been instrumental in enabling an entire ecosystem to make 5G a reality. As part of the advisory board, I have been inspired watching Ted, his team, and his associates enlighten and enliven the dialogue to make mmWave ready for mainstream communications. Keysight is committed to the future of 5G, as well as enabling broader adoption of mmWave technologies."

The gift includes:

- **mmWave and broadband Signal analysis and generation capabilities**
- **Advanced Time-domain analysis**
- **RF/mmWave Power measurement**

JELENA KOVACHEVIĆ NAMED DEAN OF TANDON SCHOOL OF ENGINEERING

First Woman Dean in 164-Year History of Brooklyn-based Engineering School

Is that Dean Kovačević zipping by on an electric bicycle? It wouldn't surprise anyone if it were. Since taking charge of Tandon School of Engineering as Dean in August, she has been appearing at multiple events all around campus and meeting scores of researchers, students, and staff. As the first woman dean in the school's history, she is well positioned to take NYU's Tandon School of Engineering to the next level, and to encourage female students to enroll in Tandon and to enter STEM fields after graduation.

Dean Kovačević came to Tandon from Carnegie Mellon University, where she was the Hamerschlag University Professor, the head of the Department of Electrical and Computer Engineering, and a professor of biomedical engineering. As NYU's President Andrew Hamilton said, "One of NYU's historic strengths is setting high ambitions for itself, and finding the right leaders to achieve them. In Jelena Kovačević, we have found just such a person.

"She impressed us not just with her scholarship, but also with her thoughtful approach to strategy, leadership, and execution; the future of the engineering profession and education; and the promise of Tandon's Brooklyn location and NYU's global outlook. We were also struck by her down-to-earth manner, her resolve, and - a crucial requirement for life in New York - her warm sense of humor.

Professor Kurt Becker, the Chair of the Search Committee, said, "Professor Jelena Kovačević stood out among the large number of candidates as the best one to leverage the significant progress that Tandon has made in the last few

Prof. Jelena Kovačević, Dean of NYU Tandon School of Engineering

years and take the school to an even higher level. The committee felt that her achievements as head of a top-ten department in a top-ten engineering school made her uniquely qualified to be the next leader of our school, and a great asset to the university and the borough of Brooklyn."

Chandrika Tandon, chair of the Tandon Board of Overseers and vice chair of the NYU Board of Trustees, commented that, "The investment in engineering and applied sciences is a flagship initiative for NYU. The School of Engineering has been on a rapid trajectory of transformation. Accelerating that momentum is vital to the future of the school. We are all truly excited that Jelena will bring her extraordinary leadership, vision, energy, and execution abilities and vault us forward."

According to Dean Kovačević, "It is an honor to serve as dean of the Tandon School of Engineering. I am thrilled to join a community widely known for its venerable history in the field of engineering, its deep connection to Brooklyn, its vibrancy and diversity, and its upward trajectory. I look forward to working together with everyone at Tandon to achieve everything we dream of for the school."

Prior to her positions at Carnegie Mellon, Dean Kovačević worked at Bell Laboratories as a member of the technical staff in the signal processing research department, and later as a member of the mathematics of communications research department.

The Dean's research interests include applying data science to a number of domains, such as biology, medicine, and smart infrastructure, and she is an authority on multi-resolution techniques, such as wavelets and frames. She is the author or co-author of several books and many scholarly articles in reviewed engineering journals. She also has 21 patents to her name and has received many honors and awards. She received her undergraduate degree in electrical engineering from the University of Belgrade, and her MS and Ph.D., also in electrical engineering, from Columbia University.

Dean Kovačević has said that Tandon "...has this incredible opportunity to make an impact, and already is — which is what impressed me so much — on Brooklyn, on entrepreneurship, on innovation." And she is just beginning to play a large part in making that impact, as well.

STUDENTS WIN BEST STUDENT PAPER AWARD AT IEEE VTC

From left to right, Shihao Ju, Ted Rappaport, Yunchou Xing, and Ojas Kanhere at the Fall 2018 IEEE Vehicular Technology Conference in Chicago

Professor Rappaport's students won the best student paper award at the 2018 IEEE Vehicular Technology Conference, held in Chicago in August 2018. Winning the award were Yunchou Xing, Ojas Kanhere, Shihao Ju, and George MacCartney, Jr. The paper, "Verification and Calibration of Antenna Cross-Polarization

Discrimination and Penetration Loss for Millimeter Wave Communications," examined standardized measurement guidelines and verification procedures for antenna cross-polarization discrimination (XPD) and penetration loss measurements.

The proposed methods would ensure that accurate XPD and

penetration loss measurements can be replicated by anyone at any frequency or bandwidth. Measurements at 73 GHz were used to demonstrate and verify the proposed guidelines, providing a systematic method that can be used at any frequency for reliable field measurements.

WIRELESS UPDATES FOR INDUSTRIAL AFFILIATE MEMBERS

NYU WIRELESS is excited to launch a new set of mini-lectures as part of our Industrial Affiliates Program. These lectures present cutting-edge topics in easily watchable formats, which are archived for later viewing by all employees of every Industrial Affiliate sponsor of NYU WIRELESS.

Please visit nyuwireless.com/faculty-seminar-series or contact info@nyuwireless.com for more information.

If your company would like to join NYU WIRELESS, please visit nyuwireless.com/industrial-affiliates to learn more about our Industrial Affiliate program.

We welcome feedback on the sessions. Please let us know if there are additional topics you would like to see covered.

DATE	SPEAKER	TOPIC
Sept 12, 2018	Ted Rappaport	Spatial Consistency, Position Location and Channel Sounding above 100 GHz
Sept 26, 2018	Sundeep Rangan	Network and System Challenges for mmWave and THz Networks
Oct 10, 2018	Yao Wang	Machine Learning for Image Compression and Visual Analytics
Oct 17, 2018	Lakshmi Subramanian	Recent Projects in Urban Data Science: A Quick Summary
Oct 31, 2018	Elza Erkip	Information Theoretic Perspective on Network Privacy
Nov 14, 2018	Shivendra Panwar	Millimeter Wave Millisecond Delay Networks
Nov 28, 2018	Davood Shahrjerdi	Security Engineering Based on Atomically Thin Layered Transition Metal Dichalcogenides
Dec 5, 2018	J.R. Rizzo	Intelligent Cognitive Assistants that Can "See"

MANUFACTURING RANDOMNESS

NYU WIRELESS Paper Highlighted by *Nature Nanotechnology*

The globalization of supply chains has undermined trust in electronic products, which were once manufactured by a few trusted factories. The use of embedded security tags, called *taggants*, is expected to restore trust and protect products from counterfeiting. A recent study by NYU WIRELESS PhD student Abdullah Alharbi and team, working under Professor Davood Shahrjerdi, introduces an innovative security engineering approach based on a new class of two-dimensional nanomaterials, called *transition metal dichalcogenides* (TMDs).

This security taggant technology takes advantage of two unique properties of synthetic TMDs to construct physically unclonable security taggants.

The first property is the complete spatial randomness of the TMD is-

Industrial Affiliate sponsors are able to read this and every one of our publications by visiting the Industrial Affiliate Publication Database: nyuwireless.com/publications

land growth, which is fundamental to the material growth using chemical vapor deposition. The second property is the strong dependence of the photo-emission on the number of TMD layers. This property is unique to this class of nanomaterials, where depending on the number of layers, the TMD film acts as either an emitting or a non-emitting semiconductor.

These nano-taggants have an atomic thickness, which makes them substrate agnostic, and are easy to verify. These features make the TMD-based nano-taggants promising for unique identification of a wide range of valuable goods from pharmaceutical products to electronic devices.

NSF AWARD RECIPIENTS TO STUDY 360° VIDEO

NYU WIRELESS professors Yong Liu and Yao Wang received a three-year grant worth \$0.5 million from the National Science Foundation to study 360° video, which is often used in virtual reality and augmented reality applications. 360° video streaming requires

much higher network bandwidth and much lower packet delivery latency when compared with traditional video streaming. This project will address such challenges, developing novel 360° video coding and delivery solutions to enable high quality interactive, on-demand, and live video streaming.

The project includes several research focus areas:

Interactive streaming - Novel Field-of-View (FoV) adaptive coding structure will be designed to achieve low encoding and decoding latency.

Personalized FoV prediction based on other users' view trajectories will also be explored under the framework of recommender systems.

Fully-functional 360° video streaming prototypes will be developed and tested in controlled and real network environments to validate and improve the new designs.

STREAMING LIVE THIS FALL: “CIRCUITS: TERAHERTZ AND BEYOND” — THE NEXT FRONTIER FOR COMMUNICATIONS AND ELECTRONICS

The next frontier for ultra-fast computing and wireless communications — the Terahertz electromagnetic spectrum — is being examined in a series of seminars by the foremost scientists and engineers in the field. Organized by NYU WIRELESS and NYU Tandon School of Engineering’s Electrical and Computer Engineering Department, the series at the school’s Brooklyn, New York, campus is streamed live for **NYU WIRELESS Industrial Affiliate sponsors** and the public, and is archived for public viewing.

“Circuits: Terahertz (THz) and Beyond” explores the vast unknown that lies between the optical spectrum and the millimeter wave (mmWave) frequencies that will soon carry massive amounts of data in 5G. Researchers have been working for decades, trying to solve fundamental challenges of the THz spectrum and pushing the boundaries of quantum nanoelectronics in the hope of unlocking even more gains for communications, computing, sensing, and materials.

“Recent breakthroughs in THz research, quantum computing, and nanotechnology have opened exciting new vistas for the future of electrical and computer engineering, and NYU has made major investments in these promising areas already,” said Professor Theodore (Ted) S. Rappaport, director and founder of NYU WIRELESS. “While we have pioneered the use and understanding of mmWave frequencies for 5G, it is clear that new knowledge will be needed

Dr. Aydin Babakhani presenting, “Silicon-based Integrated Sensors with On-chip Antennas” on 9/5/18

to bridge the gap between the fundamentals of these new areas with the design and fabrication of devices. In keeping with the NYU WIRELESS tradition, we also seek to amplify the global conversation in these exciting areas by organizing this series and making it free and open to all.”

“The spectrum also holds great promise for communications and networks—both strongholds of NYU Tandon research—as well as sensing and optics,” said Professor Ivan Selesnick, chair of the ECE department. “The THz seminar series reflects our commitment to both educate students and foster the pursuit of new, important research areas in electronics and wireless communication.”

“This new series will bring leaders in this emerging field of study to Brooklyn, to the benefit of our students, faculty, and all of New York, as well as scholars worldwide,” said NYU Tandon Dean Jelena Kovačević, whose academic background is in electrical and biomedical engineering. “Our faculty and NYU WIRELESS established Brooklyn as a world-renowned center for

mmWave technology, and the excitement is palpable here as they explore technologies that will drive communication and computing decades hence.”

The inaugural seminar, held on Wednesday, September 5, 2018, featured Aydin Babakhani speaking on “Silicon-based Integrated Sensors with On-chip Antennas: From THz Pulse Sources to Miniaturized Spectrometers.” An associate professor of electrical and computer engineering at the UCLA Henry Samueli School of Engineering and Applied Science and director of the Integrated Sensors Laboratory at UCLA, Babakhani’s research could have major implications for biomedical devices. For example, Babakhani designed a wireless, battery-free pacemaker that receives energy through radio frequency radiation and eliminates the need for risky surgeries to replace batteries.

All seminars begin at 11 a.m. eastern and can be watched at engineering.nyu.edu/live. For more information, visit the Electrical and Computer Engineering department at nyuwireless.com/circuits-terahertz-and-beyond.

Brooklyn 5G Summit 2019 (B5GS)

6th Annual Summit will Feature Latest Advances in 5G and Beyond

Each year the Brooklyn 5G Summit brings together thought leaders from academia, industry, and regulatory groups to discuss new directions and advances in wireless communications. The 2019 Summit will be especially exciting, as the rollout of 5G technology will have started in earnest. **The B5GS will take place from April 23 to 25, 2019 on the NYU Tandon School of Engineering campus in Brooklyn**, and is sponsored by NYU WIRELESS and **Nokia**, with livestreaming provided by IEEE ComSoc. On April 26, 2019, an optional visit is scheduled to **Bell Labs** in New Jersey.

Welcoming the attendees to the sixth year of B5GS will be

*View past years' conferences:
nyuwireless.com/b5gs*

Professor Ted Rappaport from NYU WIRELESS and Dr. Marcus Weldon, President of **Nokia Bell Labs** and Corporate Chief Technology Officer. Panel topics will include Terahertz communications, machine learning, non-terrestrial networks, discussions of 5G network deployment, and IoT technologies. Use cases in industrial automation and transportation will also be featured. Several leading CTO's, company presidents, and leading academics have already confirmed their participation.

In addition to the technical sessions, demos are always a compelling aspect of B5GS. The 2019 Brooklyn 5G Summit will include more time for attendees to visit the demos and posters. Start-up companies will again be featured in the demo hall.

Major themes at the 2018 Summit included the (a) speed at which new services and technologies will be rolled out; (b) the "edge cloud," which will become a major part of enabling 5G, since it can provide ultra-fast cloud services for computing and storage right next to mobile users, enabling new applications, especially in AI; and (c) the speed of the antenna technology evolution, with Massive MIMO and beam-forming combining with new chipset technologies to enable extreme speeds for both fixed and mobile access while reducing cost.

The 2019 B5GS promises to have cutting edge insights into the early 5G rollouts throughout the world, and new results and spectrum policy in Terahertz frequencies.

Kazuyuki Sakoda, an NYU WIRELESS Industrial Affiliate member from Sony, reviews results with PhD student Chris Slezak during 2018's Recruitment Day

NYU WIRELESS Spotlights Student Research on Recruitment Day

NYU WIRELESS Industrial Affiliate partners are invited on January 25, 2019 to meet with students to discuss their research projects and to see if there might be a fit for internships or positions. Our annual Recruitment Day is held each year in January and is a fast-paced dive into research currently underway at the center.

Posters and interactive demonstrations on topics such as mmWaves, channel modeling, Terahertz communications, and more are featured, as well as updates from faculty members. It's a great way for our Industrial Affiliates to get to know NYU WIRELESS faculty and students better, and to share information.

PHOTOS FROM B5GS 2018

Aditya Dhananjay, NYU WIRELESS Postdoctoral Associate, discussing his research with a B5GS attendee

Melissa Arnoldi, President, Technology and Operations, AT&T Communications

Marcus Weldon, President, Nokia Bell Labs and Corporate Chief Technology Officer

Amitava Ghosh, Head, Radio Interface Group, Standardization Research, Nokia Bell Labs and Ted Rappaport, Director, NYU WIRELESS

B5GS panelists discussing Future Transport: Integrated Access and Backhaul

A National Instruments channel sounder

Seizo Onoe, Chief Technology Architect at NTT DOCOMO, Inc. discusses the 5G bandwagon

NYU WIRELESS Faculty

Theodore Rappaport
Founding Director, ECE

Thomas L Marzetta
Associate Director, ECE

Sundeep Rangan
Associate Director, ECE

John-Ross Rizzo
Associate Director, NYU Langone Health

Dennis Shasha
Associate Director, CS

Henry Bertoni
Professor Emeritus, ECE

Aditya Dhananjay
Postdoctoral Associate, ECE

Elza Erkip
Institute Professor, ECE

Fraida Fund
Assistant Professor, ECE

Siddharth Garg
Assistant Professor, ECE

David Goodman
Professor Emeritus, ECE

Michael Knox
Industry Professor, ECE

Pei Liu
Research Scientist, ECE

Yong Liu
Associate Professor, ECE

Marco Mezzavilla
Research Scientist, ECE

Shivendra Panwar
Professor, ECE

NYU WIRELESS Faculty

Shaloo Rakheja
Assistant Professor, ECE

Ludovic Righetti
Associate Professor, ECE & MAE

Davood Shahrjerdi
Assistant Professor, ECE

Farhad Shirani
Research Assistant Professor, ECE

Anirudh Sivaraman
Assistant Professor, CS

Lakshminarayan Subramanian
Associate Professor, CS

Yao Wang
Professor, ECE & BioMed

NYU WIRELESS ROTATES DIRECTORSHIP: POISED FOR NEW GROWTH

(from page 3)

with New York City, Silicon Harlem, City College of New York and the University of Arizona.

Another exciting award was received by NYU WIRELESS recently from NIST (the U.S. Commerce Department's National Institute of Standards and Technology). Effort on this grant is focusing on reducing the time to bringing mmWave technology to public safety communications and is using drones as part of the project, providing an end-to-end system simulation of a complex public safety scenario. Working with the Austin Fire Department, in conjunction with the University of Padova, the investigators are using equipment

and software provided by NYU WIRELESS Industrial Affiliate sponsor **National Instruments**. Research on the three-year grant is being conducted by principal investigators Professors Sundeep Rangan and Ted Rappaport, together with Research Scientist Marco Mezzavilla and Post-Doctoral Associate Aditya Dhananjay.

With 5G becoming a commercial reality, NYU WIRELESS continues to create the state-of-the-art in wireless communications at Terahertz frequencies, along with revolutionary networks, circuits and applications — Prof. Tom Marzetta, inventor of Massive MIMO and one of the newest faculty mem-

bers at NYU WIRELESS, has been touring the world, visiting Industrial Affiliates and discussing what comes after Massive MIMO. Prof. Panwar has been investigating new networking strategies for the zero-latency era, and Prof. Rappaport recently discussed these developments with FCC Chair Ajit Pai (see page 15). NYU WIRELESS has an incredible set of talents, and an amazing board of Industrial Affiliates who provide substantial strategic and financial support.

Please join us in giving Ted our strongest support as we move toward an exciting future in wireless communications at NYU.

NYU WIRELESS WELCOMES BACK STUDENTS WITH A VISIT FROM THE DEAN

On September 5, 2018, NYU WIRELESS held a welcome back party for students and faculty for the new school year featuring presentations from NYU WIRELESS Director Ted Rappaport and the Dean of NYU Tandon, Jelena Kovačević.

Professor Rappaport's presentation focused on engaging NYU WIRELESS students, faculty, and staff members to create a "culture of collegiality, excellence, and fun."

He also outlined six exciting research thrust areas (detailed at right) that NYU WIRELESS faculty and Industrial Affiliates have identified as key research areas for the next decade. The Center is investing in these areas with research and faculty hires.

Channel Modeling	Mobile Edge Computing	Nano Circuits
Measurement	Caching	THz Circuits
System Design	Congestion Control	Low Power Circuits
Devices & Networks	SDN	
6G & Beyond	Fast Handover	
	Spectrum Sharing	
	Full Duplex Networking	
Position Location	Communication Theory	ns3
Imaging	Machine Learning	NYUSIM
E-Health	Beyond Massive MIMO	SDR
VR & AR		PAWR
Edge Computing		
Aerial Communications		
Public Safety		
Robotics/Automation		

The six research thrusts for NYU WIRELESS - all students in the center are working in these areas

FACULTY NEWS

Prof. Elza Erkip has been selected to receive the prestigious IEEE Communications Society

Communication Theory Technical Award in May 2019, "for contributions to the theory and practical design of cooperative and MIMO communications." The award is given to members of the Communication Theory Technical Committee (CTTC) of the IEEE Communications Society who have been active in the committee and have performed outstanding work.

Among the previous honors Elza has received are the NSF CAREER award and the IEEE Com-

munications Society WIE Outstanding Achievement Award. She has also been recognized for numerous highly regarded publications. Elza is currently serving as president of the IEEE Information Theory Society. Our congratulations to Elza for this well-deserved honor!

Prof. Shivendra Panwar will be giving the keynote address at mmNets, a workshop being held at Mobicom on October 29, 2018. He will also be on a panel at the workshop. Additionally, in September Shiv presented

an invited paper about the group's mmWave cellular network blockage model at the International Teletraffic Congress (ITC 30) in Vienna (itc30.org).

The Radio Club of America (RCA) announced that **Prof. Ted Rappaport** will receive the Armstrong Medal for demonstrated excellence and lasting contributions to radio arts and sciences at the annual Radio Club of America meeting in New York on November 17, 2018. He is also giving the keynote address at the banquet.

THE MMWAVE COALITION - A NEW U.S.-CENTERED GROUP

On September 27, 2018, Ted Rappaport presented "Future Wireless Technologies: mmWave, THz & Beyond." The webinar reviewed the promise and challenges of operating at millimeter wave and Terahertz frequencies. Ted discussed the current state of the art, research activities at NYU WIRELESS, and pointed to amazing new frontiers that these frequencies offer for the future of communications, computing, and imaging.

As Ted stated: "By 2020, the world will see single chip data transceivers that reliably transfer more than 10 GB/s data for more than 200 meters in a vast number of military or commercial applications." This is pushing the 5G and IoT world along as the need for massive connectivity taxes existing spectrum.

NYU WIRELESS has become the first academic institution to join the mmWave Coalition,

A slide from Ted Rappaport's welcome address to the mmWave Coalition

whose mission is to advocate for the use of radio frequencies above 95 GHz in the U.S. rural areas, ensuring that the U.S. remains competitive in the marketplace as 5G applications roll out.

The Coalition, made up of leading technology companies in addition to NYU WIRELESS, is working with U.S. and international government and regulatory bodies to eliminate hurdles to using these frequencies. Availability of this spectrum would open up much-needed broadband service for new applications for medical imaging, spectroscopy, new massively broadband IoT, and "wireless fiber" links in

The industry effort to expand the understanding and use of the frontiers of the frequency spectrum is supported by the sustaining members of the mmWave Coalition, who represent key thought leaders in the industry.

The Coalition was pleased to welcome NYU and is looking forward to more events and exchange of ideas. Learn more at mmWaveCoalition.org.

TED RAPPAPORT MEETS WITH FCC CHAIRMAN AJIT PAI

Ted Rappaport and Ajit Pai, head of FCC

Ted Rappaport recently had a one-on-one discussion with Ajit Pai, head of the Federal Communications Commission (FCC).

The agency will be auctioning mmWave spectrum this year and in 2019 to help support the rollout of 5G connectivity in the US. Rappaport and Pai discussed 5G, the state of technology in wireless, the need for mid-band

spectrum, rural bandwidth needs, and the history of 5G development.

They also touched on the leading role that NYU WIRELESS played in proving that mmWave spectrum could be used, and how directional antennas at mmWave frequencies offer better coverage than today's wireless technologies, when assuming equal area antennas.

NYU WIRELESS PARTICIPATES IN THE NGMN ALLIANCE

The NGMN alliance has worked to foster global consensus on 5G, and the ways in which system components can connect and work together

NYU Tandon School of Engineering is the only U.S.-based university that is a member of NGMN, Next Generation Mobile Networks (NGMN.org), which includes representatives from major global universities as well as CTOs from more than 20 international operators. The group's mission is to foster the advancement of communications by expanding mobile broadband, with a fo-

cus on 5G and accelerating the development of LTE-Advanced and its ecosystem. NGMN also offers guidance to equipment developers and standardization bodies.

Since the group's publication of the original NGMN White Paper in March 2015, global progress regarding 5G system developments and trials has advanced tremendously. The NGMN al-

liance has worked to foster global consensus on 5G, and the ways in which system components can connect and work together.

Their most recent public document, "Definition of the Testing Framework for the NGMN 5G TTI Interoperability," was published on September 10, 2018 and is on the NGMN web site under Publications/Technical Deliverables.

NYU WIRELESS HOSTS FIRST ITU MEETING TO ENVISION PATH TO YEAR 2030

Network 2030, a new group that is part of ITU-T (International Telecommunication Union—Telecommunication Standardization Sector), has its sights on digital networks in the year 2030 and beyond. The group was formed in July 2018, and includes members from governments, the private sector, and academia. Their first meeting was held on October 3-4, 2018, in Brooklyn and was hosted by NYU WIRELESS Professors Yong Liu and Shiv Panwar. Prior to the inaugural meeting, the first workshop also took place. Network 2030's focus is on novel technology, including holographic communications, industrial avatars, and high-precision com-

ITU-T Conference hosted by NYU WIRELESS in Brooklyn, NY

munication demands in critical situations. The group is not restricted to existing technology or networks, but will be backward compatible to support applications already developed. Network 2030 will help identify gaps and challenges as the vision for future technologies moves forward. The group's

chair is Richard Li from **Huawei**, who said, "Network 2030 is a pointer to the new horizon for the future digital society in the year 2030 and thereafter."

More information can be found at www.itu.int and clicking on Standardization or by emailing ITU-TMembership@itu.int.

NYU WIRELESS Recent Publications

May 2017 - Dec. 2018

Terahertz (THz) Communications & Sensing

S. Ju, T. S. Rappaport, "Millimeter-wave Extended NYUSIM Channel Model for Spatial Consistency," in IEEE 2018 Global Communications Conference, Dec. 2018, pp. 1-6.

Y. Xing, T. S. Rappaport, "Propagation Measurement System and Approach at 140 GHz-Moving to 6G and Above 100 GHz," in IEEE 2018 Global Communications Conference, Dec. 2018, pp. 1-6.

I. K. Jain, R. Kumar, S. Panwar, "Limited by Capacity or Blockage? A Millimeter Wave Blockage Analysis," e-print in arXiv.org:1808.01228, Aug. 2018.

Y. Xing, O. Kanhere, S. Ju, T. S. Rappaport, G. R. MacCartney Jr., "Verification and calibration of antenna cross-polarization discrimination and penetration loss for millimeter wave communications," 2018 IEEE 88th Vehicular Technology Conference (VTC2018-Fall), Chicago, USA, Aug. 2018, pp. 1-6.

S. Sun, T.S. Rappaport, M. Shafi, P. Tang, J. Zhang, P. J. Smith, "Propagation Models and Performance Evaluation for 5G Millimeter-Wave Bands," in IEEE Transactions on Vehicular Technology, June 2018.

T.S. Rappaport, V. Ariyarathna, A. Madanayake, X. Tang, D. Coelho, R. J. Cintra, L. Belostotski, S. Mandal, "Analog Approximate-FFT 8/16-Beam Algorithms, Architectures and CMOS Circuits for 5G Beamforming MIMO Transceivers," in IEEE Journal on Emerging and Selected Topics in Circuits and Systems. May 2018.

T.S. Rappaport, S. M. Perera, V. Ariyarathna, N. Udayanga, A. Madanayake, G. Wu, L. Belostotski, Y. Wang, S. Mandal, R.J. Cintra, "Wideband N-Beam Arrays using Low-Complexity Algorithms and Mixed-Signal Integrated Circuits," in IEEE

Journal of Selected Topics in Signal Processing. Apr. 2018.

N. V. Shende, Ö. Gürbüz and E. Erkip, "Half-Duplex or Full-Duplex Communications: Degrees of Freedom Analysis Under Self-Interference," in IEEE Transactions on Wireless Communications, vol. 17, no. 2, pp. 1081-1093, Feb. 2018.

F. Gómez-Cuba, E. Erkip, S. Rangan and F. J. González-Castaño, "Capacity Scaling of Cellular Networks: Impact of Bandwidth, Infrastructure Density and Number of Antennas," in IEEE Transactions on Wireless Communications, vol. 17, no. 1, pp. 652-666, Jan. 2018.

A. Khalili, S. Rini, L. Barletta, E. Erkip, Y. C. Eldar, "On MIMO Channel Capacity with Output Quantization Constraints," Information Theory (ISIT), 2018 IEEE International Symposium on IEEE, 2018.

S. Sun, T. S. Rappaport, M. Shaft, "Hybrid beamforming for 5G millimeter-wave multi-cell networks," IEEE INFOCOM 2018 - IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Honolulu, HI, 2018, pp. 589-596.

C. Herranz, M. Zhang, M. Mezzavilla, S. Rangan, J. F. Montserrat, "A 3GPP NR Compliant Beam Management Framework to Simulate End-to-End mmWave Networks," ACM MSWiM 2018.

G. R. MacCartney, Jr., T. S. Rappaport and A. Ghosh, "Base Station Diversity Propagation Measurements at 73 GHz Millimeter-Wave for 5G Coordinated Multipoint (CoMP) Analysis," 2017 IEEE Globecom Workshops, Singapore, Dec. 2017, pp. 1-7.

G. R. MacCartney, Jr., T. S. Rappaport, and Sundeep Rangan, "Rapid Fading Due to Human Blockage in Pedestrian Crowds at 5G Millimeter-Wave Frequencies," 2017 IEEE Global Communications Conference, Singapore, Dec. 2017.

T. S. Rappaport, Y. Xing, G. R. MacCartney, Jr., A. F. Molisch, E. Mellios, and J. Zhang, "Overview of millimeter wave communications for fifth-generation (5G) wireless networks," IEEE Transactions on Antennas and Propagation, 2017, Dec. 2017.

T. S. Rappaport, G. R. MacCartney, Jr., S. Sun, H. Yan, and S. Deng, "Small-scale, local area, and transitional millimeter wave propagation for 5G communications," IEEE Transactions on Antennas and Propagation, Dec. 2017.

J. Lota, S. Sun, T. S. Rappaport, and A. Demosthenous, "5G Uniform linear arrays with beamforming and spatial multiplexing at 28 GHz, 37 GHz, 64 GHz and 71 GHz for outdoor urban communication: A two-level approach," IEEE Transactions on Vehicular Technology, Sep. 2017.

G. R. MacCartney, Jr. and T. S. Rappaport, "Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications," in IEEE Journal on Selected Areas in Communications, vol. 35, no. 7, pp. 1663-1677, July 2017.

Y. Wang, S. Mao and T. S. Rappaport, "On Directional Neighbor Discovery in mmWave Networks," 2017 IEEE 37th International Conference on Distributed Computing Systems (ICDCS), Atlanta, GA, June 2017, pp. 1704-1713.

M. Rebato, F. Boccardi, M. Mezzavilla, S. Rangan and M. Zorzi, "Hybrid Spectrum Sharing in mmWave Cellular Networks," in IEEE Transactions on Cognitive Communications and Networking, vol. 3, no. 2, pp. 155-168, June 2017.

G. R. MacCartney, Jr. and T. S. Rappaport, "A Flexible Millimeter-Wave Channel Sounder with Absolute Timing," IEEE Journal on Selected Areas in Communications, vol. 35, no. 6, pp. 1402-1418, June 2017.

NYU WIRELESS Recent Publications (Cont'd) May 2017 - Dec. 2018

S. Sun and T. S. Rappaport, "Millimeter Wave MIMO Channel Estimation Based on Adaptive Compressed Sensing," 2017 IEEE International Conference on Communications Workshop (ICCW), May 2017.

G. R. MacCartney, Jr. and T. S. Rappaport, "A Flexible Wideband Millimeter-Wave Channel Sounder with Local Area and NLOS to LOS Transition Measurements," in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1-7.

P. A. Eliasi; S. Rangan; T. S. Rappaport, "Low-Rank Spatial Channel Estimation for Millimeter Wave Cellular Systems," IEEE Transactions on Wireless Communications, vol. 16, no. 5, pp. 2748-2759, May 2017.

S. Sun, H. Yan, G. R. MacCartney Jr., and T. S. Rappaport, "Millimeter Wave Small-Scale Spatial Statistics in an Urban Microcell Scenario," 2017 IEEE International Conference on Communications (ICC), May 2017.

J. Ryan, G. R. MacCartney, Jr., and T. S. Rappaport, "Indoor Office Wideband Penetration Loss Measurements at 73 GHz," in 2017 IEEE International Conference on Communications Workshop (ICCW), Paris, France, May 2017, pp. 1-6.

G. R. MacCartney, Jr. and T. S. Rappaport, "Study on 3GPP Rural Macrocell Path Loss Models for Millimeter Wave Wireless Communications," in 2017 IEEE International Conference on Communications (ICC), Paris, France, May 2017, pp. 1-7.

R. Kumar, R. Margolies, R. Jana, Y. Liu, S. Panwar, "WiLiTV: A Low-Cost Wireless Framework for Live TV Services," 2017 IEEE Conference on Computer Communications Workshops, May 2017.

T. S. Rappaport, S. Sun and M. Shafi, "5G channel model with improved accuracy and efficiency in mmWave bands," IEEE 5G Tech Focus, Mar. 2017.

S. Dutta, M. Mezzavilla, R. Ford, M. Zhang, S. Rangan, M. Zorzi, "Frame Structure Design and Analysis for Millimeter Wave Cellular Systems," IEEE Transactions on Wireless Communications 16.3 (2017): pp. 1508-1522.

C. Slezak, A. Dhananjay, S. Rangan, "60 GHz Blockage Study Using Phased Arrays," Proceedings of the 51st Asilomar Conference on Signals, Systems, and Computers, 2017.

F. Fund, S. Shahsavari, S. S. Panwar, E. Erkip, S. Rangan, "Resource Sharing Among mmWave Cellular Service Providers in a Vertically Differentiated Duopoly," France, 2017, pp. 1-7.

S. Goyal, M. Mezzavilla, S. Rangan, S. Panwar and M. Zorzi, "User Association in 5G mmWave Networks," 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, 2017, pp. 1-6.

Mobile Edge & Low Latency Networking

I. K. Jain, R. Kumar, S. Panwar, "Driven by Capacity or Blockage? A Millimeter Wave Blockage Analysis," 30th International Teletraffic Congress (ITC 30), Sep. 2018.

G. Li, Q. Shen, Yong Liu, H. Cao, Z. Han, F. Li, and J. Li, "Data-driven Approaches to Edge Caching," in the Proceedings of ACM SIGCOMM Workshop on Networking for Emerging Applications and Technologies, August 2018.

S. Xu, P. Liu, Goyal, S. Panwar, "Capacity Analysis for Full Duplex Self-backhauled Small Cells," e-print in arXiv.org:1807.08087, July 21, 2018.

I. K. Jain, R. Kumar, S. Panwar, "Can Millimeter Wave Cellular Systems Provide High Reliability and Low Latency? An analysis of the Impact of Mobile Blockers," e-print in arXiv.org:1807.04388, Jul. 2018.

L. Sun, G. Tian, G. Zhu, Y. Liu, H. Shi, and D. Dai, "Multipath IP Routing on End Devices: Motivation, Design, and Performance," in the Proceedings of IFIP Networking 2018 Conference, May 2018.

R. Kumar, A. Francini, S. Panwar, and S. Sharma, "Dynamic Control of RLC Buffer Size for Latency Minimization in Mobile RAN," in Proc. of IEEE WCNC, Apr. 2018.

R. Kumar, R. Margolies, R. Jana, Y. Liu, S. Panwar, "WiLiTV: Reducing Live Satellite TV Costs using Wireless Relays," in IEEE Journal on Selected Areas in Communications, February, 2018.

C. Li, G. Dobler, Y. Song, X. Feng, Y. Wang "TrackNet: Simultaneous Detection and Tracking of Multiple Objects" 2017.

B. Yan, S. Shi, Y. Liu, W. Yuan, H. He, R. Jana, Y. Xu, and H. J. Chao, "LiveJack: Integrating CDNs and Edge Clouds for Live Content Broadcasting," in the Proceedings of ACM Multimedia, October 2017.

M. Polese, M. Giordani, M. Mezzavilla, S. Rangan, M. Zorzi, "Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks," in IEEE Journal on Selected Areas in Communications, vol. PP, no.99, pp. 1-1, June 2017.

P. Hassanzadeh, A. Tulino, J. Llorca, E. Erkip "Rate-Memory Trade-off for the Two-User Broadcast Caching Network with Correlated Sources," in Proc. IEEE International Symposium Information Theory (ISIT), June 2017.

Z. Cao, S. Panwar, M. Kodialam, T. Lakshman, "Enhancing Mobile Networks With Software Defined Networking

NYU WIRELESS Recent Publications (Cont'd) May 2017 - Dec. 2018

and Cloud Computing," in IEEE/ACM Transactions on Networking, vol.PP, no.99, pp. 1-14. June 2017.

S. Xu, P. Liu, and S. Panwar "Exploiting network similarity for latency prediction of edge devices," 2017 IEEE International Conference on Communications (ICC), Paris, France, May 2017.

M. Polese, R. Jana, M. Zorzi, "TCP in 5G mmWave Networks: Link Level Retransmissions and MP-TCP," 2017 IEEE Conference on Computer Communications Workshops (INFOCOM WKSHPS), Atlanta, May 2017.

M. Polese, M. Giordani, M. Mezzavilla, S. Rangan, M. Zorzi, "Improved Handover Through Dual Connectivity in 5G mmWave Mobile Networks," 2017 IEEE JSAC Special Issue on mmWave.

R. Ford, A. Sridharan, R. Margolies, R. Jana, S. Rangan "Provisioning Low Latency, Resilient Mobile Edge Clouds for 5G" arXiv:1703.10915 [cs.NI]. May 2017.

R. Ford, M. Zhang, M. Mezzavilla, S. Dutta, S. Rangan and M. Zorzi, "Achieving Ultra-Low Latency in 5G Millimeter Wave Cellular Networks," in IEEE Communications Magazine, vol. 55, no. 3, pp. 196-203, March 2017.

R. Ford, S. Rangan, E. Mellios, D. Kong and A. Nix, "Markov Channel-Based Performance Analysis for Millimeter Wave Mobile Networks," 2017 IEEE Wireless Communications and Networking Conference (WCNC), San Francisco, CA, 2017, pp. 1-6.

M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi, "Mobility Management for TCP on mmWave Networks," mmNets 2017.

M. Polese, M. Zhang, M. Mezzavilla, J. Zhu, S. Rangan, S. Panwar, M. Zorzi, "A Split TCP Proxy Architecture for 5G mmWave Cellular Systems," Asilomar 2017.

Quantum Devices & Circuits

R. Pujari, S. Rakheja "Performance Evaluation of Copper and Graphene Nanoribbon in 2D Network-On-Chip Structures," In The 18th International Symposium on Quality Electronic Design (ISQED), Santa Clara, California, March 13 - 15, 2017.

S. Rakheja "Communication Limits of On-Chip Graphene Plasmonic Interconnects" In The 18th International Symposium on Quality Electronic Design (ISQED), Santa Clara, California, March 13 - 15, 2017.

V. Petrov, D. Moltchanov, M. Komar, A. Antonov, P. Kustarev, S. Rakheja, and Y. Koucheryavy. "Terahertz Band Intra-Chip Communications: Can Wireless Links Scale Modern x86 CPUs?" IEEE ACCESS. doi: 10.1109/ACCESS.2017.2689077. Feb 2017.

K. Li, S. Rakheja. Optimal III-nitride HEMTs: From Materials and Device Design to Compact Model of the 2DEG Charge Density. In SPIE Proceedings: Gallium Nitride Materials and Devices XII, vol. 10104, p. 1010418-1 - 1010418-16, Feb. 2017.

S. Farzaneh, S. Rakheja "Plasmon Propagation in Gated Bilayer Graphene" In The International Society for Optics and Photonics (SPIE) - Photonics West, San Francisco, California, Jan. 28 - Feb. 02, 2017.

5G & 6G Applications

O. Kanhere, T. S. Rappaport, "Position locationing for millimeter wave systems," in IEEE 2018 Global Communications Conference, Dec. 2018, pp. 1-6.

H., S. Emad, et al. "A case study of mobile robot's energy consumption and conservation techniques." Security and Data Reliability in Cooperative Wireless Networks. Vol. 47. No. 10. Washington, DC, Worth Publishers, 2018. pp. 1-10.

A.T. Chiang, Q. Chen, Y. Wang and M. R. Fu. "Kinect-Based In-Home Exercise System for Lymphatic Health and Lymphedema intervention," IEEE Journal of Translational Engineering in Health and Medicine, 2018.

T. Ahmad (NYU), E. Reed-Sanchez (NYU), F. Zarinni (NYU), A. Afutu (NYUAD), K. Adjaho (NYUAD), Y. Nyarko (NYU) and L. Subramanian (NYU). GreenApps: A Platform For Cellular Edge Applications. First ACM SIGCAS Conference on Computing and Sustainable Societies (COMPASS2018).

S. Rangan, M. Mezzavilla, T.S. Rappaport, M. Polese, A. Zanella, A. Dhananjay, C. Kessler, M. Zorzi, "Public Safety Communications above 6 GHz: Challenges and Opportunities," in IEEE Access, vol. 6, pp. 316-329, 2018.

An-Ti Chiang, Qi Chen, Yao Wang and Mei R. Fu. Motion Sequence Alignment for a Kinect-Based In-Home Exercise System for Lymphatic Health and Lymphedema Intervention, 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2018.

F. Duanmu, Y. He, X. Xiu, P. Hanhart, Y. Ye, and Y. Wang, Hybrid Cubemap Projection Format for 360-degree Video Coding, IEEE Data Compression Conference (DCC), Snowbird, Utah, 2018.

F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang, A Subjective Study of Viewer Navigation Behaviors When Watching 360-degree Videos on Computers, IEEE International Conference on Multimedia Expo (ICME), San Diego, CA, 2018.

F. Duanmu, Y. Mao, S. Liu, S. Srinivasan, and Y. Wang, A Subjective Study of Viewer Navigation Behaviors When Watching 360-degree Videos on Computers, IEEE International Conference on Multimedia Expo (ICME), San Diego, CA, 2018.

NYU WIRELESS Recent Publications (Cont'd) May 2017 - Dec. 2018

F. Duanmu, Y. He, X. Xiu, P. Hanhart, Y. Ye, and Y. Wang, "Content-Adaptive 360-degree Video Coding Using Hybrid Cubemap Projection," IEEE Picture Coding Symposium (PCS), San Francisco, CA, 2018.

E. Kurdoglu, Y. Liu, Y. Wang, "Perceptual Quality Maximization for Video Calls with Packet Losses by Optimizing FEC, Frame Rate and Quantization," in IEEE Transactions on Multimedia, December 2017.

M. Mezzavilla, M. Polese, A. Zanella, A. Dhananjay, S. Rangan, C. Kessler, T. S. Rappaport, M. Zorzi, "Public Safety Communications above 6 GHz: Research and Opportunities," IEEE Access, November 14, 2017.

T. S. Rappaport, "5G is About to Face a Reality Check," Applied Wireless Technology, Volume 1, Issue 3, September 2017.

R. Kumar, R. Margolies, R. Jana, Y. Liu, and S. Panwar, "WiLiTV: Reducing Live Satellite TV Costs using Wireless Relays," in IEEE Journal on Selected Areas in Communications Special Issue on Advances in Satellite Communications, June 2017.

F. Duanmu, E. Kurdoglu, Y. Liu and Y. Wang, "View Direction and Bandwidth Adaptive 360 Degree Video Streaming Using a Two-Tier System," in the Proceedings of International Symposium on Circuits and Systems (ISCAS), May 2017.

T. Ahmad (NYU) and L. Subramanian (NYU), Virtual Cellular ISPs, 3rd Workshop on Experiences with the Design and Implementation of Smart Objects, Mobicom 2017.

R.A. Shoureshi, J.R. Rizzo, and T.E. Hudson, "Smart Wearable Systems for Enhanced Monitoring and Mobility," Advances in Science & Technology, vol. 100, 2017.

F. Duanmu, E. Kurdoglu, Amir Hosseini, Y. Liu, Y. Wang, "Prioritized Buffer Control in Two-tier 360 Video Streaming," ACM SigComm Workshop on Virtual Reality and Augmented Reality Network, Los Angeles, California, USA, 2017.

F. Duanmu, E. Kurdoglu, Y. Liu, Y. Wang, "View Direction and Bandwidth adaptive 360 Degree Video Streaming using a Two-Tier System, International Symposium on Circuits and Systems (ISCAS), Baltimore, Maryland, 2017.

F. Duanmu, E. Kurdoglu, Amir Hosseini, Y. Liu, Y. Wang, "Buffer-Based 360 Video Streaming Using A Two-Tier System," ACM SigComm Workshop on Virtual Reality and Augmented Reality Network, Los Angeles, CA, 2017.

J. Kuo, J. Mamou, Y. Wang, E. Saegusa-Beecroft, J. Machi, and E. J. Feleppa, Segmentation of 3D High-frequency Ultrasound Images of Human Lymph Nodes Using Graph Cut with Energy Functional Adapted to Local Intensity Distribution, Transactions on Ultrasonics Ferroelectrics and Frequency Control (TUFFC), 2017.

Communications & Machine Learning Foundations

S. Minaee, Y. Wang, A. Aygar, S. Chung, X. Wang, Y. W. Lui, E. Fieremans, S. Flanagan, J. Rath "MTBI Identification from Diffusion MR Images Using Bag of Adversarial Visual Features," IEEE Transactions on Medical Imaging.

Y. Song, J. Viventi, and Y. Wang, Diversity encouraged learning of unsupervised LSTM ensemble for neural activity video prediction, Initial version: Nov. 2016, Last updated: July 2018.

Y. Song, Y. Wang, and J. Viventi, Multi Resolution LSTM For Long Term Prediction In Neural Activity Video, Initial version: May 2017, Last updated: July 2018.

A. Aparo, V. Bonnici, G. Micale, A. Ferro, D. Shasha, A. Pulvirenti, R. Giugno, S. Verlag, "Simple Pattern-only Heuristics Lead To Fast Subgraph Matching Strategies on Very Large Networks," ISSN:2194-5357, Oral presentation at the 12th International Conference on Practical Applications of Computational Biology and Bioinformatics (PACBB'18), Toledo (Spain) June 20-22, 2018.

G. Li, Y. Liu, and B. Ribeiro, "On Group Popularity Prediction in Event-Based Social Networks," in the Proceedings of the International AAAI Conference on Web and Social Media (Poster), June 2018.

F. Porto, J. Rittmeyer, E. Ogasawara, A. Krone-Martins, P. Valduriez, D. Shasha, "Point Pattern Search in Big Data," Scientific and Statistic Database Management, June 2018, Bolzano-Bozen, Italy

K. Varala, A. Marshall-Colón, J. Cirrone, M. D. Brooks, A. V. Pasquino, S. Léran, S. Mittal, T. M. Rock, M. B. Edwards, G. J. Kim, S. Ruffel, W. R. McCombie, D. Shasha, G. M. Coruzzi, "Temporal transcriptional logic of dynamic regulatory networks underlying nitrogen signaling and use in plants," PNAS May 16, 2018.

E. Erkip, S. Panwar, S. Shahsavari, F. Fund, "Capturing Capacity and Profit Gains with Base Station Sharing in mmWave Cellular Networks" e-print in arXiv.org:1804.0985, Apr. 2018.

F. Shirani, S. Garg, E. Erkip, "Typicality Matching for Pairs of Correlated Graphs," Information Theory (ISIT), 2018 IEEE International Symposium on, IEEE, Feb 3, 2018.

Y. Liu, Y. Liu, Y. Shen, K. Li, "Recommendation in a Changing World: Exploiting Temporal Dynamics in Ratings and Reviews," in ACM Transactions on the Web, Volume 12 Issue 1, February 2018.

M. Sadeghi, E. Björnson, E. G. Larsson, C. Yuen and T. L. Marzetta, "Max-Min Fair Transmit Precoding for Multi-Group Multicasting in Massive

NYU WIRELESS Recent Publications (Cont'd) May 2017 - Dec. 2018

MIMO," in IEEE Transactions on Wireless Communications, vol. 17, no. 2, pp. 1358-1373, Feb. 2018.

F. Shirani, G. Siddharth, E. Erkip, "Optimal Active Social Network De-anonymization Using Information Thresholds," Information Theory (ISIT), 2018 IEEE International Symposium on. IEEE, Jan 19, 2018.

M. Heidari, F. Shirani, S. S. Pradhan, "Bounds on the Effective-length of Optimal Codes for Interference Channel with Feedback," Information Theory (ISIT), 2018 IEEE International Symposium on. IEEE, Jan 16, 2018.

Yuan Wang, Yao Wang, Yvonne W Lui, Dynamic Causal Modelling with neuron firing model in generalized recurrent neural network framework, ISMRM 2018.

Fanyi Duanmu, Xin Feng, Xiaoqing Zhu, Dan Tan, and Yao Wang, A Multi-View Pedestrian Tracking Framework Based on Graph Matching, IEEE International Conference on Multimedia Information Processing and Retrieval (MIPR), Miami, Florida, USA, 2018.

J. Kuo, Z. Qiu, O. Aristizbal, J. Mamou, D. H. Turnbull, J. Ketterling, and Y. Wang, Automatic Body Localization and Brain Ventricle Segmentation in 3D High Frequency Ultrasound Images of Mouse Embryos, 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, 2018, pp. 635-639.

R. Wang, Y. Song, Y. Wang and J. Viventi, "Long-term prediction of μ ECOG signals with a spatio-temporal pyramid of adversarial convolutional networks," 2018 IEEE 15th International Symposium on Biomedical Imaging (ISBI 2018), Washington, DC, 2018.

S. Krishna, D. Shasha, T. Wies, "Go with the flow: Compositional Abstractions for Concurrent Data Structures," Principles of Programming Languages 2018.

O. Levchenko, D.E. Yagoubi, R. Akbarinia, F. Masseglia, D. Shasha, B. Kolev, "Spark-parSketch: A Massively Distributed Indexing of Time Series Datasets," CIKM 2018 demonstration.

G. Michale, R. Giugno, A. Ferro, M. Mongiovi, D. Shasha, A. Pulvirenti, "Fast Analytical Methods for Finding Significant Labeled Graph Motifs," Data Mining and Knowledge Discovery 32(2): 504-531 (2018).

D. Yagoubi, R. Akbarinia, B. Kolev, O. Levchenko, F. Masseglia, P. Valduriez, D. Shasha, "ParCorr: Efficient Parallel Methods to Identify Similar Time Series Pairs across Sliding Windows," Data Mining and Knowledge Discovery, 2018.

F. Shirani, S. S. Pradhan, "Lattices from Linear Codes and Fine Quantization: General Continuous Sources and Channels," Information Theory (ISIT), 2018 IEEE International Symposium on. IEEE, 2018.

S. Minaee, Y. Wang, A. Choromanska, S. Chung, X. Wang, E. Fieremans, S. Flanagan, J. Rath, Y. W. Lui, "A Deep Unsupervised Learning Approach Toward MTBI Identification Using Diffusion MRI," International Engineering in Medicine and Biology Conference (EMBC), IEEE, 2018.

F. Duanmu, Z. Ma, M. Xu, and Y. Wang, "An HEVC-Compliant Fast Screen Content Transcoding Framework Based on Mode Mapping," Submitted to IEEE Transactions on Circuits and Systems for Video Technology (TCSVT), 2018.

Y. Song, Y. Wang, and J. Viventi, "Adversarial autoencoder analysis on human μ ECOG dataset," Dec. 2017.

S. Wesemann and T. L. Marzetta, "Channel Training for Analog FDD Repeaters: Optimal Estimators and Cramér-Rao Bounds," in IEEE Transactions on Signal Processing, vol. 65, no. 23, pp. 6158-6170, Dec. 1, 2017.

F. Shirani, G. Siddharth, E. Erkip, "Seeded graph matching: Efficient algorithms and theoretical guarantees," 2017 51st Asilomar Conference on Signals, Systems, and Computers, Pacific Grove, CA, Nov 28, 2017.

Y. Song, C. Li, Y. Wang "Pixel-wise object tracking," Initial version: Nov. 2017, Last updated: July 2018.

F. Shirani, G. Siddharth, E. Erkip, "An information theoretic framework for active de-anonymization in social networks based on group memberships," 2017 55th Annual Allerton Conference on Communication, Control, and Computing (Allerton), Monticello, IL, Oct 11, 2017.

Y. Xue, Y. Wang, A. Novel Video Coding Framework using Self-adaptive Dictionary, IEEE Transactions on Circuits and Systems for Video Technology, Oct. 2017.

S. Rangan, A. K. Fletcher, V. K. Goyal, E. Byrne and P. Schniter, "Hybrid Approximate Message Passing," in IEEE Transactions on Signal Processing, vol. 65, no. 17, pp. 4577-4592, Sept. 1, 2017.

S. Rangan, P. Schniter, and A. K. Fletcher, "Vector approximate message passing," IEEE ISIT, July 2017.

NYU WIRELESS Recent Publications

(Cont'd) May 2017 - Dec. 2018

M. Servajean, A. Joly, D. Shasha, J. Champ, E. Pacitti, "Crowdsourcing Thousands of Specialized Labels: a Bayesian active training approach," in IEEE Transactions on Multimedia, Volume: 19, Issue: 6, pp. 1376-1391, June 2017.

M. Servajean, A. Joly, D. Shasha, J. Champ, E. Pacitti, "Crowdsourcing Thousands of Specialized Labels: a Bayesian active training approach," in IEEE Transactions on Multimedia, vol. 19, issue 6, pp. 1376-1391. June 2017.

M. Borgerding; P. Schniter; S. Rangan, "AMP-Inspired Deep Networks for Sparse Linear Inverse Problems," in IEEE Transactions on Signal Processing, vol. 65, no. 16, pp. 4293-4308, May 2017.

X. Yang, C. Liang, M. Zhao, H. Wang, H. Ding, Y. Liu, Y. Li, J. Zhang, "Collaborative Filtering Based Recommendation of Online Social Voting," in IEEE Transactions On Computational Social Systems, Volume 4, Issue 1, pp. 1-13, March 2017.

Y. Wang, Yao Wang, Y. W Lui, Generalized Recurrent Neural Network Accommodating Dynamic Causal Modelling for functional MRI analysis, ISMRM, 2017.

S. Minaee, Y. Wang, Palmprint Recognition Using Deep Scattering Convolutional Network, IEEE International Symposium on Circuits and Systems, 2017.

S. Minaee, Y. Wang, Subspace Learning in The Presence of Sparse Structured Outliers and Noise, IEEE International Symposium on Circuits and Systems, 2017.

A.T. Chiang, Q. Chen, S. Li, Y. Wang and M. R. Fu. Denoising of Joint

Tracking Data by Kinect Sensors Using Clustered Gaussian Process Regression Proceedings of the 2nd International Workshop on Multimedia for Personal Health and Health Care. ACM, 2017.

Y. Song, Y. Wang and J. Viventi, Unsupervised Learning of Spike Pattern for Seizure Detection and Wavefront Estimation of High Resolution Micro Electrocorticographic (μ ECOG) Data, IEEE transactions on nanobioscience vol. 16, issue 6, pp. 418-427. 2017.

S Minaee, Wang Y, Chung S, Wang X, Fieremans E, Flanagan S, Rath J, Lui Y.W., "A Machine Learning Approach For Identifying Patients with Mild Traumatic Brain Injury Using Diffusion MRI Modeling," ASFNR 12th Annual Meeting, 2017.

S Minaee, Y Wang, "Text Extraction From Texture Images Using Masked Signal Decomposition," Global Conference on Signal and Information Processing, IEEE, 2017.

Fanyi Duanmu, Zhan Ma, Meng Xu and Yao Wang, HEVC-Compliant Screen Content Transcoding Based on Mode Mapping and Fast Termination, IEEE Visual Communications and Image Processing (VCIP), 2017.

S. Rangan, A. K. Fletcher, P. Schniter and U. S. Kamilov, "Inference for Generalized Linear Models via Alternating Directions and Bethe Free Energy Minimization," in IEEE Transactions on Information Theory, vol. 63, no. 1, pp. 676-697, Jan. 2017.

Testbeds & Prototyping

S. Ju, T. S. Rappaport, "Simulating motion - incorporating spatial consistency into the nyusim channel model," in 2018 IEEE

88th Vehicular Technology Conference Workshops, Aug. 2018, pp. 1-6.

C. Slezak, M. Zhang, M. Mezzavilla, S. Rangan, "Understanding End-to-End Effects of Channel Dynamics in Millimeter Wave Cellular," IEEE SPAWC 2018.

T. S. Rappaport, "5G Millimeter Wave Wireless: Trials, Testimonies, and Target Rollouts," IEEE Infocom Keynote Presentation, Honolulu, HI, April 16, 2018.

M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, M. Zorzi, "End-to-End Simulation of 5G mmWave Networks," in IEEE Communications Surveys & Tutorials. Apr. 2018.

M. Mezzavilla, M. Zhang, M. Polese, R. Ford, S. Dutta, S. Rangan, M. Zorzi, "End-to-End Simulation of 5G mmWave Networks," submitted to IEEE COMST, Oct 4, 2017.

T. S. Rappaport, S. Sun, M. Shafi, "Investigation and comparison of 3GPP and NYUSIM channel models for 5G wireless communications," in 2017 IEEE 86th Vehicular Technology Conference (VTC Fall), pp. 1-5, Sep. 2017.

M. Zhang, M. Polese, M. Mezzavilla, S. Rangan, M. Zorzi "ns-3 Implementation of the 3GPP MIMO Channel Model for Frequency Spectrum above 6 GHz," Workshop on ns-3, June 13 - 14, 2017, Porto, Portugal

S. Sun, G. R. MacCartney Jr., and T. S. Rappaport, "A Novel Millimeter-Wave Channel Simulator and Applications for 5G Wireless Communications," 2017 IEEE International Conference on Communications (ICC), May 2017.

LEADERSHIP

Associate Directors Sundeep Rangan, Thomas L Marzetta, John-Ross Rizzo, and Dennis Shasha are working with Director and Founder Ted Rappaport to manage NYU WIRELESS across Brooklyn and Manhattan campuses of NYU. **Prof. Rappaport** has powered the 5G millimeter wave era, and is a leading educator in the wireless arena, having authored many books and started three major academic wireless research centers. **Prof. Rangan** is an Electrical Engineering professor at NYU Tandon, and was a co-founder of Flarion Technologies, which developed Flash OFDM, one of the first cellular OFDM data systems. **Prof. Marzetta** originated the concept of Massive MIMO, and continues to sustain contributions to the development and promotion of Massive MIMO. **Prof. J.R. Rizzo** is an assistant professor in the Departments of Rehabilitation Medicine and Neurology at NYU Langone Health. His research is focused on wearable technology and blindness and visual impairment. **Prof. Shasha** of Courant's Computer Science Department is widely known for his expertise in data-intensive algorithms, streaming data, and is a highly acclaimed inventor of mathematical puzzles.

Prof. Theodore (Ted) S. Rappaport
Director
Email: tsr@nyu.edu

Prof. Sundeep Rangan
Associate Director
Email: srangan@nyu.edu

Prof. Thomas L Marzetta,
Associate Director
Email: tom.marzetta@nyu.edu

Prof. John-Ross Rizzo
Associate Director
Email: JohnRoss.Rizzo@nyumc.org

Prof. Dennis Shasha
Associate Director
Email: shasha@courant.nyu.edu

Patricia Donohue
Administrative Director
Email: pat.donohue@nyu.edu

Adam Holsten
Web Design & Dev Manager
Email: adam.holsten@nyu.edu

Campbell Busfield
Office Administrator
Email: campbell.busfield@nyu.edu

NYU WIRELESS Pulse
Vol 5, No. 1 - Fall 2018
Email: info@nyuwireless.com

ABOUT NYU WIRELESS

NYU WIRELESS is a vibrant academic research center that is pushing the boundaries of wireless communications, sensing, networking, and devices.

Centered at NYU Tandon School of Engineering and involving leaders from industry, faculty, and students throughout the entire NYU community, NYU WIRELESS offers its industrial affiliate sponsors, students, and faculty members a world-class research environment that is creating fundamental knowledge, theories, and techniques for future mass-deployable wireless devices in a wide range of applications and markets.

Every January, NYU WIRELESS hosts an annual recruiting day for all of its students and Industrial Affiliate sponsors, and hosts a major invitation-only wireless summit every April, in cooperation with Nokia Bell Laboratories, for the center's Industrial Affiliates and thought leaders throughout the global telecommunications industry.

THE INDUSTRIAL AFFILIATES PROGRAM

NYU WIRELESS invites corporate supporters to join our Industrial Affiliates program.

The NYU WIRELESS Industrial Affiliates program offers a mutually beneficial relationship between NYU WIRELESS researchers, students, and facilities, and leading industry partners, while fostering innovative research.

NYU WIRELESS would like to thank our Industrial Affiliate Partners and NSF for their continued support. Learn more about our Industrial Affiliate program by visiting nyuwireless.com/industrial-affiliates

NYU WIRELESS NEWSLETTER

Download and read copies of our previous newsletters online by visiting, nyuwireless.com/nyu-wireless-newsletter

INDUSTRIAL AFFILIATES SAVE THE DATES

[Recruitment Day — January 25, 2019](#)
[Board Meeting & Brooklyn 5G Summit — April 23-25, 2019](#)
[\(April 26, 2019 optional Bell Labs tour\)](#)

NYU WIRELESS
NYU Tandon School of Engineering
2 Metrotech Center, 9th Floor,
Brooklyn, NY 11201
646-997-3400
www.nyuwireless.com

NYU WIRELESS Industrial Affiliate Sponsors

NYU WIRELESS

at&t

CROWN
CASTLE

ERICSSON

HUAWEI

INTERDIGITAL.

NOKIA

OPPO

QUALCOMM®

SONY

Sprint

UMC