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Abstract— We consider the estimation of an independent
and identically distributed (i.i.d.) (possibly non-Gaussian) vector
x ∈ R

n from measurements y ∈ R
m obtained by a general cascade

model consisting of a known linear transform followed by a
probabilistic componentwise (possibly nonlinear) measurement
channel. A novel method, called adaptive generalized approxi-
mate message passing (adaptive GAMP) is presented. It enables
the joint learning of the statistics of the prior and measurement
channel along with estimation of the unknown vector x. We prove
that, for large i.i.d. Gaussian transform matrices, the asymptotic
componentwise behavior of the adaptive GAMP is predicted by
a simple set of scalar state evolution equations. In addition,
we show that the adaptive GAMP yields asymptotically consis-
tent parameter estimates, when a certain maximum-likelihood
estimation can be performed in each step. This implies that
the algorithm achieves a reconstruction quality equivalent to
the oracle algorithm that knows the correct parameter values.
Remarkably, this result applies to essentially arbitrary para-
metrizations of the unknown distributions, including nonlinear
and non-Gaussian ones. The adaptive GAMP methodology thus
provides a systematic, general and computationally efficient
method applicable to a large range of linear–nonlinear models
with provable guarantees.

Index Terms— Approximate message passing, parameter
estimation, belief propagation, compressive sensing.

I. INTRODUCTION

CONSIDER the estimation of a random vector x ∈
R

n from the measurement model illustrated in Fig. 1.
The random vector x, which is assumed to have inde-
pendent and identically distributed (i.i.d.) components
x j ∼ PX , is passed through a known linear transform that
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Fig. 1. Measurement model considered in this work.

outputs z = Ax. The components of y ∈ R
m are generated

by the component-wise transfer function PY |Z . This work
addresses the problem of the estimation of x when the distribu-
tions PX and PY |Z have finite number of unknown parameters,
λx and λz , that must be learned during the process.

Such joint-estimation and learning problems with linear
transforms and component-wise nonlinearities arise in a range
of applications, including empirical Bayesian approaches
to inverse problems in signal processing, linear regression,
and classification [1], [2]. It is equally relevant for Bayesian
compressed sensing for the estimation of sparse vectors x
from underdetermined measurements [3]–[5]. Also, since
the parameters in the output transfer function PY |Z can
model unknown nonlinearities, this problem formulation can
be applied to the identification of linear-nonlinear cascade
models of dynamical systems, in particular for neural spike
responses [6]–[8].

When the distributions PX and PY |Z are known, there are a
number of estimation methods available. In recent years, there
has been significant interest in so-called approximate mes-
sage passing (AMP) and related methods based on Gaussian
approximations of loopy belief propagation (LBP) [9]–[18].
These methods originate from CDMA multiuser detection
problems [9]–[11] and have received considerable recent atten-
tion in the context of compressed sensing [13]–[19]. A survey
article is available in [20]. The Gaussian approximations used
in AMP are also closely related to expectation propagation
techniques [21], [22], but with additional simplifications that
exploit the linear coupling between the variables x and z.
The key benefits of AMP methods are their computational
simplicity, their broad range of application, and, for certain
large random A, their exact asymptotic performance charac-
terizations with testable conditions for optimality [11], [12],
[16], [17]. This paper considers the so-called generalized AMP
(GAMP) method [18], [23] that extends the algorithm in [13]
to arbitrary output distributions PY |Z .

Although the current formulation of AMP and GAMP meth-
ods is attractive conceptually, in practice, one rarely knows
the prior and noise distributions exactly. The expectation-
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maximization-based (EM) approach [24], [25] overcomes this
limitation by jointly learning the parameters (λx , λz) along
with the estimation of the vector x. EM-GAMP inspired our
preliminary work [26]. While simulations indicate excellent
performance, no analysis of these methods is available in the
literature. This work provides a unifying analytic framework
for such AMP-based joint estimation and learning methods.
The main contributions of this paper are as follows:

• The generalization of the GAMP method of [18] to a
class of algorithms we call adaptive GAMP that enable
the joint estimation of the parameters λx and λz along
with vector x. The methods are computationally fast
and general. In addition, adaptive GAMP includes the
EM-GAMP algorithms of [24], [25], [27], and [28] as
special cases.

• The exact characterization of the asymptotic behavior of
adaptive GAMP. We show that, similar to the analysis
of the AMP and GAMP algorithms in [11], [12], and
[16]–[18], the component-wise asymptotic behavior of
adaptive GAMP can be described exactly by a simple
scalar state-evolution (SE) equations.

• The demonstration of the asymptotic consistency of adap-
tive GAMP with maximum-likelihood (ML) parameter
estimation. We show that, when the ML parameter esti-
mation is computed exactly, the estimated parameters
converge to the true values and the performance of
adaptive GAMP asymptotically coincides with the per-
formance of the oracle GAMP algorithm that knows the
correct parameter values. Remarkably, this result applies
to essentially arbitrary parameterizations of the unknown
distributions PX and PY |Z , thus enabling provably con-
sistent estimation on non-convex and nonlinear problems.

• The experimental evaluation of the algorithm for the
problems of learning sparse priors in compressed sensing
and of identification of linear-nonlinear cascade models
in neural spiking processes. Our simulations illustrate the
performance gain of adaptive GAMP and its asymptotic
consistency.

A. Related Literature

The adaptive GAMP method proposed here can be seen as a
generalization of the EM methods in [24], [25], [27], and [28].
In [24] and [25], the prior PX is described by a generic
L-term Gaussian mixture (GM) whose parameters are iden-
tified by an EM procedure [29]. The “expectation” step or
E-step is performed by GAMP, which can approximately deter-
mine the marginal posterior distributions of the components x j

given the observations y and the current parameter estimates
of the GM distribution PX . A related EM-GAMP algorithm
has also appeared in [27] and [28] for the case of certain
sparse priors and AWGN outputs. Simulations in [24] and [25]
show remarkably good performance and computational speed
for EM-GAMP over a wide class of distributions, particularly
in the context of compressed sensing. Also, using arguments
from statistical physics, Krzakala et al. [27], [28] present SE
equations for the joint evolution of the parameters and vector
estimates and confirm them numerically.

As discussed in Section III-B, EM-GAMP is a special case
of adaptive GAMP with a particular choice of the adaptation
functions. Therefore, one contribution of this paper is to
provide a rigorous theoretical justification of the EM-GAMP
methodology. In particular, Theorem 2 in the current work
provides a rigorous justification of the SE analysis in [27]
and [28] along with extensions to a broader class of input
and output channels and adaptation methods. However, the
methodology in [27] and [28] is in some ways more general, in
the sense that it can also study “seeded” or “spatially-coupled”
matrices as proposed in [27], [28], and [30]. An interesting
open question is to know if the analysis methods in this paper
can be extended to these scenarios as well.

An alternate method for joint learning and estimation has
been presented in [31], which assumes that the distributions
on the source and output channels are themselves described by
graphical models with the parameters λx and λz appearing as
unknown variables. The method in [31], called hybrid-GAMP,
iteratively combines standard loopy BP with AMP methods.
One avenue of future work is to see if the methodology in this
paper can be applied to analyze the hybrid-GAMP methods as
well.

Finally, it should be pointed out that, while the simultaneous
recovery of unknown parameters is appealing conceptually,
it is not a strict requirement. An alternate solution to the
problem is to assume that the signal belongs to a known class
of distributions and to minimize the maximal mean-squared
error (MSE) for the class. This minimax approach [32] was
proposed for the AMP recovery of sparse signals in [13].
Although minimax yields estimators that are uniformly good
over the entire class of distributions, there may be a significant
gap between the MSE achieved by the minimax approach
and the oracle algorithm that knows the distribution exactly.
Indeed, reducing this gap was the main justification of the
EM-GAMP methods in [24] and [25]. Due to its asymptotic
consistency with ML parameter estimation, adaptive GAMP
provably achieves the performance of the oracle algorithm.

B. Outline of the Paper
The paper is organized as follows: In Section II, we review

the non-adaptive GAMP and the corresponding SE equations.
In Section III, we present adaptive GAMP and describe ML
parameter learning. In Section IV, we provide the main theo-
rems that characterize the asymptotic performance of adaptive
GAMP and demonstrate its consistency. A key requirement for
consistency are certain identifiability conditions — these are
discussed in Section V. In Section VI, we provide numerical
experiments that illustrate the applicability of the method.
Section VII concludes the paper. A preliminary version of this
work has appeared in [26]. The current paper contains all the
proofs, more detailed descriptions and additional simulations.

II. REVIEW OF GAMP

A. Sum-Product GAMP

Before describing the adaptive GAMP algorithm, it is use-
ful to review the basic (non-adaptive) GAMP algorithm of
[18]. We begin with a description of the most basic – and
perhaps most important – variant of GAMP, namely
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sum-product GAMP. To describe the algorithm, consider the
estimation problem in Fig. 1 where the componentwise prob-
ability density functions on the inputs and outputs have some
parametric form,

PX (x |λx), PY |Z (y|z, λz), (1)

where λx ∈ �x and λz ∈ �z represent parameters of the den-
sities and �x ⊆ R

dx and �z ⊆ R
dz denote the corresponding

parameter sets that are of finite dimensions. Now, suppose
that the components of x are i.i.d. with x j ∼ PX (x j |λx ) and,
conditional on the transform output z = Ax, the components
of the observations y have a likelihood yi ∼ PY |Z (yi |zi , λz).
Then, the posterior joint probability density of x and z will be
given by

P(x, z|y, λx , λz) ∝ �{z=Ax}

×
m∏

i=1

PY |Z (yi |zi , λz)

n∏

j=1

PX (x j |λx ), (2)

where ∝ denotes identity after normalization, and the indicator
function is used to indicate that the density is defined on the set
z = Ax. The GAMP algorithm of [18] can be seen as a class
of methods for approximately estimating the vectors x and z
under this joint distribution in the case when the parameters
λx and λz are known.

As described in [18], there are two important variants of
GAMP:

• Sum-product GAMP: This method is used for approxi-
mately computing the posterior marginals

P(x j |y, λx , λz), P(zi |y, λx , λz), (3)

with respect to the joint density (2). From these posterior
marginals, one can compute the posterior means and
variances,

x̂ j = E
[
x j | y, λx , λz

]
(4a)

τx j = var
[
x j | y, λx , λz

]
(4b)

ẑi = E
[
zi | y, λx , λz

]
(4c)

τzi = var
[
zi | y, λx , λz

]
. (4d)

The GAMP algorithm in this case is based on a Gaussian
approximation of sum-product loopy belief propagation.

• Max-sum GAMP: This variant is used to approximately
compute the maximum a posteriori (MAP) estimate

(̂x, ẑ ) := arg max
(x,z)

P(x, z|y, λx , λz), (5)

and is based on a quadratic approximation of the max-
sum loopy belief propagation.

In this paper, we focus mostly on sum-product GAMP
algorithm, although many of the statements can be applied
to the max-sum GAMP algorithm equally. The basic steps of
the sum-product GAMP algorithm from [18] are shown in
Algorithm 1. The algorithm is an iterative procedure generat-
ing a sequence of estimates x̂ t , τ t

x representing estimates of
the posterior means and variances in (4).

Exact computation of the means and variance of the com-
ponents x j and zi of the posterior joint density (2) is generally

Algorithm 1 Non-Adaptive Sum-Product GAMP
Require: Matrix A and densities PX and PY |Z with known

parameters λx and λz .
1: {Initialize}
2: t ← 0, st−1 ← 0
3: x̂0← E(x |λx), τ 0

x ← var(x |λx).
4: repeat
5: {Output node update}
6: τ t

p ← ‖A‖2Fτ t
x/m

7: pt ← Ax̂t − st−1τ t
p

8: ẑt
i ← E(zi |yi , pt

i , τ
t
p, λz) for all i = 1, . . . , m

9: τ t
zi
← var(zi |yi , pt

i , τ
t
p, λz) for all i = 1, . . . , m

10: st
i ← (zt

i − pt
i )/τ

t
p for all i = 1, . . . , m

11: τ t
s ← (1/m)

∑
i (1− τ t

zi
/τ t

p)/τ
t
p

12:

13: {Input node update}
14: 1/τ t

r ← ‖A‖2Fτ t
s /n

15: rt ← x̂t + τ t
r ATst

16: x̂ t+1
j ← E(x j |r t

j , τ
t
r , λx ) for all j = 1, . . . , n

17: τ t+1
x ← (τ t

r /n)
∑

j var(x j |r t
j , τ

t
r , λx )

18: until Terminated

intractable, since it involves a marginalization over n variables.
The main concept in the GAMP algorithm is to approximately
reduce this vector-valued estimation problem to a sequence
of scalar mean and variance computations. Specifically, the
expectations and variances in lines 16 and 17 are to be taken
with respect to the probability density

P(x j |r t
j , τ

t
r , λx ) ∝ PX (x j |λx ) exp

[
− 1

2τ t
r
|x j − r t

j |2
]
. (6)

The density (6) is also the GAMP approximation of the
posterior marginal density P(x j |y, λx , λz). Similarly, in lines
8 and 9, the expectation and variance are to be taken with
respect to the distribution

P(zi |yi , pt
i , τ

t
p, λz)

∝ PY |Z (yi |zi , λz) exp

[
− 1

2τ t
p
|zi − pt

i |2
]
. (7)

The density (7) can also be taken as an approximation of the
posterior marginal density P(zi |y, λx , λz).

Now, the probability densities (6) and (7) are over one-
dimensional random variables. Thus, even if their means and
variances do not have closed-form expressions, they can be
computed via numerical integration. In addition, the densities
can be interpreted as posterior distributions on scalar random
variables x j and zi with respect to observations r t

j and (yi , pt
i )

of the form

r t
j = x j +N (0, τ t

r ), x j ∼ PX (x j |λx ) (8a)

yi ∼ PY |Z (yi |zi ), zi ∼ N (pt
i , τ

t
p). (8b)

Hence, computing the posterior means and variances of
x j and zi in lines 8, 9, 16 and 17 is equivalent to a set of
scalar AWGN estimation problems. In this way, the sum-
product GAMP algorithm reduces the inherently vector-valued
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Algorithm 2 General (Non-Adaptive) GAMP

Require: Matrix A, estimation functions Gt
x , Gt

s and Gt
z and

parameter estimates λ
t
x and λ

t
z .

1: Set t ← 0, st−1 ← 0 and select some initial values for x̂0

and τ 0
x .

2: repeat
3: {Output node update}
4: τ t

p ← ‖A‖2Fτ t
x/m

5: pt ← Ax̂t − st−1τ t
p

6: ẑt
i ← Gt

z(pt
i , yi , τ

t
p, λ

t
z) for all i = 1, . . . , m

7: st
i ← Gt

s(pt
i , yi , τ

t
p, λ

t
z) for all i = 1, . . . , m

8: τ t
s ←−(1/m)

∑
i ∂Gt

s(pt
i , yi , τ

t
p, λ

t
z)/∂pt

i
9:

10: {Input node update}
11: 1/τ t

r ← ‖A‖2Fτ t
s /n

12: rt ← x̂t + τ t
r ATst

13: x̂ t+1
j ← Gt

x(r
t
j , τ

t
r , λ

t
x) for all j = 1, . . . , n

14: τ t+1
x ← (τ t

r /n)
∑

j ∂Gt
x(r

t
j , τ

t
r , λ

t
x)/∂r j

15: until Terminated

inference problem to a sequence of scalar AWGN estimation
problems at the input and output, along with transform by
A and AT. This is computationally attractive since the
algorithm involves no vector-valued estimation steps or
matrix inverses.

Of course, the GAMP algorithm is only an approximation
of the true inference problem. The performance of the method
and convergence results can be found in references mentioned
above.

B. General GAMP

As mentioned above, the sum-product GAMP algorithm is
a particular instance of a more general class of algorithms that
includes the max-sum GAMP algorithm for MAP estimation.
To provide the most general results for the adaptive GAMP,
we briefly review the general (non-adaptive) GAMP algorithm.
Full details of the general GAMP algorithm can be found
in [18]. For completeness, we restate the steps of the general
GAMP algorithm in Algorithm 2.

Comparing Algorithms 1 and 2, we see that there are two
generalizations in the general GAMP algorithm. First, the
mean and variance computations in lines 8, 9, 16 and 17 of the
sum-product GAMP algorithm, Algorithm 1, are replaced with
general estimation functions Gt

x , Gt
s and Gt

z . These estimation
functions take the outputs rt and pt and generate the estimates
xt , st and zt. Their derivatives results in the variance terms τ t

x ,
τ t

s and τ t
z . It is shown in [18] that with appropriate selection

of these estimation functions, one can incorporate both the
sum-product and max-sum variants of the GAMP algorithm.

For the case of the sum-product GAMP, we can recover
Algorithm 1 with the estimation functions

Gt
x (r, τr , λx ) := E[x |r, τr , λx ], (9a)

Gt
z(p, y, τp, λz) := E[z|p, y, τp, λz ], (9b)

Gt
s(p, y, τp, λz) := 1

τp

(
Gt

z(p, y, τp, λz)− p
)
, (9c)

where the expectations are with respect to the distributions
in (6) and (7). It is shown in [18] that the derivatives of
these estimation functions for lines 8 and 14 of Algorithm 2
agree with the variance computations in lines 11 and 17 of
Algorithm 1. Also, note that the vector st can be interpreted
as the current estimate of dual parameters [41].

The second difference between the the sum-product GAMP
algorithm in Algorithm 1 and the more general Algorithm 2
is that the fixed parameter values λx and λz are replaced
by a deterministic sequence of parameter values λ

t
x and λ

t
z .

Of course, if the parameters are known, there is no reason to
change the parameter estimates on each iteration. However,
we need to consider this generalization to enable the study of
the adaptive GAMP algorithm below.

C. AWGN Outputs With Sparse Priors

As discussed in the Introduction, much of the current
interest in the AMP and GAMP methods have been in the
context of compressed sensing [13]–[19]. Thus, it is useful to
briefly describe this particular application in more detail. The
original AMP formulations in [13]–[15] consider the special
case of AWGN output

yi = zi +wi , wi ∼ N (0, τw), (10)

where the additive noise wi is i.i.d. and independent of z.
In this case, as shown in [18], the output updates in line 7 and
8 reduce to

st
i = (yi − pt

i )/(τ
t
p + τw), τ t

s = 1/(τ t
p + τw).

For Bayesian forms of compressed sensing, one then takes
a sparse prior for the density PX . A common density is the
Laplacian prior,

PX (x j |λx) = λx

2
e−λx |x j |.

In this case, the MAP estimate (5) corresponds to the classic
LASSO estimate [33]. Although we have not discussed the
max-sum GAMP algorithm, as shown in [18], the equations for
the estimation function Gt

x in line (2) of Algorithm 2 reduce
to the classic soft-thresholding operator. In this way, the max-
sum GAMP with a Laplacian prior reduces to a variant of
an iterative soft-thresholding algorithm – see [13], [34] for a
general discussion.

D. State Evolution Analysis

In addition to its computational simplicity and generality,
a key motivation of the GAMP algorithm is that its asymptotic
behavior can be precisely characterized when A is a large i.i.d.
Gaussian transform. The asymptotic behavior is described by
what is known as a state evolution (SE) analysis. By now, there
are a large number of SE results for AMP-related algorithms
[9], [11]–[18]. Here, we review the particular SE analysis from
[18] and [23] which is based on the framework in [16].

Assumption 1: Consider a sequence of random realizations
of the general GAMP algorithm, Algorithm 2, indexed by the
dimension n, satisfying the following assumptions:
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(a) For each n, the matrix A ∈ R
m×n has i.i.d. components

with Aij ∼ N (0, 1/m) and the dimension m = m(n) is a
deterministic function of n satisfying n/m → β for some
β > 0 as n→∞.

(b) The input vectors x and initial condition x̂0 are determin-
istic sequences whose components converge empirically
with bounded moments of order s = 2k − 2 as

lim
n→∞(x, x̂0)

PL(s)= (X, X̂0), (11)

to some random vector (X, X̂0) for some k ≥ 2. Loosely,
this convergence implies that the empirical distribution of
the components of (x, x̂0) converge to the distribution of
(X, X̂0). A precise definition is given in Appendix A.

(c) The output vectors z and y ∈ R
m are generated by

z = Ax, and yi = h(zi , wi ) for all i = 1, . . . , m, (12)

for some scalar-valued function h(z, w) and vector
w ∈ R

m representing an output disturbance. It is assumed
that the output disturbance vector w is deterministic, but
empirically converges as

lim
n→∞w

PL(s)= W, (13)

where s = 2k − 2 is as in Assumption 1(b) and W is
some random variable. We let PY |Z denote the conditional
distribution of the random variable Y = h(Z , W ).

(d) The estimation function Gt
x(r, τr , λx ) and its deriva-

tive with respect to r , is Lipschitz continuous in r at
(τr , λx ) = (τ t

r , λ
t
x ), where τ t

r is a deterministic parameter
from the SE equations below. A similar assumptions
holds for Gt

z(p, τp, λz).
Assumption 3(a) simply states that we are considering large,

Gaussian i.i.d. matrices A. Assumptions (b) and (c) state that
the input vector x and output disturbance w are modeled as
deterministic, but whose empirical distributions asymptotically
appear as i.i.d. This deterministic model is one of key features
of Bayati and Montanari’s analysis in [16]. Assumption (d) is
a mild continuity condition.

Note that, for now, there is no assumption that the “true”
distribution of X or the true conditional distribution of Y given
Z must belong to the class of distributions (1) for any
parameters λx and λz . The analysis can thus model the effects
of model mismatch.

Next, we define the sets of two vectors

θ t
x := {(x j , r t

j , x̂ t+1
j ), j = 1, . . . , n}, (14a)

θ t
z := {(zi , ẑt

i , yi , pt
i ), i = 1, . . . , m}. (14b)

The first set θ t
x represents the components of the “true,” but

unknown, input vector x, its GAMP estimate x̂t as well as rt .
The second set θ t

z contains the components of the “true,” but
unknown, output vector z, its GAMP estimate ẑt , as well as
pt and the observed output y. The sets θ t

x and θ t
z are implicitly

functions of the dimension n.
The main result of [18] shows that if we fix the iteration t ,

and let n → ∞, the asymptotic joint empirical distribution
of the components of these two sets θ t

x and θ t
z converges to

random vectors of the form

θ
t
x := (X, Rt , X̂ t+1), θ

t
z := (Z , Ẑ t , Y, Pt ). (15)

We precisely state the nature of convergence momentarily (see
Theorem 1). In (15), X is the random variable in Assump-
tion 1(b), while Rt and X̂ t+1 are given by

Rt = αt
r X + V t , V t ∼ N (0, ξ t

r ), (16a)

X̂ t+1 = Gt
x(Rt , τ t

r , λ
t
x) (16b)

for some deterministic constants αt
r , ξ t

r , and τ t
r that are defined

below. Similarly, (Z , Pt ) ∼ N (0, Kt
p) for some covariance

matrix Kt
p, and

Y = h(Z , W ), Ẑ t = Gt
z(Pt , Y, τ t

p, λ
t
z), (17)

where W is the random variable in (13) and Kt
p contains

deterministic constants.
The deterministic constants αt

r , ξ t
r , τ t

r and Kt
p represent

parameters of the distributions of θ
t
x and θ

t
z and depend

on both the distributions of the input and outputs as well
as the choice of the estimation and adaptation functions.
The SE equations provide a simple method for recursively
computing these parameters. The equations are best described
algorithmically as shown in Algorithm 4. In order not to repeat
ourselves, in Algorithm 4, we have written the SE equations
for adaptive GAMP: For non-adaptive GAMP, the updates
(32b) and (33a) can be ignored as the values of λ

t
z and λ

t
x

are pre-computed.
With these definitions, we can state the main result

from [18].
Theorem 1 ([18]): Consider the random vectors θ t

x and θ t
z

generated by the outputs of GAMP under Assumption 1. Let
θ

t
x and θ

t
z be the random vectors in (15) with the parameters

determined by the SE equations in Algorithm 4. Then, for any
fixed t , the elements of the sets θ t

x and θ t
z converge empirically

with bounded moments of order k as

lim
n→∞ θ t

x
PL(k)= θ

t
x , lim

n→∞ θ t
z

PL(k)= θ
t
z . (18)

where θ
t
x and θ

t
z are given in (15). In addition, for any t , the

limits

lim
n→∞ τ t

r = τ t
r , lim

n→∞ τ t
p = τ t

p, (19)

also hold almost surely.
The theorem shows that the components of the vectors x

and z, and their GAMP estimates x̂t and ẑt have the same
statistical distribution as random variables X , Z , X̂ t and Ẑ t in
a simple scalar equivalent system. This scalar equivalent model
appears in several analyses and can be thought of as a single-
letter characterization [35] of the system. Remarkably, this
limiting property holds for essentially arbitrary distributions
and estimation functions, even the ones that arise from prob-
lems that are highly nonlinear or noncovex. From the single-
letter characterization, one can compute the asymptotic value
of essentially any component-wise performance metric such
as mean-squared error or detection accuracy. Similar single-
letter characterizations can also be derived by arguments from
statistical physics [27], [36]–[39].
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Algorithm 3 Adaptive GAMP

Require: Matrix A, estimation functions Gt
x , Gt

s and Gt
z and

adaptation functions H t
x and H t

z .
1: Set t ← 0, st−1 ← 0 and select some initial values for x̂0

and τ 0
x .

2: repeat
3: {Output node update}
4: τ t

p ← ‖A‖2Fτ t
x/m

5: pt ← Ax̂t − st−1τ t
p

6: λ̂t
z ← H t

z (p
t , y, τ t

p)

7: ẑt
i ← Gt

z(pt
i , yi , τ

t
p, λ̂

t
z) for all i = 1, . . . , m

8: st
i ← Gt

s(pt
i , yi , τ

t
p, λ̂

t
z) for all i = 1, . . . , m

9: τ t
s ←−(1/m)

∑
i ∂Gt

s(pt
i , yi , τ

t
p, λ̂

t
z)/∂pt

i
10:

11: {Input node update}
12: 1/τ t

r ← ‖A‖2Fτ t
s /n

13: rt ← xt + τ t
r ATst

14: λ̂t
x ← H t

x(r
t , τ t

r )
15: x̂ t+1

j ← Gt
x(r

t
j , τ

t
r , λ̂

t
x ) for all j = 1, . . . , n

16: τ t+1
x ← (τ t

r /n)
∑

j ∂Gt
x(r

t
j , τ

t
r , λ̂t

x )/∂r j

17: until Terminated

E. State Evolution Analysis for Sum-Product GAMP

For the special case of the sum-product GAMP algorithm
in Algorithm 1, the SE equations in Algorithm 4 reduce to a
particularly simple form. As shown in [18], the variance terms
τ t

r and ξ t
r in (32) are given by

τ t
r = ξ t

r = E
−1
[

∂2

∂p2 log pY |P(y|pt)

]
, (20a)

where the expectations are over the random variables
(Z , Pt ) ∼ N (0, Kt

p) and Y is given in (17). The covariance
matrix Kt

p has the form

Kt
p =

[
βτx0 βτx0 − τ t

p

βτx0 − τ t
p βτx0 − τ t

p

]
, (20b)

where τx0 is the variance of X and β > 0 is the asymptotic
measurement ratio (see Assumption 1 for details). The scaling
constant (32e) becomes αt

r = 1. The update rule for τ t+1
x also

simplifies to
τ t+1

x = E
[
var

(
X |Rt )], (20c)

where the expectation is over the random variables in (16). The
SE equations for the sum-product GAMP will be initialized
with

τ 0
p = βτx0 (21)

so that the initial value of the covariance matrix in (20b) is

Kt
p =

[
βτx0 0

0 0

]
. (22)

III. ADAPTIVE GAMP

The above review of the standard GAMP algorithms in
Algorithms 1 and 2 show that the methods apply to the
case when the parameters λx and λz in the distributions in

(1) are known. The adaptive GAMP method proposed here,
and shown in Algorithm 3, is an extension of Algorithm 2
that enables simultaneous identification of finite dimensional
λx and λz along with estimation of x and z.

The key modification is the introduction of the two adapta-
tion functions: H t

z (p
t , y, τ t

p) and H t
x(r

t , τ t
r ). In each iteration,

these functions output estimates, λ̂t
z and λ̂t

x of the parameters
based on the data pt , y, rt , τ t

p and τ t
r .

The basic (non-adaptive) GAMP algorithm in Algorithm 2
is a special case when the estimation functions H t

x and H t
z

output fixed values

H t
z (p

t , y, τ t
p) = λ

t
z, H t

x(r
t , τ t

r ) = λ
t
x , (23)

for the pre-computed sequence of parameters λ
t
x and λ

t
z .

We call these values precomputed since, in the case of the
non-adaptive GAMP algorithm, the parameter estimates λ

t
x

and λ
t
z do not depend on the data through the vectors pt , yt ,

and rt . A particular case of the non-adaptive algorithm would
be the oracle scenario, where λ

t
x and λ

t
z are set to the true

values of the parameters and do not change with the iteration
number t .

However, the adaptive GAMP algorithm in Algorithm 3 is
significantly more general and enables a large class of methods
for estimating the parameters based on the data. One particular
adaptation method is based on on maximum likelihood (ML)
as described next.

A. ML Parameter Estimation

As one possible method to estimate the parameters, recall
from Theorem 1 that the empirical distribution of the compo-
nents of rt converges weakly to the distribution of Rt in (16).
Now, the distribution of Rt only depends on three parameters
– αt

r , ξ t
r and λx . It is thus natural to attempt to estimate these

parameters from the empirical distribution of the components
of rt and thereby recover the parameter λx .

To this end, let φx (r, λx , αr , ξr ) be the log likelihood

φx (r, λx , αr , ξr ) := log PR(r |λx , αr , ξr ), (24)

where the right-hand side is the probability density of a
random variable R with distribution

R = αr X + V , X ∼ PX (·|λx ), V ∼ N (0, ξr ). (25)

Then, at any iteration t , we can attempt to perform a
maximum-likelihood (ML) estimate

λ̂t
x = H t

x(r
t , τ t

r )

:= arg max
λx∈�x

max
(αr ,ξr )∈Sx(τ t

r )

⎧
⎨

⎩
1

n

n∑

j=1

φx(r
t
j , λx , αr , ξr )

⎫
⎬

⎭. (26)

Here, the set Sx (τ
t
r ) is a set of possible values for the para-

meters αr , ξr . This set may depend on the measured variance
τ t

r and we will see its precise role below. The selection of the
sets is critical and discussed in detail in Section V.

Similarly, the individual components of pt and y have
the same distribution as (Pt , Y ) which depend only on the
parameters Kp and λz . Thus, we can define the likelihood

φz(p, y, λz, Kp) := log PY,P (y, p|λz, Kp), (27)
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where the right-hand side is the joint probability density of
(P, Y ) with distribution

Y ∼ PY |Z (·|Z , λz), (Z , P) ∼ N (0, Kp). (28)

Then, we estimate λz via the ML estimate

λ̂t
z = H t

z (p
t , y, τ t

p)

:= arg max
λz∈�z

max
Kp∈Sz(τ t

p)

{
1

m

m∑

i=1

φz(pt
i , yi , λz , Kp)

}
. (29)

Again, the set Sz(τ
t
p) is a set of possible covariance matri-

ces Kp .

B. Relation to EM-GAMP

Before discussing the convergence of the adaptive GAMP
algorithm with ML parameter estimation, it is useful to briefly
compare the ML parameter estimation with the EM-GAMP
method proposed by Vila and Schniter [24], [25] and
Krzakala et. al. [27], [28]. Both of these methods combine
the Bayesian AMP [14], [15] or GAMP algorithms [18] with
a standard EM procedure [29] as follows. First, the algorithms
use the sum-product version of the AMP/GAMP, so that the
outputs provide an estimate of the posterior distributions on
the components of x given the current parameter values. From
the discussion in Section II-A, we know that (6) and (7) can
be taken as an approximations of the true posteriors of x j and
zi for a given set of parameter values λx and λz . Using the
approximation, we approximately implement the EM proce-
dure to update the parameter estimate via a maximization

λ̂t
x = H t

x(r
t , τ t

r )

:= arg max
λx∈�x

1

n

n∑

j=1

E

[
log PX (x j |λx)|r t

j , τ
t
r , λ̂

t−1
x

]
, (30)

where the expectation is with respect to the distribution in (6).
In [24] and [25], the parameter update (30) is performed only
once every few iterations to allow P̂t to converge to the
approximation of the posterior distribution of x j given the
current parameter estimates. In [27] and [28], the parameter
estimate is updated at every iteration. A similar procedure is
performed for the estimation of λz .

We thus see that the EM-GAMP procedures in [24] and
[25] and in [27] and [28] are thus both special cases of
the adaptive GAMP algorithm in Algorithm 3 with particular
choices of the adaptation functions H t

x and H t
z . As a result,

our analysis in Theorem 2 below applies to these algorithms
as well and provides rigorous asymptotic characterizations of
the EM-GAMP performance. However, at the current time,
we can only prove the asymptotic consistency result for the
ML adaptation functions (26) and (29) described above.

That being said, it should be pointed out that the
EM-GAMP update (30) is generally computationally much
simpler than the ML updates in (26) and (29). For example,
when PX (x |λx) is an exponential family, the optimization in
(30) is convex. Also, the optimizations in (26) and (29) require
searches over additional parameters such as αr and ξr . Thus,
an interesting avenue of future work is to apply the analysis

Algorithm 4 Adaptive GAMP State Evolution
Given the distributions in Assumption 1, compute the sequence
of parameters as follows:

• Initialization Set t = 0 with

K0
x = cov(X, X̂0), τ 0

x = τ 0
x , (31)

where the expectation is over the random variables
(X, X̂0) in Assumption 1(b) and τ 0

x is the initial value
in the GAMP algorithm.

• Output node update: Compute the variables

τ t
p = βτ t

x , Kt
p = βKt

x , (32a)

λ
t
z = H t

z (Pt , Y, τ t
p), (32b)

τ t
r = −E

−1
[

∂

∂p
Gt

s(Pt , Y, τ t
p, λ

t
z)

]
, (32c)

ξ t
r = (τ t

r )
2
E

[
Gt

s(Pt , Y, τ t
p, λ

t
z)
]
, (32d)

αt
r = τ t

r E

[
∂

∂z
Gt

s(Pt , h(Z , W ), τ t
p, λ

t
z)

]
, (32e)

where the expectations are over the random variables
(Z , Pt ) ∼ N (0, Kt

p) and Y is given in (17).
• Input node update: Compute

λ
t
x = H t

x(Rt , τ t
r ), (33a)

τ t+1
x = τ t

r E

[
∂

∂r
Gt

x(Rt , τ t
r , λ

t
x)

]
, (33b)

Kt+1
x = cov(X, X̂ t+1), (33c)

where the expectations are over the random variables in
(16).

result of Theorem 3 below, to see if the EM-GAMP method
or some similarly computationally simple technique can be
developed which also provides asymptotic consistency.

IV. CONVERGENCE AND ASYMPTOTIC CONSISTENCY

WITH GAUSSIAN TRANSFORMS

A. General State Evolution Analysis
Before proving the asymptotic consistency of adaptive

GAMP with ML adaptation, we first prove the following more
general convergence result.

Assumption 2: Consider the adaptive GAMP algorithm run-
ning on a sequence of problems indexed by the dimension n,
satisfying the following assumptions:
(a) Same as Assumption 1(a) to (c) with k = 2.
(b) For every t , the adaptation function H t

x(r, τr ) is a
functional over r satisfying the following weak pseudo-
Lipschitz continuity property: Consider any sequence of
vectors r = r(n) and sequence of scalars τr = τ

(n)
r ,

indexed by n satisfying

lim
n→∞ r(n) PL(k)= Rt , lim

n→∞ τ (n)
r = τ t

r ,

where Rt and τ t
r are the outputs of the state evolution

equations defined below. Then,

lim
n→∞ H t

x(r
(n), τ (n)

r ) = H t
x(Rt , τ t

r ).



2976 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 60, NO. 5, MAY 2014

Similarly, H t
z (y, p, τp) satisfies analogous continuity con-

ditions in τp and (y, p). See Appendix A for a general
definition of weakly pseudo-Lipschitz continuous func-
tionals.

(c) The scalar-valued function Gt
x (r, τr , λx ) and its derivative

G′tx (r, τr , λx ) with respect to r are continuous in λx

uniformly over r in the following sense: For every ε > 0,
t , τ ∗r and λ∗x ∈ �x , there exists an open neighborhood U
of (τ ∗r , λ∗x ) such that for all (τr , λx ) ∈ U and r ,

|Gt
x(r, τr , λx )− Gt

x(r, τ
∗
r , λ∗x )| < ε,

|G′tx(r, τr , λx )− G′tx(r, τ ∗r , λ∗x )| < ε.

In addition, the functions Gt
x(r, τr , λx ) and G′tx(r, τr , λx )

must be Lipschitz continuous in r with a Lipschitz
constant that can be selected continuously in τr and λx .
The functions Gt

s(p, y, τp, λz), Gt
z(p, y, τp, λz) and

their derivatives G′ts(p, y, τp, λz) G′tz(p, y, τp, λz) sat-
isfy analogous continuity assumptions with respect
to p, y, τp and λz .

Although technical, assumptions (b) and (c) are mild conti-
nuity conditions that can be satisfied by a large class of adap-
tation functionals and estimation functions. For example, from
the definitions in Appendix A, the continuity assumption (b)
will be satisfied for any functional given by an empirical
average

H t
x(r, τr ) = 1

n

n∑

j=1

φt
x (r j , τr ),

where, for each t , φt
x (r j , τr ) is pseudo-Lipschitz continuous in

r of order p and continuous in τr uniformly over r . A similar
functional can be used for H t

z . As we will see in Section IV-B,
the ML functionals (26) and (29) also satisfy the required
conditions.

Theorem 2: Consider the random vectors θ t
x and θ t

z
generated by the outputs of the adaptive GAMP under
Assumption 2. Let θ

t
x and θ

t
z be the random vectors in (15)

with the parameters determined by the SE equations in Algo-
rithm 4. Then, for any fixed t , the components of θ t

x and θ t
z

converge empirically with bounded moments of order k = 2 as

lim
n→∞ θ t

x
PL(k)= θ

t
x , lim

n→∞ θ t
z

PL(k)= θ
t
z, (34)

where θ
t
x and θ

t
z are given in (15). In addition, for any t , the

limits

limn→∞ λt
x = λ

t
x , lim

n→∞ λt
z = λ

t
z, (35a)

limn→∞ τ t
r = τ t

r , lim
n→∞ τ t

p = τ t
p, (35b)

also hold almost surely.
Proof: See Appendix B.

The result is a natural generalization of Theorem 1 and
provides a simple extension of the SE analysis to incorporate
the adaptation. The SE analysis applies to essentially arbitrary
adaptation functions. It particular, it can be used to analyze
both the behavior of the adaptive GAMP algorithm with
either ML and EM-GAMP adaptation functions in the previous
section.

The proof uses the standard techniques and is based on the
same continuity argument as [40].

B. Asymptotic Consistency With ML Adaptation

We now use Theorem 2 to prove the asymptotic
consistency of adaptive GAMP with the ML parame-
ter estimation described in Section III-A. To guarantee
consistency of the adaptive GAMP algorithm, we need
to impose certain identifiability conditions. To understand
the conditions, given parameters (λx , αr , ξr ) and (λz, Kp),
let

PR(·|λx , αr , ξr ), PY,P (·|λz, Kp) (36)

be the distributions of the random variables R and (Y, P) in

(25) and (28), respectively.
Definition 1: Consider a family of distributions,
{PX (x |λx), λx ∈ �x }, a set Sx of parameters (αr , ξr )
of a Gaussian channel, and the function φx(r, λx , αr , ξr ). We
say that PX (x |λx) is identifiable with Gaussian outputs with
parameter set Sx and function φx if:

(a) The sets Sx and �x are compact.
(b) For any “true” parameters λ∗x ∈ �x , and (α∗r , ξ∗r ) ∈ Sx ,

the maximization

λ̂x = arg max
λx∈�x

max
(αr ,ξr )∈Sx

E
[
φx (R, λx , αr , ξr )|λ∗x , α∗r , ξ∗r

]
, (37)

is well-defined, unique and returns the true value,
λ̂x = λ∗x . The expectation in (37) is with respect to the
distribution R ∼ PR(·|λ∗x , α∗r , ξ∗r ) in (36).

(c) For every λx and αr , ξr , the function φx(r, λx , αr , ξr )
is pseudo-Lipschitz continuous of order k = 2 in r .
In addition, it is continuous in λx , αr , ξr uniformly
over r in the following sense: For every ε > 0
and λ̂x , α̂r , ξ̂r , there exists an open neighborhood U
of λ̂x , α̂r , ξ̂r , such that for all (λx , αr , ξr ) ∈ U and
all r ,

|φx(r, λx , αr , ξr )− φx(r, λ̂x , α̂r , ξ̂r )| < ε.

Definition 2: Consider a family of conditional distribu-
tions, {PY |Z (y|z, λz), λz ∈ �z} generated by the map-
ping Y = h(Z , W, λz ) where W ∼ PW is some
random variable and h(z, w, λz) is a scalar-valued func-
tion. Let Sz be a set of covariance matrices Kp and
let φz(y, p, λz, Kp) be some function. We say that the
conditional distribution family PY |Z (·|·, λz) is identifiable
with Gaussian inputs with covariance set Sz and function
φz if:
(a) The parameter sets Sz and �z are compact.
(b) For any “true” parameter λ∗z ∈ �z and true covariance

K∗p , the maximization

λ̂z = arg max
λz∈�z

max
Kp∈Sz

E
[
φz(Y, P, λz , Kp)|λ∗z , K∗p

]
, (38)



KAMILOV et al.: APPROXIMATE MESSAGE PASSING WITH CONSISTENT PARAMETER ESTIMATION 2977

is well-defined, unique and returns the true value,
λ̂z = λ∗z , The expectation in (38) is with respect to
(Y, P) ∼ PY,P (·|λ∗z , K∗p).

(c) For every λz and Kp, the function φz(y, p, λz, Kp) is
pseudo-Lipschitz continuous in (p, y) of order k = 2.
In addition, it is continuous in λp, Kp uniformly over
p and y.

Conditions (a) and (c) in both definitions are mild conti-
nuity and boundedness conditions. The main requirements is
condition (b). Qualitatively, the definitions state that if R and
(Y, P) are generated by models of the form (25) and (28),
then the parameters in those models can be estimated through
maximization of the functions φx and φz . The functions
φx and φz can be the log likelihood functions (24) and
(27), although we permit other functions as well, since the
maximization may be computationally simpler. Such functions
are sometimes called pseudo-likelihoods. We will discuss these
conditions and the role of the sets Sx and Sz in more detail in
Section V.

Assumption 3: Let PX (x |λx) and PY |Z (y|z, λz) be families
of distributions and consider the adaptive GAMP algorithm,
Algorithm 3, run on a sequence of problems, indexed by the
dimension n satisfying the following assumptions:

(a) Same as Assumption 1(a) to (c) with k = 2. In addition,
the distributions for the vector X is given by PX (·|λ∗x )
for some “true” parameter λ∗x ∈ �x and the conditional
distribution of Y given Z is given by PY |Z (y|z, λ∗z ) for
some “true” parameter λ∗z ∈ �z .

(b) Same as Assumption 2(c).
(c) The adaptation functions are set to (26) and (29).

Theorem 3: Consider the outputs of the adaptive GAMP
algorithm with ML adaptation as described in Assumption 3.
Then, for any fixed t ,

(a) The components of θ t
x and θ t

z in (14) converge empirically
with bounded moments of order k = 2 as in (34) and the
limits (35) hold almost surely.

(b) In addition, if (αt
r , ξ

t
r ) ∈ Sx (τ

t
r ), and the family of dis-

tributions PX (·|λx ), λx ∈ �x is identifiable in Gaussian
noise with parameter set Sx (τ

t
r ) and pseudo-likelihood φx

(see Definition 1), then

lim
n→∞ λ̂t

x = λ
t
x = λ∗x (39)

almost surely.
(c) Similarly, if Kt

p ∈ Sz(τ
t
p) for some t , and the family

of distributions PY |Z (·|λz), λz ∈ �z is identifiable with
Gaussian inputs with parameter set Sz(τ

t
p) and pseudo-

likelihood φz (see Definition 2) then

lim
n→∞ λ̂t

z = λ
t
z = λ∗z (40)

almost surely.
Proof: See Appendix C.

Remarkably, the theorem shows that for a very large
class of the parameterized distributions, adaptive GAMP with
ML adaptation is able to asymptotically estimate the correct
parameters. Moreover, there is asymptotically no performance
loss between adaptive GAMP and a corresponding oracle
GAMP algorithm that knows the correct parameters in the

sense that the empirical distributions of the algorithm outputs
are described by the same SE equations.

C. Computational Issues

While Theorem 3 shows that adaptive GAMP with ML
adaptation can recover consistent parameter estimates, the
ML optimizations in (26) and (29) theoretically need to be
computed exactly. In general, these optimizations will be non-
convex. This requirement can be seen as the main disadvantage
of the ML adaptation proposed in this paper relative to the
EM-GAMP methods in [24], [25], [27], and [28]: while the
proposed ML adaptation may have guaranteed consistency,
the optimizations in each iteration may be non-convex. The
EM iterations, in general are simpler.

Indeed, in the simulations in Section VI, we will need to
approximate the optimization either through gradient ascent or
other nonlinear optimization methods. Thus, the theory will
not hold exactly. However, we will still observe a close match
between the adaptive GAMP with an oracle GAMP with the
correct parameters. Moreover, the ML adaptation is a non-
convex optimization only over a number of variables only
equal to the number of unknown parameters in λx and λz ,
not the vectors x and z. Thus, for many practical problem,
the overall optimization can be significantly simpler than the
original non-convex problem.

V. IDENTIFIABILITY AND PARAMETER SET SELECTION

In addition to the numerical optimization issues, Theorem 3
also imposes certain restrictions on the sets Sx and Sz over
which the ML optimization must be performed. On the one
hand, Theorem 3 requires that, to guarantee consistency,
the sets must be sufficiently large to ensure that, for some
iteration t , either (αt

r , ξ
t
r ) ∈ Sx (τ

t
r ) or Kt

p ∈ Sz(τ
t
p). On the

other hand, as we will see now, the sets may need to be
constrained in order to satisfy the identifiability conditions in
Definitions 1 and 2. In this section, we briefly provide some
examples to illustrate under what cases these conditions can
be met.

As discussed in the previous section, the main challenge in
meeting the identifiability requirements in both Definitions 1
and 2 is condition (b). To understand this condition, we begin
with the following simple lemma.

Lemma 1: Consider the distributions PR and PY,P in (36).

(a) When φx is the log-likelihood function in (24), then
condition (b) of Definition 1 is satisfied if the mapping

(λx , αr , ξr ) → PR(·|λx , αr , ξr ) (41)

is one-to-one in the set λx ∈ �x and (αr , ξr ) ∈ Sx .
(b) Similarly, when φz is the log-likelihood function in (27),

then condition (b) of Definition 2 is satisfied if the
mapping

(λz, Kp) → PY,P(·|λz, Kp) (42)

is one-to-one in the set λz ∈ �z and Kz ∈ Sz .
Proof: See Appendix D.

Lemma 1 essentially states that if the true likelihood
functions are used, then identifiability is equivalent to the
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parametrizations of the distributions R and (Y, P) in in (25)
and (28) being unique. That is, with sufficient observations
of these variables, we should be able to uniquely recover
the parameter values. To understand this in this context of
the adaptive GAMP algorithm, recall from the state evolution
analysis, that the components of the vectors rt and (y, pt )
are asymptotically distributed as R or (Y, P) in (25) and
(28), respectively. Thus, if the parametrizations in (41) or (42)
are not one-to-one, two different parameters values may give
rise to the same asymptotic distributions on rt and (y, pt ).
In this case, the adaptation functions in (26) and (29) that
base the parameter estimates on rt and (y, pt ), cannot hope to
distinguish between two such parameter values. On the other
hand, if the parametrizations are one-to-one, the lemma shows
that the ML parameter estimation will be able to correctly
identify the parameter values. We now provide some examples.

A. Gaussian Mixtures

Suppose that X is a K -term Gaussian mixture with distrib-
ution,

X ∼ N (μk, τk) with probability pk,

with the unknown parameters being λx = {(μk, τk, pk),
k = 1, . . . , K }. Then, the variable R in (25) will also be a
Gaussian mixture, but with different components

R ∼ N (αr μk, α
2
r τk + ξr ) with probability pk .

It is easy to check that two parameters λx and λ′x will
generically result in the same distribution on R if and only if

p′k = pk, α′rμ′k = αrμk, (43a)

(α′r )2τ ′k + ξr = α2
r τk + ξr , (43b)

for k = 1, . . . , K . That is, the component means, variances
and probabilities must match.

Now, λx has 3K parameters, so (λx , αr , ξr ) has a total of
3K+2 parameters. Since (43) has 3K constraints, the mapping
(41) would in general need two additional constraints to be
one-to-one to meet condition (b) of Definition 1. As one exam-
ple for such constraints, we could know a priori that X has a
known mean and variance, thereby providing two constraints.
Alternatively, we could know that one of the mixtures, say
k = 1, is strictly zero so that μ1 = τ1 = 0. This requirement
would also provide two additional constraints. In either of
these two examples, we need no additional constraints on the
set Sx to meet the conditions of Lemma 1. Alternatively, if
Sx can be restricted in some manner, then we could relax
those assumptions.

B. AWGN Output

Now consider an AWGN output channel where PY |Z is
given by

Y = Z +W, W ∼ N (0, τw), (44)

where W is independent of Z . Here, the unknown parameter is
λz = τw . Then, given a covariance matrix Kp, the distribution
PY,P in (36) is given by

(Y, P) ∼ N (0, Q), Q = Kp +
[

τw 0
0 0

]
,

which is uniquely specified by the covariance matrix Q. In this
case, if we know the (1, 1)-element of Kp, we can determine
τw from (1, 1) element of Q.

C. Initialization

One case where the covariance matrix Kt
p could be known

is in the initial step of the algorithm. Suppose, for example,
that we know the mean and variance of X , the random variable
describing the components of x. That is, the mean and variance
of variance of the input distribution PX (·|λx) is the same for all
values of λx ∈ �x . In this case, even though we do not know
the value of the parameter, we can perform the initialization in
line 1 for the sum-product GAMP algorithm in Algorithm 1.
Then, from the state evolution equations in Section II-E, we
would then know the initial covariance matrix Kt

p for t = 0
as given in (22).

VI. NUMERICAL RESULTS

A. Estimation of a Gauss-Bernoulli Input

Recent findings [42] suggest that there is considerable value
in learning of priors PX in the context of compressed sensing,
which considers the estimation of sparse vectors x from under-
determined measurements (m < n). It is known that estimators
such as LASSO offer certain optimal min-max performance
over a large class of sparse distributions [43]. However,
for many particular distributions, there is a potentially large
performance gap between LASSO and MMSE estimator with
the correct prior. This gap was the main motivation for the
work of Vila and Schniter [24], [25] which showed large gains
of the EM-GAMP method due to its ability to learn the prior.

Here, we illustrate the performance and asymptotic con-
sistency of adaptive GAMP in a simple compressed sensing
example. Specifically, we consider the estimation of a sparse
vector x ∈ R

n from m noisy measurements

y = Ax + w = z+ w,

where the additive noise w is random with i.i.d. entries
wi ∼ N (0, σ 2). Here, the “output” channel is determined by
the statistics of w, which are assumed to be known to the
estimator. So, there are no unknown parameters λz .

As a model for the sparse input vector x, we assumed that
the components are i.i.d. with the Gauss-Bernoulli distribution,

x j ∼
{

0 prob = 1− ρ,

N (0, σ 2
x ) prob = ρ

(45)

where ρ represents the probability that the component is non-
zero (i.e. the vector’s sparsity ratio) and σ 2

x is the variance of
the non-zero components. The parameters λx = (ρ, σ 2

x ) are
treated as unknown.

Now, the Gaussian mixture in (45) has only two unknown
parameters: ρ and σ 2

x . As described in Section V-A, this
mixture is sufficiently constrained so that if we apply the full
ML estimation in (26) with no restrictions in the set Sx , we
can identify the parameters correctly. We thus use this ML
adaption in the first iteration and the above theory suggests
that the algorithm should recover the correct parameters right
away.
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Fig. 2. Reconstruction of a Gauss-Bernoulli signal from noisy measurements. The average reconstruction MSE is plotted against (a) measurement ratio m/n
and (b) AWGN variance σ 2. The plots illustrate that adaptive GAMP yields considerable improvement over �1-based LASSO estimator. Moreover, it matches
the performance of oracle GAMP that knows the prior parameters.

However, in our implementation, we continue to update the
parameters at all iterations since there may be parameter errors
on finite sample sizes. However, to simplify the ML adapta-
tion, we can restrict the set selection Sx for iterations t > 1
as follows. Assuming the parameters were selected correctly
up to some iteration t − 1, the adaptive GAMP algorithm
should behave the same as an oracle sum-product GAMP
algorithm with the correct parameters. Now, as described in
Section II-E, for the sum-product GAMP, the SE equations
simplify so that αt

r = 1 and ξ t
r = τ t

r . Thus, the parameters
αt

r and ξ t
r do not need to be estimated, and (26) conveniently

simplifies to

Hx(r, τr ) = arg max
λx∈�x

⎧
⎨

⎩
1

n

n∑

j=1

log PR(r j |λx , τr )

⎫
⎬

⎭, (46)

where �x = [0, 1] × [0,+∞). In our implementation, we
approximate the ML adaptation (46) with the EM update (30),
which is run for several iterations. At each iteration of adap-
tive GAMP, we run iteratively the EM updates either until
‖̂λt

x − λ̂t−1
x ‖22/‖̂λt−1

x ‖22 ≤ 10−4 for 3 consecutive iterations, or
for a maximum of 200 iterations.

Fig. 2 illustrates the performance of adaptive GAMP on
signals of length n = 400 generated with the parameters λx =
(ρ = 0.2, σ 2

x = 5). The performance of adaptive GAMP is
compared to that of LASSO1 with MSE optimal regularization
parameter, and oracle GAMP that knows the parameters of
the prior exactly. For generating the graphs, we performed
1000 random trials by forming the measurement matrix A
from i.i.d. zero-mean Gaussian random variables of variance
1/m. In Fig. 2(a), we keep the variance of the noise fixed
to σ 2 = 0.1 and plot the average MSE of the reconstruction
against the measurement ratio m/n. In Fig. 2(b), we keep the
measurement ratio fixed to m/n = 0.75 and plot the average
MSE of the reconstruction against the noise variance σ 2.
For completeness, we also provide the asymptotic MSE

1For a large-scale implementation of LASSO, we used l1_ls package that
is readily available online [44].

values computed via SE recursion. The results illustrate that
GAMP significantly outperforms LASSO over the whole
range of m/n and σ 2. Moreover, the results corroborate the
consistency of adaptive GAMP which nearly achieves the
reconstruction quality of oracle GAMP. Note also that in
Fig. 2 the average reconstruction times—across all realizations
and undersampling rates—were 0.35, 0.06, and 0.22 seconds
for LASSO, oracle GAMP, and adaptive GAMP, respectively.
The results indicate that adaptive GAMP can be an effective
method for estimation when the parameters of the problem
are difficult to characterize and must be estimated from data.

B. Estimation of a Nonlinear Output Classification Function

As second example, we consider the estimation of the linear-
nonlinear-Poisson (LNP) cascade model [8]. The model has
been successfully used to characterize neural spike responses
in early sensory pathways of the visual system. In the context
of the LNP cascade model, the vector x ∈ R

n represents
the linear filter, which models the linear receptive field of
the neuron. AMP techniques combined with the parameter
estimation have been recently proposed for neural receptive
field estimation and connectivity detection in [45].

As in Section VI-A, we model x as a Gauss-Bernoulli
vector with unknown parameters λx = (ρ, σ 2

x ). To obtain
the measurements y, the vector z = Ax is passed through
a component-wise nonlinearity u specified by

u(z) = 1

1+ e−z
. (47)

The final measurement vector y is generated by a measurement
channel with a conditional density of the form

pY |Z (yi |zi , λz) = f (zi )
yi

yi ! e− f (zi ), (48)

where f denotes the nonlinearity given by

f (z; λz) = exp

(
r∑

i=1

λz,i u
i−1(z)

)
.
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Fig. 3. Identification of linear-nonlinear-Poisson cascade model. The average
reconstruction MSE is plotted against the measurement ratio m/n. This plots
illustrates near consistency of adaptive GAMP for large n.

Adaptive GAMP can now be used to also estimate vector of
polynomial coefficients λz , which together with x, completely
characterizes the LNP system.

The estimation of λz is performed with ML estimator
described in Section III-A. We assume that the mean and vari-
ance of the vector x are known at iteration t = 0. As discussed
in Section V-C, this implies that for sum-product GAMP the
covariance K0

p is initially known and the optimization (29)
simplifies to

Hz(p, y, τp) = arg max
λz∈�z

{
1

m

m∑

i=1

log pY (yi |λz)

}
, (49)

where �z ⊂ R
r . The estimation of λx is performed as in

Section VI-A. As before, for iteration t > 0, we assume
that the maximizations (46) and (49) yield correct parameter
estimates λ̂t

x = λx and λ̂t
z = λz , respectively. Thus we can

conclude by induction that for t > 0 the adaptive GAMP
algorithm should continue matching oracle GAMP for large
enough n. In our simulations, we implemented (49) with a
gradient ascend algorithm and run it until convergence.

In Fig. 3, we compare the reconstruction performance of
adaptive GAMP against the oracle version that knows the
true parameters (λx , λz) exactly. We consider the vector x
generated with true parameters λx = (ρ = 0.1, σ 2

x = 30).
We consider the case r = 3 and set the parameters of
the output channel to λz = [−4.88, 7.41, 2.58]. To illustrate
the asymptotic consistency of the adaptive algorithm, we
consider the signals of length n = 1000 and n = 10000. We
perform 10 and 100 random trials for long and short signals,
respectively, and plot the average MSE of the reconstruction
against m/n. As expected, for large n, the performance of
adaptive GAMP is nearly identical (within 0.15) to that of
oracle GAMP. For this experiment the average reconstruction
times for n = 1000 were 120.76 and 1031.5 seconds for oracle
and adaptive GAMP, respectively, where the output updates
were responsible for the majority of the computation time.

VII. CONCLUSION

We have presented an adaptive GAMP method for the
estimation of i.i.d. vectors x observed through a known

linear transforms followed by an arbitrary, component-wise
random transform. The procedure, which is a generalization of
EM-GAMP methodology of [24], [25], [27], and [28], esti-
mates both the vector x as well as parameters in the source
and component-wise output transform. In the case of large
i.i.d. Gaussian transforms, it is shown that the adaptive GAMP
method with ML parameter estimation is provably asymptoti-
cally consistent in that the parameter estimates converge to the
true values. This convergence result holds over a large class of
models with essentially arbitrarily complex parameterizations.
Moreover, the algorithm is computationally efficient since it
reduces the vector-valued estimation problem to a sequence of
scalar estimation problems in Gaussian noise. We believe that
this method is applicable to a large class of linear-nonlinear
models with provable guarantees can have applications in a
wide range of problems. We have mentioned the use of the
method for learning sparse priors in compressed sensing.

There are however several limitations that may be addressed
in future work. Most significantly, the SE results are currently
limited to large i.i.d. matrices. However, many matrices in
practice are not well-modeled as large i.i.d. Recent work of
ours [46] has attempted to understand the behavior of GAMP
in non-asymptotic settings and an avenue of future work is to
see if these results can be extended to adaptive GAMP.

Also, a critical assumption in our analysis is that the para-
meters λx and λz are finite dimensional and whose dimensions
do not grow. Another avenue of work would be see if the
methods can be extended to non-parametric estimation of the
densities in the adaptation steps or estimation with growing
numbers of parameters.

Finally, as we discussed in Section IV-C, the ML adaptation
is generally non-convex and thus must often be approximated.
An open question is what tractable, approximate methods can
be applied while guaranteeing consistency.

APPENDIX A

CONVERGENCE OF EMPIRICAL DISTRIBUTIONS

Bayati and Montanari’s analysis in [16] employs certain
deterministic models on the vectors and then proves conver-
gence properties of related empirical distributions. To apply
the same analysis here, we need to review some of their defi-
nitions. We say a function φ : Rr → R

s is pseudo-Lipschitz of
order k > 1, if there exists an L > 0 such for any x, y ∈ R

r ,

‖φ(x)− φ(y)‖ ≤ L(1+ ‖x‖k−1 + ‖y‖k−1)‖x − y‖.
Now suppose that for each n = 1, 2, . . ., v(n) is a set of

vectors
v(n) = {vi(n), i = 1, . . . , �(n)}, (50)

where each element vi (n) ∈ R
s and �(n) is the number of

elements in the set. Thus, v(n) can itself be regarded as a
vector with s�(n) components. We say that v(n) empirically
converges with bounded moments of order k as n →∞ to a
random vector V on R

s if: For all pseudo-Lipschitz continuous
functions, φ, of order k,

lim
n→∞

1

n

n∑

i=1

φ(vi (n)) = E(φ(V)) <∞.
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When the nature of convergence is clear, we may write (with
some abuse of notation)

v(n) PL(k)→ V as n→∞,

or

lim
n→∞ v(n) PL(k)= V.

Finally, let Ps
k be the set of probability distributions on R

s

with bounded kth moments, and suppose that H : Ps
k → �

is a functional Ps
k to some topological space �. Given a

set v(n) as in (50), write H (v) for H (Pv) where Pv is the
empirical distribution on the components of v. Also, given a
random vector V with distribution PV write H (V) for H (PV).
Then, we say that the functional H is weakly pseudo-Lipschitz
continuous of order k if

lim
n→∞ v(n) PL(k)= V �⇒ lim

n→∞ H (v(n)) = H (V),

where the limit on the right hand side is in the topology of �.

APPENDIX B

PROOF OF THEOREM 2

The proof follows along the adaptation argument of [40].
We use the tilde superscript on quantities such as
x̃t , r̃t , τ̃ t

r , p̃t , τ̃ t
p, s̃t , and z̃t to denote values generated via a

non-adaptive version of the GAMP. The non-adaptive GAMP
algorithm has the same initial conditions as the adaptive
algorithm (i.e. x̃0 = x̂0, τ̃ 0

p = τ 0
p, s̃−1 = s−1 = 0), but with

λ̂t
x and λ̂t

z replaced by their deterministic limits λ̄t
x and λ̄t

z ,
respectively. That is, we replace lines 3, 3 and 3 in Algorithm 3
with

z̃t
i = Gt

z(pt
i , yi , τ

t
p, λ

t
z), s̃t

i = Gt
s(pt

i , yi , τ
t
p, λ

t
z),

x̃t+1
j = Gt

x(r
t
j , τ

t
r , λ

t
x ).

This non-adaptive algorithm is precisely the standard GAMP
method analyzed in [18]. The results in that paper show
that the outputs of the non-adaptive algorithm satisfy all the
required limits from the SE analysis. That is,

lim
n→∞ θ̃ t

x
PL(k)= θ

t
x , lim

n→∞ θ̃ t
z

PL(k)= θ
t
z,

where θ̃ t
x and θ̃ t

z are the sets generated by the non-adaptive
GAMP algorithm:

θ̃ t
x :=

{
(x j , r̃ t

j , x̃ t+1
j ) : j = 1, . . . , n

}
,

θ̃ t
z :=

{
(zi , z̃t

i , yi , p̃t
i ) : i = 1, . . . , m

}
.

The limits (34) are now proven through a continuity argu-
ment that shows that the adaptive and non-adaptive quantities
must asymptotically agree with one another. Specifically, we
will start by proving that the following limits holds almost
surely for all t ≥ 0

lim
n→∞�t

x = lim
n→∞

1

n
‖̂xt − x̃t‖kk = 0 (51a)

lim
n→∞�t

τp
= lim

n→∞ |τ
t
p − τ̃ t

p| = 0 (51b)

where ‖ · ‖k is usual the k-norm. Moreover, in the course of
proving (51), we will also show that the following limits hold
almost surely

lim
m→∞�t

p = lim
m→∞

1

m
‖pt − p̃t‖kk = 0, (52a)

lim
n→∞�t

r = lim
n→∞

1

n
‖rt − r̃t‖kk = 0, (52b)

lim
m→∞�t

s = lim
m→∞

1

m
‖st − s̃t‖kk = 0, (52c)

lim
m→∞�t

z = lim
m→∞

1

m
‖̂zt − z̃t‖kk = 0, (52d)

lim
n→∞�t

τr
= lim

n→∞ |τ
t
r − τ̃ t

r | = 0, (52e)

lim
n→∞ λ̂t

x = λ̄t
x , (52f)

lim
n→∞ λ̂t

z = λ̄t
z , (52g)

The proof of the limits (51) and (52) is achieved by an
induction on t . Although we only need to show the above
limits for k = 2, most of the arguments hold for arbitrary
k ≥ 2. We thus present the general derivation where possible.

To begin the induction argument, first note that the non-
adaptive algorithm has the same initial conditions as the
adaptive algorithm. Thus the limits (51) and (52c) hold for
t = 0 and t = −1, respectively.

We now proceed by induction. Suppose that t ≥ 0 and the
limits (51) and (52c) hold for some t and t − 1, respectively.
Since A has i.i.d. components with zero mean and variance
1/m, it follows from the Marčenko-Pastur Theorem [47] that
its 2-norm operator norm is bounded. That is, there exists a
constant CA such that almost surely we have

lim
n→∞‖A‖k ≤ CA, lim

n→∞‖A
T ‖k ≤ CA. (53)

This bound is the only part of the proof that specifically
requires k = 2. From (53), we obtain

‖pt − p̃t‖k = ‖Ax̂t − τ t
pst−1 − Ax̃t + τ̃ t

p s̃t−1‖k
= ‖A(̂xt − x̃t )+ τ t

p(s̃
t−1 − st−1)+ (τ̃ t

p − τ t
p)s̃

t−1‖k
≤ ‖A(̂xt − x̃t )‖k + |τ t

p|‖s̃t−1 − st−1‖k + |τ̃ t
p − τ t

p|‖s̃t−1‖k
(a)≤ ‖A‖k ‖̂xt − x̃t‖k + |τ t

p|‖s̃t−1 − st−1‖k + |τ̃ t
p − τ t

p|‖s̃t−1‖k
≤ CA ‖̂xt − x̃t‖k + |τ t

p|‖st−1 − s̃t−1‖k + |τ t
p − τ̃ t

p|‖s̃t−1‖k
(54)

almost surely, where (a) is due to the norm inequality ‖Ax‖k ≤
‖A‖k‖x‖k . Since k ≥ 1, we have that for any positive numbers
a and b

(a + b)k ≤ 2k(ak + bk). (55)

Applying the inequality (55) into (54), we obtain

1

m
‖pt − p̃t‖kk
≤ 1

m

(
CA‖̂xt − x̃t‖k + |τ t

p|‖st−1 − s̃t−1‖k +�t
τp
‖s̃t−1‖k

)k

≤ 2kCA
n

m
�t

x + 2k |τ t
p|k�t−1

s + 2k(�t
τp

)k
(

1

m
‖s̃t−1‖kk

)
. (56)
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Now, since s̃t and τ̃ t
p are the outputs of the non-adaptive

algorithm, they satisfy the limits

lim
n→∞

1

m
‖s̃t‖kk = lim

n→∞
1

m

m∑

i=1

|s̃t
i |k = E

[
|St |k

]
<∞, (57a)

lim
n→∞ τ̃ t

p = τ t
p <∞. (57b)

Now, the induction hypotheses state that �t
x , �t−1

s and
�t

τp
→ 0. Applying these along the bounds (57a), and the

fact that n/m → β, we obtain (52a).
To establish (52g), we first prove the empirical convergence

of (pt , y) to (Pt , Y ). Towards this end, let φ(p, y) be any
pseudo-Lipschitz continuous function φ of order k. Then
∣∣∣∣∣

1

m

m∑

i=1

φ(pt
i , yi )− E

[
φ(Pt , Y )

]
∣∣∣∣∣

≤ 1

m

m∑

i=1

∣∣φ(pt
i , yi )− φ( p̃t

i , yi )
∣∣

+
∣∣∣∣∣

1

m

m∑

i=1

φ( p̃t
i , yi )− E

[
φ(Pt , Y )

]
∣∣∣∣∣

(a)≤ L

m

m∑

i=1

(
1+ |pt

i |k−1 + | p̃t
i |k−1 + |yi |k−1

)
|pt

i − p̃t
i |

+
∣∣∣∣∣

1

m

m∑

i=1

φ( p̃t
i , yi )− E

[
φ(Pt , Y )

]
∣∣∣∣∣

(b)≤LC�t
p +

∣∣∣∣∣
1

m

m∑

i=1

φ( p̃t
i , yi )− E

[
φ(Pt , Y )

]
∣∣∣∣∣ . (58)

In (a) we use the fact that φ is pseudo-Lipschitz, and in (b) we
use Hölder’s inequality |̂xT y| = ‖x‖k‖y‖q with q = p/(p−1).
The constant is defined as

C :=
[

1

m

m∑

i=1

(
1+ |pt

i |k−1 + | p̃t
i |k−1 + |yi |k−1

)]k/(k−1)

≤ 1

m

m∑

i=1

(
1+ |pt

i |k−1 + | p̃t
i |k−1 + |yi |k−1

)k/(k−1)

≤ const×
[

1+
(

1

m

∥∥pt
∥∥k

k

) k−1
k

+
(

1

m

∥∥p̃t
∥∥k

k

) k−1
k +

(
1

m
‖y‖kk

) k−1
k
]
, (59)

where the first step is from Jensen’s inequality. Since (p̃t , y)
satisfy the limits for the non-adaptive algorithm, we have:

lim
n→∞

1

m
‖p̃t‖kk = lim

n→∞
1

m

m∑

i=1

| p̃t
i |k = E

[|Pt |k] <∞ (60a)

lim
n→∞

1

m
‖y‖kk = lim

n→∞
1

m

m∑

i=1

|yi |k = E
[|Y |k] <∞ (60b)

Also, from the induction hypothesis (52a), it follows that the
adaptive output must satisfy the same limit

lim
n→∞

1

m
‖pt‖kk = lim

n→∞
1

m

m∑

i=1

|pt
i |k = E

[|Pt |k] <∞. (61)

Combining (58), (59), (60), (61), (52a) we conclude that for
all t ≥ 0

lim
n→∞(pt , y)

PL(k)= (Pt , Y ). (62)

The limit (62) along with (51b) and the continuity condition
on H t

z in Assumption 1(d) prove the limit in (52g).
The limit (52a) together with continuity conditions on Gt

z
in Assumptions 1 show that (52c), (52d) and (52e) hold for t .
For example, to show (52d), we consider the limit m → ∞
of the following expression

1

m
‖̂zt − z̃t‖kk =

1

m
‖Gt

z(p
t , y, τ t

p, λ̂
t
z)− Gt

z(p̃
t , y, τ t

p, λ̄
t
z)‖kk

(a)≤ L

m
‖pt − p̃t‖kk = L�t

p,

where at (a) we used the Lipschitz continuity assumption.
Similar arguments can be used for (52c) and (52e).

To prove (52b), we proceed exactly as for (52a). Due to
the continuity assumptions on Hx , this limit in turn shows
that (52f) holds almost surely. Then, (51a) and (51b) follow
directly from the continuity of Gx in Assumptions 1, together
with (52b) and (52f). We have thus shown that if the limits (51)
and (52) hold for some t , they hold for t + 1. Thus, by
induction they hold for all t .

Finally, to establish (34), let φ be any pseudo-Lipschitz
continuous function φ(x, r, x̂), and define

εt :=
∣∣∣∣∣

1
n

m∑
j=1

φ(x j , r̃ t
j , x̃ t+1

j )− E
[
φ(X, Rt , X̂ t+1)

]
∣∣∣∣∣, (63)

which, due to convergence of non-adaptive GAMP, can be
made arbitrarily small by choosing n large enough. Then,
consider∣∣∣∣∣∣

1

n

m∑

j=1

φ(x j , r̂ t
j , x̂ t+1

j )− E

[
φ(X, Rt , X̂ t+1)

]
∣∣∣∣∣∣

≤ εt
n +

1

n

n∑

j=1

∣∣∣φ(x j , r̂ t
j , x̂ t+1

j )− φ(x j , r̃ t
j , x̃ t+1

j )
∣∣∣

(a)≤εt
n + L‖rt − r̃t‖1 + L‖x̂t+1 − x̃t+1‖1
+ L ′

n

n∑

j=1

(|r̂ t
j |k−1 + |r̃ t

j |k−1)(|r̂ t
j − r̃ t

j | + |̂xt+1
j − x̃ t+1

j |)

+ L ′

n
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j=1

(|̂xt+1
j |k−1+|x̃ t+1

j |k−1)(|r̂ t
j−r̃ t

j |+|̂xt+1
j − x̃ t+1

j |)

(b)≤εt
n + L

(
�t

r

) 1
k + L

(
�t

x

) 1
k
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(
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) 1
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x )
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) 1
k
(
(M̃t+1

x )
k−1

k + (M̂t+1
x )

k−1
k +(M̃t

r )
k−1

k +(M̂t
r )
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)

(64)

where L, L ′ are constants independent of n and

M̂t+1
x := 1

n

∥∥∥x̂t+1
∥∥∥

k

k
, M̂t

r :=
1

n

∥∥rt
∥∥k

k ,

M̃t+1
x := 1

n

∥∥∥x̃t+1
∥∥∥

k

k
, M̃t

r :=
1

n

∥∥r̃t
∥∥k

k
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In (a) we use the fact that φ is pseudo-Lipshitz, in (b) we
use �p-norm equivalence ‖x‖1 ≤ n1−1/p‖x‖k and Hölder’s
inequality |̂xT y| = ‖x‖k‖y‖q with q = p/(p − 1). By apply-
ing of (51a), (52b) and since, M̂t+1

x , M̃t+1
x , M̂t

r , and M̃t
r con-

verge to a finite value we can obtain the first equation of (34)
by taking n→∞. The second equation in (34) can be shown
in a similar way. This proves the limits (34).

Also, the first two limits in (35) are a consequence of
(52f) and (52f). The second two limits follow from continuity
assumptions in Assumption 1(e) and the convergence of the
empirical distributions in (34). This completes the proof.

APPENDIX C

PROOF OF THEOREM 3

Part (a) of Theorem 3 is an application of Theorem 2.
To apply this general result, first observe that Assump-
tions 3(a) and (c) immediately imply the corresponding items
in Assumptions 2. So, we only need to verify the continuity
condition in Assumption 2(b) for the adaptation functions in
(26) and (29).

We begin by proving the continuity of H t
z . Fix t , and let

(y(n), p(n)) be a sequence of vectors and τ
(n)
p be a sequence

of scalars such that

lim
n→∞(y(n), p(n))

PL(p)= (Y, Pt ) lim
n→∞ τ (n)

p = τ t
p, (65)

where (Y, Pt ) and τ t
p are the outputs of the state evolution

equations. For each n, let

λ̂(n)
z := H t

z (y
(n), p(n), τ (n)

p ). (66)

We wish to show that λ̂
(n)
z → λ∗z , the true parameter. Since

λ̂
(n)
z ∈ �z and �z is compact, it suffices to show that any

limit point of any convergent subsequence is equal to λ∗z .
So, suppose that λ̂

(n)
z → λ̂z to some limit point λ̂z on some

subsequence λ̂
(n)
z .

From λ̂
(n)
z and the definition (29), it follows that

1

m

m∑

i=1

φz(p(n)
i , y(n)

i , λ̂(n)
z , Kp)

≥ 1

m

m∑

i=1

φz(p(n)
i , y(n)

i , λ∗z , Kp), (67)

where Kp ∈ Sz(τ
(n)
p ) is the solution of the first maximization

of (29). Now, since τ
(n)
p → τ t

p and λ̂
(n)
z → λ̂z , we apply the

continuity condition in Definition 2(c) to obtain

lim inf
n→∞

1

m

m∑

i=1

[
φz(p(n)

i , y(n)
i , λ̂z , Kp)

−φz(p(n)
i , y(n)

i , λ∗z , Kp)
]
≥ 0. (68)

Also, the limit (65) and the fact that φz is pseuedo-Lipschitz
continuous of order k implies that

E[φz(Pt , Y, λ̂z , Kp)] ≥ E[φz(Pt , Y, λ∗z , Kp)]. (69)

But, Property (b) of Definition 2 shows that λ∗z is the unique
maxima of the right-hand side, so

E[φz(Pt , Y, λ̂z , Kp)] = E[φz(Pt , Y, λ∗z , Kp)], (70)

with λ̂z = λ∗z . Since this limit point is the same for all
convergent subsequences, we see that λ̂

(n)
z → λ∗z over the

entire sequence. We have thus shown that given limits (65),
the outputs of the adaptation function converge as

H t
z (y

(n), p(n), τ (n)
p ) = λ̂(n)

z → λ∗z = H t
z (Y, Pt , τ t

p).

Thus, the continuity condition on H t
z in Assumption 2(b) is

satisfied. The analogous continuity condition on H t
x can be

proven in a similar manner.
Therefore, all the conditions of Assumption 2 are satisfied

and we can apply Theorem 2. Part (a) of Theorem 3 immedi-
ately follows from Theorem 2.

So, it remains to show parts (b) and (c) of Theorem 3. We
will only prove (b); the proof of (c) is similar. Also, since we
have already established (35), we only need to show that the
output of the SE equations matches the true parameter. That
is, we need to show λ

t
x = λ∗x . This fact follows immediately

from the selection of the adaptation functions:

λ
t
x

(a)= H t
x(Rt , τ t

r )
(b)= arg max

λx∈�x

max
(αr ,ξr )∈Sx(τ

t
r )

E
[
φx(Rt , λx , αr , ξr )

]

(c)= arg max
λx∈�x

max
(αr ,ξr )∈Sx(τ

t
r )

E
[
φx (α

t
r X + V t , λx , αr , ξr )|λ∗x , ξ t

r

]
(71)

(d)= λ
∗
x (72)

where (a) follows from the SE equation (33a); (b) is the
definition of the ML adaptation function H t

x when interpreted
as a functional on a random variable Rt ; (c) is the definition
of the random variable Rt in (16) where V t ∼ N (0, ξ t

r );
and (d) follows from Definition 1(b) and the hypothesis that
(α∗r , ξ∗r ) ∈ Sx (τ

t
r ). Thus, we have proven that λ

t
x = λ∗x , and

this completes the proof of part (b) of Theorem 3. The proof
of part (c) is similar.

APPENDIX D

PROOF OF LEMMA 1

We will just prove part (a). The proof of (b) is similar.
Suppose that R ∼ PR(·|λ∗x , α∗r , ξ∗r ) for some “true” parameter
λ∗x and (α∗r , ξ∗r ). Let

L(λx , αr , ξr ) := E
[
φx (R, λx , αr , ξr ) | λ∗x , α∗r , ξ∗r

]
,

be the expected value of φx under the true parameters for R.
According to Definition 1(b), we need to show that L(·) is
maximized uniquely at (λ∗x , α∗r , ξ∗r ). To this end, consider any
other parameter set (λx , αr , ξr ). Then, if φx (·) is the log-
likelihood function in (24),

L(λ∗x , α∗r , ξ∗r )− L(λx , αr , ξr )
(a)= E

[
φx (R, λ∗x , α∗r , ξ∗r ) | λ∗x , α∗r , ξ∗r

]

−E
[
φx(R, λx , αr , ξr ) | λ∗x , α∗r , ξ∗r

]

(b)= E
[
log PR(R|λ∗x , α∗r , ξ∗r ) | λ∗x , α∗r , ξ∗r

]

−E
[
log PR(R|λx , αr , ξr ) | λ∗x , α∗r , ξ∗r

]

(c)= D
(

PR(·|λ∗x , α∗r , ξ∗r ), PR(·|λx , αr , ξr )
)

(73)
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where (a) follows from the definition of L(·); (b) follows from
the fact that φx(·) is the log likelihood in (24) and (c) is the
Kullback-Liebler divergence. Now, if

(λ∗x , α∗r , ξ∗r ) �= (λx , αr , ξr ),

the hypothesis that the map (41) is one-to-one implies
that the two distributions in (73) are not equal. There-
fore, the Kullback-Liebler divergence will be strictly posi-
tive [48] and thus the function L(·) is uniquely maximized
at (λ∗x , α∗r , ξ∗r ).
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