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AN ABSTRACT

A SOFTWARE TESTBED FOR SIMULATION OF CELLULAR WIRELESS
NETWORKS

by
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for the Degree of Master of Science (Electrical Engineering)

January 2012

Cellular wireless technology has been in a perpetual state of accelerated evolution
in attempt to keep up with growing demand for mobile data services and the mounting
requirements of cellular networks. Researches are continually discovering novel ways
to increase throughput and spectral efficiency over the wireless channel, mitigate the
effects of radio interference, optimize protocols, streamline network architecture, ex-
tend battery life for terminals, enhance data security and privacy and refine every aspect
of mobile communications. Researchers often employ real-time hardware-in-the-loop
(HIL) testbeds to design and validate protocols and algorithms in a simulated cellu-
lar deployment environment. These testbeds typically consist of hardware that may be
expensive, difficult to configure and limited in terms of the scale and complexity of
the simulated environments that can be reproduced in the lab. We propose an entirely
software-based alternative to costly and inflexible HIL platforms.

The 3GPP LTE/SAE specifications for the 4G radio interface and mobile network
architecture are now widely recognized by the industry and academic community for
having the potential to meet the challenges of next-generation cellular networks. By
making use of the open-source ns-3 network simulation framework, we implement sev-
eral protocol models as part of our extended effort to develop a consummate model of
a LTE/SAE network. By designing our software to take advantage of parallel comput-
ing architectures, we attempt to achieve real-time performance for simulating not only
the LTE radio interface but higher-layer protocols in the access and core network as
well, thereby offering all of the realism and accuracy of hardware emulators with the
cost and configurability of a computer simulation. We finally demonstrate a proof-of-
concept experiment involving end-to-end communication between mock hosts and User
Equipment with real application data transmitted over a simulated network. Through
our efforts, we make strides toward creating a powerful tool that can be put into the
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hands of researchers, enabling them to do rapid prototyping of the technology that will
bring us closer to the realization of the future mobile Internet.
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Part I

Introduction
Cellular telephony has become an indispensable hallmark of modern life. With mobile
device adoption reaching staggering new numbers with each passing year, few technolo-
gies can be said to be as successful. The ability to communicate and connect to people,
information and content is now always close at hand, and broadband mobile services
will soon turn ubiquitous Internet connectivity into a commonplace affair. The role of
the archetypal cell phone is now diminished in the presence of smartphones, tablets
and other mobile broadband-capable devices that offer a more rich end-user experience
than ever before. Although these are bold and perhaps subjective statements, the figures
speak for themselves. The Cisco Global Mobile Data Traffic Forecast Update for 2010-
2015 estimates that, by 2015, mobile device adoption will have reached one device per
capita globally [1]. In 2010, smartphone usage doubled and three million tablets and 94
million laptops were connected wirelessly, resulting in a near tripling of global mobile
data volume for the third consecutive year. The predictions for the coming years are
even more astounding, with a projected 26-fold increase in mobile data traffic between
2010 and 2015. While data-enabled mobile devices are becoming a part of everyday
life, the technology behind modern cellular networks is far from commonplace. Cellu-
lar systems represent the culmination of some of the most advanced accomplishments in
contemporary engineering. The technology has been in a perpetual state of accelerated
evolution in attempt to keep up with growing demand and the mounting requirements
of cellular networks.

Even as 3G systems such as 3GPP UMTS/WCDMA and now “3.5G” systems like
HSPA+ are still in the process of being rolled out, we are beginning to see new standards
emerge onto the mobile scene that promise to satisfy the ever-increasing thirst for data
services. 3GPP Long Term Evolution (LTE) has come about amid a slew of competing
next-generation cellular standards and has set the bar very high in terms of low-latency
and high-data rate performance. LTE, along with its counterpart standard known as
System Architecture Evolution (SAE), is already being recognized for its potential to
meet the challenges of 4G. It is the product of major leaps forward in the science of
wireless communications, the labor of thousands of engineers, and intense research
efforts on the part of the industry and academic community.

Research institutions seem to have grasped the potential of LTE, as countless re-
lated studies are released every year that contribute to improving the standard and the
fundamental technology. As such, it is still very much a work in progress, with signif-
icant enhancements over the original standard being incorporated into each subsequent
release of the LTE specifications. Researches are continually finding novel ways to
increase throughput and spectral efficiency over the wireless channel, mitigate the ef-
fects of radio interference, optimize protocols, streamline network architecture, extend
battery life for terminals, enhance data security and privacy and refine every aspect
of cellular communications. Such developments have enabled applications for mobile
platforms that provide a level of functionality and access to content and multimedia
over the Internet that was previously the exclusive domain of personal computers with
wireline broadband connections.

In order to design and prototype new protocols and algorithms and improve upon
existing ones, researchers establish wireless testbed systems on which perform exper-
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iments. These test environments are designed to reproduce the conditions of actual
cellular deployments in a lab setting and consist of a combination of software and hard-
ware components such as channel emulators (for recreating the effects of an impaired
channel on a wireless signal) and equipment for emulating base stations and mobile ter-
minals. The majority of these testbed implementations are largely hardware-based and,
while some vendors offer application-specific test equipment, many research testbeds
make use of custom (often DSP and FPGA-based) hardware that can be programmed
and tailored to suit specific experiments. Even so, the expense of such hardware and
the difficulty of programming and configuring custom electronics places practical limi-
tations on the nature and scale of the simulated environments that can be employed for
testing mobile systems.

Experiments involving real-time hardware emulation of components combined with
actual software and hardware are referred to as Hardware-in-the-Loop or HIL simula-
tions. The emulation hardware reproduces the “black-box” input and output character-
istics of the respective system, while the components being tested feed inputs to the
black box and respond to output ideally as they would in a real-world setting.

We propose an entirely software-based alternative to potentially costly and inflex-
ible HIL platforms used in the design and validation of next-generation cellular tech-
nologies. We investigate a software-in-the-loop system by which actual applications
and protocols can be integrated with a self-contained software simulation of a virtual
LTE/SAE network. By making use of the open-source ns-3 network simulation frame-
work, we implement several protocol models as part of our extended effort to develop a
consummate model of a LTE/SAE network. By designing our software to take advan-
tage of parallel computing architectures, we attempt to achieve real-time performance
for simulating not only the LTE radio interface but higher-layer protocols in the access
and core network as well, thereby offering all of the realism and accuracy of hard-
ware emulators with the cost and configurability of a computer simulation. We finally
demonstrate a proof-of-concept experiment involving end-to-end communication be-
tween mock hosts and User Equipment with real application data transmitted over a
simulated network. Through our efforts, we hope to make strides toward creating a
powerful tool that can be put into the hands of researchers enabling them to do rapid
prototyping of the technology that will make the vision of the future mobile Internet a
reality.

This document is organized as follows. In Section 1, we outline the purposes and
motivations behind our investigation and development efforts. In Sections 2 and 3, we
lay down the high-level goals for the project followed by an assessment of specific
system-level requirements. We then provide some background relevant to our software
implementation. Section 4 presents some fundamentals of discrete event simulation.
We then go over the basics of LTE/SAE protocols and architecture in Section 6 to aid in
understanding the model implementation presented in Section 9. We test our core simu-
lator and network model performance and demonstrate some proof-of-concept simula-
tions in Section 10. Lastly, in Section IV, we conclude this thesis with some remarks on
our results and progress in achieving our project goals and discuss the future direction
of our work.

1 Motivations
There were many driving factors in seeking a novel software simulation platform. Chief
among these are our desire to scale our simulations to a degree well beyond conventional
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research testbeds while still producing accurate, real-time behavior. Additionally, we
require an enhanced level of flexibility and control in order to manipulate every minute
detail of our simulations. We now expand on each of these motivating factors.

1.1 Related Work - Limitations of Hardware Testbeds

As a part of a larger research effort to investigate enhancements to LTE, this project
came about after looking into alternative testbed solutions and realizing the shortcom-
ings of available off-the-shelf products and custom development boards. The existing
solutions that presented themselves generally fall into two categories, the first of which
being a system consisting of multiple proprietary hardware emulator boxes.1 While a
range of these products exist for emulating various network elements in the radio access
and core network, they are typically only good for serving the role of one such device.
Simulating any sort of practical and interesting cellular deployment scenario like the
examples given in the next section would require an array of several of these devices.2

The cost associated with each product makes this approach prohibitively expensive.3

Furthermore, the most flexible and extensible of these products still do not permit tun-
ing and configuration of every subsystem and protocol layer for simulated LTE devices
such as user equipment. The other direction more often followed by academic research
groups is the use of development boards, which provide embedded FGPAs that may be
programmed with the LTE stack along with DSP modules for reproducing the low-level
PHY and channel characteristics.4 For most existing research testbeds of this variety,
we again see the necessity of investing in several of these devices that must be indi-
vidually programmed to simulate the role of a single network entity. For the types of
experiments involving simulating large-scale networks we envisage, the complexity of
configuring and interconnecting a large number of these boards becomes intractable.

1.2 Testing and Prototyping of 4G Cellular Systems

Although production implementations of the LTE/SAE standard are, at present, offered
for commercial use and networks are beginning to be deployed by operators globally,
research and development activities are by no means stagnant. Long Term Evolution, by
its very name, implies upgradability and extensibility in the long-term. The ambitious
3GPP Release 10 system, known as LTE-Advanced, is already planned as the next
milestone along the LTE upgrade path that will bring us a true 4G-compliant standard.
Such ambitious requirements, as outlined in Section 6, arguably will be crucial for
operators and service providers to remain competitive in providing the fast, ubiquitous,
on-demand connectivity and access to content services that future subscribers will come
to expect. The challenges of future networks are many and must be addressed with
innovative solutions from all angles. Here we have just a small selection of examples
that are the focus of our research group alone.

• Diverse, heterogeneous, self-organized networks: The future mobile landscape
is anything but uniform and homogeneous when it comes to interconnected tech-
nologies and administrative domains. Already we are seeing diverse multi-operator

1Products such as LTE eNodeB and UE emulators are available through vendors like
Aiglent [9].

2Section 6.8.3 of [55] describes a testbed system employing four base station emulators for simulating
a single multi-RAT cell.

3Some of the least expensive products we found, such as the NI test suite in [2], are still in the five to
ten-thousand USD range.

4Some examples of FPGA-based LTE testbeds are given in [11, 12].
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environments that support a variety of radio access and core network technologies
that must be seamlessly integrated to provide subscribers with constant, uninter-
rupted service while roaming. It is well understood that central to the ability
to handle the data traffic volumes that we are seeing in modern cell networks
is the notion of offloading of traffic from macrocell to picocell and femntocell
base stations and WLAN access points as well. The resulting environment is a
dense, ad-hoc assortment of access technologies. Furthermore, the complexity
of integrating 4G and legacy 3GPP and non-3GPP technologies within a single
operator’s network combined with the necessity of internetworking with other
domains will require novel methods for Inter-Cell Interference Coordination, Dy-
namic Spectrum Access, cognitive radio and self-organizing, ad-hoc networking
capabilities [3, 4, 5].
• Mobility: Mobility has been a chief concern of 3GPP technical specifications

groups and, while the current standard incorporates procedures for seamless han-
dover between various RATs, investigations are still ongoing in areas such as ver-
tical handover between LTE and WLAN accesses and application-layer mobility
[6, 7].
• Transport and application-layer protocol optimization: Many protocols running

“over-the-top” of mobile networks, such as TCP and HTTP, were never designed
for the traffic patterns and conditions applicable to mobile settings. This lack
of cross-layer optimization potentially impairs performance, and so is an area
worthy of investigation on its own.
• Mobile cloud applications: Cloud-based applications and services are ushering

in a new era of computing in the way of functionality and robust end-user expe-
rience. Software, storage and computation capacity are moving away from the
end-user device and into the network, where they can be provisioned on-demand
from anywhere with an Internet connection. The possibilities for business mod-
els of mobile cloud and utility computing are already catching the attention of the
industry since value-added services are a key source of revenue for operators and
service providers. From an engineering perspective, however, the low latency
and high data rate requirements of many cloud services make their integration
into cellular environments difficult.

1.3 Opportunities for Collaboration and Cooperation

It has always been our intention for our work to be a free, open source contribution to
mobile research community at large. As our software implementation is itself based
on the open source ns-3 framework, we hope to see our modifications and additions
incorporated into the ns-3 project and made available to anyone interested in perform-
ing large-scale network simulations. Any source code for the protocols or algorithms
implemented on top of our simulation platform are also obtainable, along with doc-
umentation, via the Web for individuals and research groups to experiment with and
modify, hopefully inviting peer review and encouraging other research efforts to be
combined with our own.5 This level of collaboration would certainly not be possible if
we had adopted a platform based on proprietary hardware and software.

5See Section 13 for links to our project page and code repository.
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2 Goals
One of the greatest challenges in research and development of wireless communications
systems is that the standards and technology are in a constant state of flux. Hardware-
based testbeds may not offer the opportunity to extend the underlying components to
reflect the changing technology. Software, on the other hand, can be modified with
minimal cost or effort. While a software-based approach clearly wins out in this regard,
for the purpose of testing actual applications and protocols in real time, these advan-
tages cannot come at the cost of inaccurate emulated behavior or results. From these
considerations, we arrive at the following fundamental goals for the project.

2.1 Accurate Cellular Wireless Emulation in Software

To provide a true emulation of something, the emulated system must appear to have the
exact black-box input and output characteristics of the actual system. This of course
means that processes of the emulation must mirror, in real time, the behavior of the
real-world physical system. As we examine in Section 4.5, specific measures must be
taken to enable real-time performance for software running on a non-real time operating
system. In terms of our protocol representation, the effects of the wireless channel
shall be simulated based on industry-standard models for statistical radio propagation,
interference and error rate calculation. Upper layer protocols in the LTE stack and in
the core network can then run ”as-is.” In other words, while our simulated version of
said protocols may only provide some essential subset of features found in commercial
applications of the same, they shall be correct in the sense of conforming to applicable
specifications and RFCs and effectively be no different than the “real thing” in the way
of bit-level accuracy of headers and encapsulated user-plane data as well as control-
plane messages. Finally, through the use of virtual interfaces, known as TUN/TAP
devices for Linux systems, we create a means of transporting real application data into
and out from the simulation as if an application were running on a networked device.
After accounting for each of these considerations, we believe our software can be made
to realistically mimic the behavior of real-world cellular networks.

2.2 Flexibility of Simulation Scenarios

We have already emphasized our goals for simulation flexibility, configurability and
scalability. For the users of our platform who wish to design specific simulated topolo-
gies and scenarios, the tools for building such scenarios come in the form of a modular
Application Programming Interface (API). With this common API, users can instantiate
network objects such as nodes, devices and links and define object parameters in a sim-
ple program or script, which can then be executed from the user’s shell. Our API makes
full use of the ns-3 object model for aggregating instances of protocols and devices
to network nodes in a very user-friendly fashion. The ability to collect statistics and
observe network objects is also an essential feature provided by the ns-3 trace system.

2.3 Support for High-Performance Computing Systems

When simulating large-scale networks with many objects in real-time, computational
performance is key. For a system to be considered real time, it must be guaranteed to
meet certain timing deadlines. So, in the case of discrete event simulation, as we shall
introduce in Section 4, events occurring in the simulation time domain must be syn-
chronized with the real time domain to a certain acceptable degree of deviation, beyond
which simulation results can no longer be considered accurate. When adding to the
algorithmic complexity or size (in the sense of number of objects) of a simulation, at
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a certain point the processing resources needed in order to maintain real-time perfor-
mance will exceed what a single host machine can provide. To address this problem, our
software must be designed to exploit parallel programming paradigms to make use of
multi-core processors and clustered computing. High-Performance Computing (HPC)
clusters can be built cheaply from off-the-shelf components and can be augmented with
computational capacity simply by adding additional processors or compute nodes to
the cluster.6 It is our intention to develop algorithms that efficiently take advantage of
clustered architectures so that simulations can be scaled with the underlying hardware
platform.

3 Needs Assessment
From these general goals, we outline the following specific requirements for the system
we are undertaking to implement in this and future iterations.

1. Accurate physical-layer emulation: The PHY layer protocols and channel model
shall be accurate to the extent allowed by the floating point representation and
operations of the underlying OS. Industry-standard models for representing inter-
ference, fading, shadowing, and propagation loss shall be employed. Data rate,
delay and block or bit error rate experienced by air-link signals shall correctly
reflect varying channel conditions along with the specific modulation and coding
scheme, channel bandwidth and resource allocation scheme.

2. Bit-level accuracy of user-plane protocols: Essential functionality of LTE and
Evolved Packet Core user-plane protocols and procedures shall conform to 3GPP
and IETF specifications. For the sake of efficiency, some control-plane func-
tionality may be more loosely defined, however the overall sequence of control
messages or events should obey the standards.

3. Real-time synchronization of event sequence: Simulation events shall occur with
within a specific range of wall-clock time. This range depends on the nature of
the event and affected systems and is predetermined based on perceived effects on
simulation accuracy. Events that fail to meet real-time deadlines shall be logged
along with any causally-related events for analysis.

4. Parallel and distributed discrete event simulation: Algorithms for parallel and
distributed DES shall be used that automatically (or with minimum interaction
on the part of the user) take into account the nature of the simulation scenario
along with the underlying computing platform and operating system capabilities
to most efficiently distribute computation across available processing resources.

5. Application data tunneling through virtual network interfaces: A TUN/TAP de-
vice, which is a virtual link-layer interface, shall be provided by the operating
system through which data generated from the IP layer and above (including aux-
iliary protocols such as ARP) can be tunneled between the OS and simulator
program. Multiple instances of Virtual Machines (VMs) with TAP devices can
be mapped to wireless User Equipment or wired hosts represented in the simu-
lated network and real application data generated by these VMs can be thereby
be transmitted and received across the network.

6. Modular object model and API: As discussed, network objects shall be con-
structed in a modular and extensible way, allowing simulation parameters to be

6See Section 8 for more on compute clusters.
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defined in a script or at simulation runtime. We achieve this using the ns-3 ob-
ject model and configuration system. Classes defining new applications protocols
should be able to be easily integrated on top of existing protocol and network
element objects.

7. Configurable trace and logging system: Logging of interesting statistics along
with Operations, Administration, and Maintenance (OA&M) data can be enabled
for collecting information on any given simulation object. This shall be done
in an efficient way that minimizes I/O operations (i.e. disk reads/writes) while
balancing memory usage.
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Part II

Background
4 Discrete Event Network Simulation
Simulation is an invaluable tool for researchers across many disciplines, from the “hard”
sciences and engineering to economics and social sciences. It allows us to analyze the
behavior of interesting real-world and hypothetical processes under various conditions
by reproducing that behavior in a virtual space [13]. A simulation, in the most general
sense, is any system that imitates the behavior of another system according to a finite set
of rules that govern the progression of the state of the system being modeled (or more
specifically, the states of some composite elements of system) over time [14]. From this
abstract definition, we can derive the essential ingredients of a simulation: the mathe-
matical model of the physical system that we wish to represent, the states of the model,
and the time over which the states are changing. The model dictates, either determinis-
tically or stochastically, the transition of simulation states based on previous states and
given inputs and initial conditions. As many complex physical processes are composed
of a large set of variables that give way to an infinite set of possible states, any prac-
tical model must identify and isolate specific variables and data that are meaningful to
providing an accurate imitation of the system, where the accuracy is proportional to the
complexity of the model. While computers are the essential instrument for conduct-
ing simulations, they have certain inherent limitations that pose analytical challenges
in addition to the underlying difficulty in expressing complex physical systems. In the
following sections and throughout this document, we expand on these issues in the di-
rection of understanding discrete-event network simulation on a parallel and distributed
microprocessor computers while making a point of identifying limitations and analyz-
ing their effects on providing accurate and useful simulation results.

Discrete-Event Simulation (DES) is a simulation technique that lends to modeling
telecommunications networks. DES involves formulating state transitions as a sequence
of events, which occur at discrete points in time. DES has its roots in discrete event
system theory, which is a rigorously-defined mathematical framework that we shall
not directly pay any mind to because, when applied to representing communications
networks, the concept can be simplified greatly [15]. If one grasps the very basics of
packet-switched networking, it is straightforward to see how DES can be applied to
simulate such systems. The model is made up of individual network elements, such
as nodes, devices (i.e. interfaces), and links (channels), each element having its own
set of states. For instance, the states of a node such as a IP router might consist of
a packet queue for each port on the router. Network element are defined by some
state transition logic that determines its behavior based on its current states and input.
Coming back to the router example, this logic may take the form of a routing table
for making forwarding decisions. As mentioned, state transitions are driven by events,
which are “scheduled” by being inserted into their chronological position in the future
event set or queue. Events can be scheduled in order to represent the transmission or
reception of a packet by our router. We can break down each of these aspects into
three encompassing data structures: the set of state variables, a single event list, and a
global simulation clock [14]. Parallel DES, which we shall later introduce, puts some
interesting twists on these aspects. For now, we elaborate on these common components
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of DES.

4.1 Time

As stated in [14], there are several notions of time to consider when simulating physical
systems.

• Physical time: This is the actual time of the physical system being modeled. For
most real-world systems, the physical time domain is continuous.
• Wall-clock time: The real time that elapses during simulation execution, which is

independent from the physical time.
• Simulation time: The representation of physical time in the simulation. Unlike

the former cases, which are the same as the conventional notion of time, sim
time is an entirely abstract notion. The simulation clock increments not with
some regular period but, instead, hops from one event timestamp to the next as it
progresses chronologically through the sequence of events. These timestamps are
mapped into the continuous, physical time domain with the accuracy of whatever
numeric data type, such as a double-precision floating point number, is used. In
other words, events can be scheduled to occur at any instant of sim time that can
be represented by the respective data type.

4.2 Event Scheduling Algorithms

Events, as we mentioned, are any conceivable occurrence that causes the progression of
simulation states. Events can be anything from atomic operations, such as assignments
to state variables, to complex subroutines that rely on dynamic input from multiple
simulation objects. Global events (e.g. a command to terminate the simulation after
a specific sim time) are those that have an effect on the simulation as a whole. More
often, events are scheduled that affect the states of one or more local objects. In DES
simulation of telecommunications networks, these local events may be scheduled to
update the state of a particular network component. For instance, a packet transmission
event may occur on a host node, triggering the node to then schedule a reception event
on the destination node occurring after some transmission delay. When the simulation
advances to the reception event, the event is executed and may result in a reply event to
acknowledge packet reception. Similarly a host node may schedule an event for itself
to retransmit a packet in the case that the host does not receive an acknowledgement
after a certain time. As we can see, it is this modeling of a complex, causally-related
chain of events (a relationship that may be unintuitive or difficult to discern otherwise)
that makes DES useful and interesting.

The future event set or list is a data structure that implements, at minimum, the
following operations.

insert(E, t) Inserts a given event E with timestamp t.
extract() Extracts the event with the lowest timestamp.

When we consider how events may not be scheduled in the same order they are pro-
cessed, that is, the sim time associated with an event yet to be inserted into the event set
may come before (i.e. be lower than) the current lowest timestamp. This is illustrated
in Figure 4.1.

The underlying data structure is thus similar to a priority queue with the key dif-
ference that insertions can occur at any position. Such a data structure should thus be
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Figure 4.1: Future event set

optimized for fast insertions of this nature. Implementations using doubly-linked lists,
set-associative containers such as the C++ STL std::map class and others can be
found. 78 A calendar queue is a data structure, first introduced in [31], designed specif-
ically for the future event set problem, and claims O(1) performance for both insert
and extract (or enqueue and dequeue) operations. Other implementations are given
in [32] and [33].

4.3 Random Variables

In our analysis, we have thus far danced around the subject of stochastic aspects in DES
a bit. However, random variables are a component common to many brands of simula-
tion, DES included. The range of outcomes of events may be deterministic or they may
belong to some probability distribution. In our earlier example of packet loss and re-
transmission, the communications channel may be modeled statistically using random
variables, which will cause packet reception to either be successful or unsuccessful with
some probability.

4.4 Parallel and Distributed Simulation

Parallel programming involves decomposing a program into discrete elements that can
be executed simultaneously by tasks utilizing multiple computational resources, such
as microprocessors or computers connected by a network. Many problems that can be
solved with a sequential program or algorithm can be dissected into constituent parts
to a make parallel version of the same algorithm. Many problems in modeling and
simulation are natural candidates for parallelization. Although discrete event network
simulation undoubtedly belongs in this category, properly identifying the optimal way
to break up the simulation, a technique known as domain decomposition, is a non-trivial
matter.

Parallel computer architectures come in many shapes and sizes. A Symmetric Mul-
tiprocessor (SMP) is a type of Uniform Memory Access (UMA) system where several
identical processor cores, often fabricated on a single integrated circuit or die, share
a common memory space [34]. Cache and resident memory are accessed symmetri-
cally with uniform access times for each SMP core. Non-Uniform Memory Access
(NUMA) is another type of shared memory architecture combining multiple SMPs that
possess their own local memory space, which is mapped into a global address space
shared across processors. Programming for shared memory systems is typically done
with a construct known as threads, which are individual execution paths within a single
process.

A distributed memory system involves multiple SMP machines networked together,
where memory spaces are local to each machine. As a result, in a distributed program-

7Ns-3 implementations of each data structure is documented in [74].
8See [30] for the runtime performance of these data structures.
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ming model, tasks executing on processors on separate computers must communicate
explicitly over the network to access remote resources. This concept is also known
as the message passing model. Technologies such as Remote Direct Memory Access
(RDMA) allow direct access to memory remote machines, or nodes in a distributed
memory cluster, without involvement of the CPU on the remote host [51]. Practical
clusters, like the one we describe in 8, are a hybrid of shared and distributed designs
and incorporate a multi-level hierarchy of both uniformly and non-uniformly-accessed
tiers of memory. Parallel programs utilizing these types of systems should be designed
with awareness of the underlying architecture in order to optimize performance in as-
signing tasks to different processing units and organizing the data set across regions of
memory with non-uniform access times.

4.4.0.1 Speedup

Improving program performance (that is, cutting runtime) is the purpose behind all of
this added complexity. The potential performance gain or speedup offered by a parallel
program over a sequential version of the same program is given by Amdahl’s Law [34].

speedup =
1

P
N
+ S

(4.1)

Here P is the fraction of code can be effectively parellelized, N is the number of
concurrent tasks and S is the serial (sequential) fraction of code (S = 1−P ). If the do-
main of a program could be perfectly decomposed (P = 1) and executed independently
by N independent tasks, then our program would theoretically run faster by a factor of
N . Unfortunately, this special case, known as an embarassingly parallel problem, is not
what we find in most practical situations. Tasks must often communicate and coordi-
nate with one another to solve a problem and synchronization between execution paths
must be maintained in order to compute portions of code in the proper order. Commu-
nication and synchronization are the foremost factors that limit the possible speedup of
a parallel program and make programming with either the multi-threaded or message
passing approach challenging. [18].

4.4.1 Multi-Threaded Model Parallelism

As we shall illustrate each of the parallel programming paradigms in this and the fol-
lowing sections with practical examples of how they are applied in our implementation
in Section 7, we will keep this part of the discussion as succinct as possible. On Unix
and GNU Linux platforms, the standard for multi-threaded programming is the POSIX
Threads or pthreads library, which is a lightweight solution that gives the developer a
simple but powerful API for creating, destroying, controlling and synchronizing user-
space threads [35]. Pthreads are spawned or cloned from a process (the original in-
stance of a program) and branch off into separate paths of execution. Threads can then
be joined and merged with the parent process once their concurrent section of code has
been executed and their task is complete. They also share the memory space of the
parent process and so must coordinate with one another to control access to sections
of memory to prevent race conditions where multiple threads competing over access to
variables may result in memory being placed into an invalid state.9

There are several constructs for synchronization using Pthreads. Mutual exclusion

9See [36].



12

or mutex statements allow for a critcal section of code to be locked, permitting access to
variables by only one thread at a time. Sempahores are often used to implement a pool
of resources that can be accessed by a set number of threads at a time. While we shall
not cover the all the intricacies of Pthread synchronization primitives, the key concept to
take away is that locking is intended to provide thread safety, which essentially means
a guarantee of program consistency and deterministic behavior when multiple threads
are competing for shared resources.

Another situation necessitating synchronization occurs when multiple threads must
arrive at a common point in the execution of a program before continuing. This is done
by creating a barrier at such a point in the code.

4.4.2 Distributed Model Parallelism

With distributed memory systems, processes running concurrently on the same or sepa-
rate computing resources do not share access to program variables and must coordinate
to run a common program by explicitly sending and receiving messages to other pro-
cesses. We call the case when processes, or ranks in the parlance of parallel program-
ming, communicate with other ranks on the same processor or SMP-based machine
(that is, specific to one cluster node) intra-node communication, whereas inter-node
communication involves communicating over a network interface with processes on re-
mote nodes. It is straightforward to see how the latencies involved in the latter case
are bound to be greater due to added delays incurred by the hardware bus, host-channel
interface and networking hardware such as switches. This aspect comes into play in
domain decomposition, as certain processing activities that require a lot of interprocess
communication are better off being confined to a single node as much as possible. Mes-
sage Passing Interface (MPI) is the de facto standard for programming for distributed
memory systems [37]. Both blocking and non-blocking routines are provided, whereby
communication can respectively be done synchronously or asynchronously (i.e. with-
out waiting for the operation to return). Also the notion of a barrier exists in MPI the
same as it does in Pthreads.

4.4.3 Hybrid Model Parallelism

We have thus far introduced two popular approaches for programming for shared and
distributed-memory architectures. Threads that natively share a memory space can im-
plicitly communicate, making this approach efficient in terms of memory and simpli-
fying the task of programming. Threads are therefore generally regarded as lighter
than full processes as they require less resources (e.g. memory and registers) and take
less time to create [36]. The Pthread API, however, offers no primitives for inter-node
communication; Explicit inter-process message passing is required in this case.10 This
presents the need for a hybrid approach that combines the strengths of multi-threaded
and message passing programming, where components of a program requiring frequent
communication and synchronization between processing elements are parallelized us-
ing pthreads spawned from one process, and can communicate with threads belonging
to other processes using MPI routines. We have previously brought up the importance

10OpenMP is an alternative framework for doing distributed-memory programming that involves com-
bining the local memory space from distributed resources into a single virtual space, with inter-node
communication done implicitly. This affords the programmer a layer of abstraction that enables one
to program for distributed architectures in much the same way as the multi-threaded model. While we
did not assess or compare the two approaches ourselves, research (see [49] and [50]) suggests there are
efficiencies offered by the hybrid pthread-MPI model over OpenMP.
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of efficiently mapping logical tasks to processing resources in the sense of identifying
communications and synchronization bottlenecks in the underlying hardware platform
and operating system and designing a program to be conscious of these limitations.
With a hybrid model design, threads and processes can be statically or dynamically as-
signed to resources to provide for efficient hardware resource utilization as we shall see
in Section 5.

4.4.4 Logical Process Partitioning

Now that we understand the fundamental tools of parallel programming, we proceed to
discuss how they can be applied to improving the performance of discrete-event net-
work simulations by executing subsets of simulation events concurrently. In a practical
communications system, nodes such as hosts and routers communicate with other nodes
through exchanging packets. Here nodes are the sources and sinks of all data and net-
work events. Similarly, in DES simulation of networks, events are typically associated
with specific nodes or, more precisely, with individual network protocols or interfaces.
By characterizing these relationships between events and simulation objects (or aggre-
gates of objects), we can identify how the simulation can be partitioned into separate
components that can be executed simultaneously. We call these partitions logical pro-
cesses (LP) because they are a logical division or decomposition of the overall physical
process being modeled. LPs take the form of individual simulations with their own
unique event set and clock, however they must collaborate with other LPs to run the
simulation as a whole. While an effective partitioning scheme reduces the amount of
communication needed between LPs, it is not possible to eliminate it entirely because
partitions may not be completely disjoint. Some degree of synchronization is always
necessary to maintain simulation consistency and causal order between events assigned
to different LPs.

4.4.4.1 Topology Partitioning

Figure 4.2: Network topology model with one-to-one mapping of nodes to logical processes.

The most straightforward approach to partitioning is on a node-wise basis, that is,
assigning single nodes or clusters of nodes to different LPs. To illustrate this concept,
Figure 4.2 shows a one-to-one assignment between nodes and LPs, where each LP is
executed by a thread. Each LP then has an event set and simulation clock dedicated
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to a specific host or router. As the simulated topology is scaled up and the number of
nodes exceeds the number of available threads, multiple nodes must be grouped into
an LP, with their combined event set processed sequentially. A topology partitioning
strategy should efficiently distribute the workload experienced by each LP by balancing
the number of nodes assigned to certain LPs.11 This strategy may need to take into
account the properties of the topology, as some nodes may present a serial bottleneck
for events. The two routers depicted in Figure 4.2, for instance, may have a higher
average workload than the edge hosts since they must forward all packets between each
subnetwork. This may require more processing resources to be devoted to routers than
to groups of hosts.12

4.4.4.2 Horizontal Parallelization

An alternative approach presented in [21] and [27] is the horizontal parallelization of
events and involves identifying causually-linked sequences of events, termed expanded
events, that must be processed in sequential order (sequences that cannot be processed
in parallel, in other words). As an example, an expanded event might be a series of
send and receive events for a specific packet flow that spans multiple nodes, or might
even take place within a node as a packet is encapsulated and passed down through
protocol layers. A scheduler singleton distributes expanded events to processing re-
sources to be executed concurrently during the parallelization window determined by
the duration for which each expanded event is known to be causally unrelated. This
method may offer a potential performance gain in the presence of workload bottlenecks
like we have discussed, since the load can be decomposed with a finer granularity than
that of a node. However, there is an inherent complexity in identifying related events
and the resulting synchronization window, and performance may suffer (due to frequent
synchronization, for instance) if optimal determinations are not made. A simple topo-
logical partitioning scheme, on the other hand, does not rely on examining each event,
and so the event scheduling algorithm is straightforward and incurs little overhead. Also
for larger topologies, it may not make sense to partition with any finer granularity than
a cluster of nodes.

4.4.5 Synchronization Algorithms

When a simulation is divided into multiple logical processes that are executed concur-
rently, it may not be the case that events assigned to different LPs are processed strictly
in timestamped order as they would be in a sequential simulation. In fact, if each LP
were constrained in such a way, there would be no opportunity for parallelization at
all. Nonetheless, a parallel simulation must always produce the same results as its se-
quential form, meaning that causally-related events must be guaranteed to execute in
the proper order. In order to maintain simulation consistency, the following constraints
must be upheld.13

i State variables cannot be shared between logical processes. Any changes to local
state variables must occur as a result of a local event. This is to avoid situations
such as race conditions where an LP, in the process of executing an event, changes
the state of a simulation object that affects an event being executed simultaneously

11[19] quantifies workload as the average rate of events per unit time for an LP.
12Load balancing and topological partitioning strategies are detailed in [19] and [20].
13The foundations for parallel simulation we review in this section are taken from [14].
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on a remote LP.

ii Local causality constraint: Each LP must process its own local events in nonde-
creasing timestamped order. This includes events generated by remote LPs for the
local LP.

While causality errors related to the first condition are easily prevented, ensuring LPs
adhere to the second constraint is a challenge. In Figure 4.2, LP 0 (i.e. the LP assigned
to node 0) must decide if event e1,0 can be executed concurrently with e4,0 such that
the former does not effect the latter or visa-versa. For example, event e1,0 might cause
the generation of a routing table update or link state advertisement event for node 4,
which should be scheduled to be received before event e4,0. LP 4 therefore must have
some information about the event set for node 1 before event e4,0 is known to be safe
for processing. This problem of guaranteeing ordered event execution for local LPs is
known as the synchronization problem.

4.4.5.1 Conservative Algorithms

In parallel DES, a conservative synchronization algorithm is one that determines ahead
of time that an event is safe for processing. More generally, its job is to find the max-
imum simulation time up to which each individual partition clock can safely advance
during an iteration of parallel event processing [83]. It must guarantee that no events
will be scheduled by remote LPs with timestamps lower than that of any local event due
to be processed in the current iteration. Going back again to Figure 4.2, if we know the
delay on the simulated channel between node 0 and node 4, we know that any commu-
nication between the two nodes takes at least that amount of time (1 ms in this case).
We call this minimum transmission delay between partitions the lookahead across a
simulation boundary. Therefore if LP 4 knows the lowest timestamp in the event set for
LP 0, it also knows that LP 0 cannot schedule local events after this timestamp, which
we call the Lower-Bound Timestamp (LBTS), plus the lookahead between partitions 0
and 4. If a packet TX event on node 0 causes a RX event to be scheduled on node 4,
the RX must not occur before the timestamp of the TX event plus the 1 ms lookahead
delay on the channel.

The classic conservative algorithm for solving the parallel DES synchronization
problem is the Chandy-Misra-Bryant algorithm, and works by performing the same
causality safety check we just described [22, 23]. Each logical process (partition) cal-
culates the LBTS before each iteration of event processing as follows. To do this, each
LP exchanges null messages with neighboring LPs containing the lowest local event
timestamp. Algorithm 4.1 outlines the general structure of the null message passing
and LBTS calculation procedures. In Section 7, we provide both parallel and distributed
implementations of Chandy-Misra-Bryant, the key difference between them being how
SendNullMessages() and RecvNulLMessages() are performed. A simplified ver-
sion of the simulator main loop run by each LP is shown in Algorithm 4.2. At the
beginning of each iteration, we determine the global LBTS by calling Synchronize.
We then receive event messages from remote LPs. As stated in the first causality con-
dition, events cannot be directly inserted into event set for a remote LP. In order to
schedule an event on another partition, an LP must send an event message including
the event and its timestamp.14 The event message parsing loop then scheduled each

14Since each LP clock may be at a different simulation time, the event message timestamp should be
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Algorithm 4.1 Chandy-Misra-Bryant variant [83]
1: procedure SYNCHRONIZE(p) . Called for the current partition p
2: local lbts← P.GETNEXTEVENTTS() . Get the lowest timestamp in the local event set
3: SENDNULLMESSAGES(local lbts) . Send null message to neighbor LPs
4: null messages← RECVNULLMESSAGES() . Receive null messages from neighbor LPs
5: max ts←∞
6: for all m ∈ null messages do
7: if max ts < m.lbts then
8: max ts← m.lbts
9: end if

10: end for
11: return max ts
12: end procedure

Algorithm 4.2 Simulator main loop [83]
1: procedure MAIN LOOP
2: while simulation not finished do
3: for all p ∈ partitions do
4: p.max ts← SYNCHRONIZE(p) . Get the global LBTS
5: P.RECVEVENTMESSAGES()
6: end for
7: for all p ∈ partitions do
8: for all event msg ∈ p.event messages do . Enqueue events from event messages
9: P.EVENT SET.ENQUEUE(event msg.event, event msg.timestamp)

10: end for
11: end for
12: while P.GETNEXTEVENTTS() ≤ p.max ts do . Process partition events
13: PROCESS(p.event set.Dequeue())
14: end while
15: end while
16: end procedure

event in the queue for its respective partition. Finally, for each partition, we process all
events up until the global LBTS. For didactic purposes, the procedure we provide here
is a simplified, sequential algorithm, however it is straightforward to see how each loop
might be parallelized. For instance, multiple threads can be dynamically dispatched to
process partitions from a pool of partitions in the second while loop. We shall delve
more deeply into the parallel incarnations of this algorithm in our discussion of core
simulator implementation in Section 7.

4.4.5.2 Optimistic Algorithms

Optimistic synchronization algorithms take advantage of the principle that instances of
desynchronization (i.e. causality violations) occur infrequently, so a performance gain
is offered by allowing LPs to process events unrestrained by periodic synchronization
[83, 28]. When a violation of the causality constraint does then occur, the simulator pro-
vides a means of recovering by interrupting the simulation and rolling back states to the
point before the infringing event or series of events. One possible way of implementing
this would be to provide a way to checkpoint and save the entire simulation state to roll
back to in the event of desynchronization. Alternatively, an event undo function could
be implemented to revert to some incrementally saved-state.

Optimistic algorithms such as used in the Georgia Tech Time Warp (GTW) DES
system are still the subject of much ongoing research in the field of parallel DES as
they have been shown to offer improved performance over conservative methods [28].

the absolute time (i.e. total elapsed time since the simulation start event) for the sending LP.
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Unfortunately, they are fundamentally impractical for a real-time simulator such as we
are pursuing. As we shall discuss next, real-time synchronization relies on matching
the pace of events in simulation time with wall-clock time. Since events may result in
direct real-time feedback to actual applications interfaced with the simulation, there is
no opportunity to roll back events if desynchronization were to occur.

4.5 Real-Time Emulation

In a real-time DES, simulation objects are made to mirror the timing of the physical
system being simulated [38, 16]. This is achieved by delaying event execution, effec-
tively mapping simulation time into wall-clock time. In our simulations of networks, we
wish for the timing behavior of network objects to reflect the real-world devices, nodes,
links, etc. as closely and accurately as possible. Unfortunately there are fundamental
limitations in real-time simulation that prevent us from reproducing this behavior pre-
cisely. Firstly, by the very nature of discrete-event simulation, events are represented
as occurring at some instantaneous point in time. We know that, for most real-world
systems, the processes simulated by said events exist in the continuous-time domain.15

We can often get around this problem by decomposing events into start and end events,
if you will, to represent the process as having taking place over the time difference
between the two sub-events. We shall further illustrate what we mean by this soon.
Another more troublesome issue is that multiple events may be scheduled to execute
at the same instant of time, even for the same simulation object. We might see this
case with a router node that is receiving packets simultaneously on multiple interfaces.
While an actual router may have hardware that supports pipelining of the forwarding
plane, our simulation is forced to process these events serially, making it inherently
impossible to perfectly capture the timing of the target system. Therefore, even with
parallelizing events over multiple concurrent execution paths, some degree of deviation
from real-time is unavoidable.

Our motivation for pursuing a real-time simulator is to provide emulation capability,
enabling real applications and protocols to interface with out simulated software-in-the-
loop environment. Of course, the real-time aspect of such a system is essential, other-
wise applications performance will be unrealistic when interacting with the simulation.
The simulator must be able to execute the sequence of events fast enough to keep pace
with wall-clock time. As we scale up the simulation size to more and more network
elements, the amount of necessary computation will eventually exceed the ability of a
single processor to maintain this pace. As mentioned, we seek to mitigate this issue by
making use of parallel simulation techniques. Furthermore, we believe that if the de-
viation from real time can be made acceptably small, the matter of imprecise real-time
synchronization may not be such a critical drawback in the sense of corrupting results.
Since simulation events still happen in the simulation time domain, all internal actions
will be represented as taking place at the exact instant they are scheduled to, regardless
of the actual wall-clock time that they are delayed by.

To illustrate this point, Figure 4.3 and Figure 4.4 show a hypothetical example in-
volving wireless communication between a base station, STA 1, and a mobile host.
At time tsim = 0, a transmission event is scheduled for execution (shown in blue in
Figure 4.4). There is some lag time or jitter, however, between the simulation time at
which the event is logged and the real (wall-clock) time when its execution starts and
completes. We also see that, while processing the event takes some duration of wall-

15Take, for instance, the reception and decoding of an LTE subframe as reviewed in Section ??.
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clock time (during which state variables may be read and written to at various times),
to the simulation, the event is perceived as having occurred at a single instant. Event
1 then triggers a reception event (event 2) at the mobile to occur after the propagation
delay of 0.001 ms.16 However, due to jitter in processing, the real-time at which event
2 ultimately gets queued is already later than the 0.001 ms time at which the event is
scheduled to occur. At first glance, this would seem to be problematic when considering
the causality constraint. However, we should note that as long as the wall-clock time at
execution is greater than or equal to the scheduled simulation time, there can never be
a violation of causality.

Figure 4.3: Co-channel interference simulation events

Figure 4.4: Co-channel interference simulation timeline

Next we see a co-channel interferer, STA 2, beginning a transmission to some mo-
bile (not shown) in event 3, scheduled for time tsim = 1ms (shown in orange). This
transmission is heard as interference at the mobile host after the hypothetical channel
delay (also 0.001 ms) in event 4. At some fraction of a millisecond after, the mobile
initiates calculation of the SINR that will be used to determine the probability of error
for the data block in the final RX end event (i.e. event 8). While event 3 and 4 are
logged as having taken place at precisely 1 ms and 1.001 ms, respectively, we see in
Figure 4.4 that both events do not finish until some short wall-clock time later. Further-
more, suppose that event 3 involves some computationally-intensive operation and takes

16This is a purely hypothetical scenario meant to demonstrate real-time delays and is not specific to
any wireless technology.
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significantly longer to execute than event 4. As a result, the transmission event does not
complete until after reception! Again, this does not present an issue, as the simulation
times at which the events are logged as occurring are still valid. At tsim = 3ms, events
5 and 6 (green) respectively mark the completion of the transmission by STA 2 and the
termination of the interference event. Finally, the 5 ms-long transmission from STA 1
completes in event 7 (purple), which triggers the RX end in event 8. The ultimate error
calculation depends on the duration and power level for both the data and interference
signal. If the duration for each signal were based on the wall-clock time elapsed be-
tween start and end events, the calculation would clearly be wrong. Fortunately, this is
not the case, however, since only the simulation times at which events are scheduled are
taken into account.

To consider how real-time jitter can have an effect on results in the context of em-
ulation, suppose that the mobile in our example represents a wireless modem, which
is interfaced with a virtual device on the physical computer running the simulation.17

While the simulated network is nothing more than a program on the host system, it ap-
pears to the system that it is connected to an entire virtual wireless network through this
virtual interface. In this way, the virtual device provides a tap into the simulated world.
Now suppose that the physical and MAC layers are emulated by the simulator program
and the virtual device handles passing data between the IP daemon on the host system
and the emulated MAC layer. At the completion of event 8, the wireless modem decap-
sulates the MAC data and passes the IP PDU up the stack. While this entire process
was intended to take place at tsim = 5ms, the data does not become available to higher
layers until nearly a millisecond later. It is clear to see how this non-deterministic jitter
between simulation time and real-time can produce invalid black-box behavior in such
a situation. Some jitter is always present and should be accounted for when consider-
ing the validity of results. In some scenarios, such as measuring the Round-Trip Time
(RTT) of an ICMP message between our example base station and mobile host, results
would be significantly skewed by any amount of real-time jitter. If we are measuring
the RTT between some host several hops away in the network, however, we may be able
to chalk up the added latency to some non-deterministic variance in delay that might
be found in any real-world network. In cases like these, some degree of timing error
may be acceptable, and so the simulation should ensure that certain real-time deadlines
are met. These deadlines may be defined based on a tolerable jitter for specific types
of events, and the simulator should provide some mechanism to record when deadlines
are exceeded to indicate potential invalidation of results.

5 Operating System Considerations
In the preceding section, we introduced some fundamental limitations and constraints of
real-time, parallel and distributed DES that are universal to all hardware and operating
system platforms. However, we cannot hope for our parallel algorithms and methods for
enabling real-time performance to perform optimally unless they are designed to take
stock of some important hardware and OS aspects. When programming for parallel
computing architectures, an understanding of the system task scheduler is essential
when attempting to optimize a program. Additional considerations must also be made to
attain real-time performance of software running on a natively non-real-time operating
system. We address these factors in this section and later elaborate on their application

17We jump ahead to the topic of virtual (i.e. tap-bridge) devices, discussed in Section 7.2, to demon-
strate our point.
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in a practical compute cluster in Section 8.

5.1 GNU/Linux Scheduler

The Linux operating system (that is, any GNU distribution based on the Linux kernel)
has been widely embraced by the high-performance and scientific computing commu-
nities for many reasons, including its stability and configurability as well as the avail-
ability of free, community-maintained, open-source software. The heart of the Linux
OS is the kernel, which is responsible for mediating between user space applications
and hardware [41]. Like most modern OSes, Linux supports multi-programming and
multi-tasking, allowing multiple tasks to share the CPU and run simultaneously (or, at
least, with the illusion of concurrency on a uniprocessor system). Dynamically allocat-
ing CPU resources to competing tasks is the job of the kernel scheduler, which allocates
CPU time slices to tasks based on their priority and factors such as CPU utilization. We
shall not touch on all the finer points of the Linux scheduler, as it is an extensive sub-
ject on its own, however we focus on several considerations that will allow us to come
as close as possible to achieving real-time behavior on an inherently non-real-time OS
such as Linux. Foremost we are concerned with controlling context switching, the pro-
cess by which a task (i.e. process or thread) is interrupted after the expiration of its time
slice in order to yield the CPU to other tasks. A task must then must save its state in
order to be resumed later. Time spent during context switches amounts to time wasted
by the CPU, when no actual work is performed toward executing user-space tasks. For
our simulator program to give the best performance, our hardware resources must be
dedicated entirely to supporting this program alone. Therefore we should provision for
program tasks to utilize as much as the CPU as is allowed by the kernel, which means
reducing context switching as much as possible. There are several steps we can take
to reduce unnecessary context switching and processor churn, increase CPU utilization,
and generally improve the efficiency of the Linux OS.

• Disabling all non-essential programs and services, such as file and mail server
daemons, will aid in limiting context switching.18

• Disabling the power management service (i.e. the ACPI daemon) ensures that the
system does not throttle CPU utilization in attempt to reduce power usage.
• CPU affinity is a property specified for tasks that causes them to be bound to

certain processor or core of an SMP, overriding the scheduler function that dy-
namically handles the assignment of threads and processes to processors. By ma-
nipulating CPU affinity, we can reserve specific SMP cores for individual tasks
and theoretically eliminate context switching entirely.19

• Setting task priority is another way in which we hope to manipulate the scheduler
to run our simulator program more efficiently.20

18See [42] for a list of standard daemons on RHEL/CentOS 5 systems.
19[44] and [45] document the taskset and cpuset utilities that are used manipulate the system scheduler.

Also [46] gives examples of setting CPU affinity for Open MPI processes.
20Real-time performance is possible with the 2.6 Linux kernel compiled with the CON-

FIG PREMPT RT patch [47]. This allows user-space tasks to be assigned real-time priority. In Real-
Time Linux, the chrt utility is used to change the priority of threads and processes [48].
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6 LTE/SAE: 4G Cellular Evolution
6.1 LTE Overview

Long Term Evolution (LTE) is the latest series of standards developed by the 3rd Gener-
ation Partnership Project (3GPP) to become a mature Radio Access Technology (RAT).
It is so named because it seeks to evolve the 3G UMTS radio interface through the
next epoch of cellular wireless technology. Specifically, LTE refers to 3GPP Release
8 and beyond of the Evolved UMTS Terrestrial Radio Access Nework or E-UTRAN.
Throughout this document, we shall use the terms LTE and E-UTRA/E-UTRAN in-
terchangeably. The developmental LTE Advanced system introduced in Release 10 is
planned as an upgrade to the first LTE release and is among the first standards to be
certified as 4G-compliant by the International Telecommunication Union. LTE (and, to
an even greater extent, LTE Advanced) boasts of some unprecedented, not to mention
rather impressive, specifications for data rate, capacity, spectral efficiency and latency
made possible by modern advancements in wireless technology and principles such as
MIMO, interference coordination and new multiple access schemes. These and other
changes to the UMTS radio interface and protocols were necessary to achieve such
ambitious requirements.

As an important side note, while Release 8 is presently being rolled out in cellular
networks globally, Release 10 has yet to be implemented by vendors in any broad sense
and production systems are not anticipated for any time in the near future. We therefore
choose to concentrate our efforts on grasping the Rel-8 LTE radio interface and, as a
central goal of this project, the development of a simulation model of the same. We
believe this would be of greatest immediate value to researchers and developers in the
industry and academic community since the intention is to provide a solid foundation
for 4G cellular network simulation. The features added in Rel-10 can subsequently be
integrated into the basic framework.

The chief features and requirements for LTE laid out by the 3GPP and frozen in the
Release 8 specifications are as follows [56, 60, 61].

• Increased data rates to user equipment: Targets of 100 Mbps peak rate in the
downlink and 50 Mbps in the uplink with 20 MHz system bandwidth.
• Reduced setup and transfer latency: Sub-5 ms one-day delay (from when a packet

is transmitted until it is available at the IP layer at the UE) and less than 100 ms
when transitioning from idle to active mode.
• Improved spectral efficiency: Average user throughput per MHz 3-4 times better

in the downlink and 2-3 times better in the uplink than UMTS Release 6, owed to
new OFDMA (downlink) and SC-FDMA (uplink) multi-access techniques.
• Flexibility in spectrum usage and support for various cell bandwidths: Support

for 20, 15, 10, 5 MHz bandwidths and under for more scalable cell sizes.
• Improved UE power management: Extended terminal battery life using Discon-

tinuous Reception (DRX) and other power-conserving techniques.

6.2 SAE Overview

The System Architecture Evolution (SAE) work item is the core network counterpart
to LTE in the RAN and evolves the 2G-3G GPRS network into the entirely packet-
switched Evolved Packet Core or EPC, as it is known. The EPC combined with the E-
UTRAN is jointly referred to as the Evolved Packet System (EPS), which encompasses
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the 3GPP vision of the 4G mobile broadband system in its totality. The Evolved Packet
Core is made up of collection of elements that provide backbone data transport (i.e. user
plane) and control plane functions such as mobility management, policy and charging
control and Authentication, Authorization and Accounting (AAA). The nodes of the
EPC are also responsible for setting up and maintaining end-to-end connections with
specific QoS requirements. The underlying motif throughout the development of SAE
has been the departure from separate circuit-switched and packet-switched components
for voice and data traffic, respectively (as has been the case since the introduction of
GSM/GPRS), into a much simplified, “all-IP” core network. This factor along with the
deliberate separation of RAN and core functions enables a greater flexibility in internet-
working, allowing different RATs to be served by the same core network infrastructure.
Below are some of the general requirements for the EPC drawn up in the SAE work
item [57, 58].

• Simplified, flat, all-IP network architecture: As the name implies, the Evolved
Packet Core is a packet-based system, with the separate circuit-switched domain
used in GSM and UMTS for provisioning voice calls being completely elimi-
nated. The separation of user and control plane functions into different logical
network entities is clearly defined. Application layer services for voice, data
and multimedia, such as those provided by the IP Multimedia Subsystem (IMS),
are all provided on top of and independent from essential network functions.
Whereas previous systems allowed for different transport protocols such as ATM
and SS7 between core nodes, the EPC relies entirely on IP for network layer con-
nectivity. Furthermore a “flat,” as opposed to a hierarchical, design philosophy
was adopted, meaning in a very basic sense that as few nodes as possible are
involved in processing user data traffic [58].
• Heterogeneous internetworking: Support for internetworking between modern

and legacy 3GPP and non-3GPP systems. Multimode UEs can seamlessly han-
dover between different RATs with minimal (sub-300ms for real time and sub-
500ms for non-real time services) interruption time [61]. This capability s con-
sidered a guiding principle of SAE since such factors as roaming and ease of
migration are so important from the network operator perspective.
• Common security framework: Security and privacy features are built into every

aspect the EPS. Each stratum of the network, from the application layer services
to the raw traffic going over the wireless channel, is secured through mutual au-
thentication, cyphering and access control policies.
• Common QoS, charging and policy control: QoS over end-to-end connections (in

truth only applying to traffic within the domain of the EPS) is provisioned through
EPS bearers, as we shall see shortly. Treatment of traffic can be differentiated in
the user plane through QoS Class Identifiers or QCI as well as in the control plane
with Allocation and Retention Priority (ARP) parameters. Policy and Charging
Control (PCC) network entities including the Policy and Charging Rules Func-
tion (PCRF) provide a centralized mechanism for doing what the name implies,
enforcing QoS policies and charging on a per-subscriber and per-service basis.
The specific roles of each of these entities is discussed in the following section.

With demand for mobile data services skyrocketing, the enhanced, data-centric,
low-latency, high-capacity cellular services promised by LTE/SAE could not have come
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at a better time. While numerous other competing standards have emerged alongside
the 3GPP standards, it is clear that the Evolved Packet System has already firmly po-
sitioned itself in the 4G mobile landscape. As we go over the interfaces, protocols,
procedures and network elements of the EPS in the following sections, we tailor our
discussion around that which we want to model in simulation. In this first iteration of
our work, we focus on implementing a bare-minimum set of features on top of existing
features provided in the ns-3 framework and model library that we deem necessary for
a proof-of-concept simulation of end-to-end connectivity over the RAN and core net-
work. As a consequence we shall not delve into all the finer points of LTE/SAE but
instead provide an overview of the technology and background relevant to the model
detailed in Section 9.

6.3 EPC Network Architecture and Protocols

Before we can adequately describe the technical nuts and bolts of the LTE radio inter-
face and protocol stack, we must introduce the essential functions taking place behind
the scenes in the core network. Figure 6.1 shows us the logical network entities found
in the EPC and the interfaces between them. We use the term logical here to imply
independence from any physical server or device in the network. Instead, each logical
entity has a specific role in the network with a well-defined functionality, and multiple
entities can be co-located on the same hardware. The concept of an interface is simi-
larly abstract and represents a logical connection and relationship between entities. In
the 3GPP vernacular, interfaces are referred to as reference points and take the form
of alphanumeric (often two- or three-character) abbreviations like S11, X2, and S6a.
An interface is composed of a set of protocols for signaling and data transport between
network entities, although the same protocol (GPRS Tunneling Protocol as a case in
point) may be found on multiple interfaces. To continue with our definition of termi-
nology, a protocol is a formal set of technical rules and procedures for communication
between network entities, typically involving formatting of data and message syntax,
control messaging, transmission, error handling, etc. [58].

The above figure shows the key entities and interfaces known to the E-UTRAN
and EPC. While these are recognized as the essential components involved in standard
network operations, any practical network is considerably more complex. Omitted from
this figure are interfaces between other (non-EPS) core and access systems along with
elements providing higher-layer services such as IMS and AAA (the reader is referred to
[58] for elaboration). The bigger picture of a real-world network deployment, including
all of the intricacies of heterogeneous networking and application layer service delivery,
are beyond the scope of our work. In future iterations, we hope to continually add non-
EPS and even non-3GPP network elements to our model (to simulate heterogeneous
handovers, perhaps), however we seek to “keep it simple” for now. We shall refer to
these components of the basic EPS topology frequently throughout this document and
we shall later detail our approach to reproducing them in simulation.

6.3.1 Network Entities

In the following sections, we expand on the specific roles of each of these fundamen-
tal logical entities, with attention given to differentiating them in terms of the various
control and user-plane functions they provide.
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Figure 6.1: Simplified EPC network architecture

6.3.1.1 User Equipment (UE)

As the name suggests, the UE is any end-user device communicating with the base sta-
tions (eNodeBs) of the E-UTRAN using the LTE stack. In the age of mobile broadband,
the archetypical cell phone is just one of many such devices that take advantage of mo-
bile data services. Feature-rich smartphones, tablets, laptops, netbooks, dongles, and
smart-metering devices (used by utility companies) are just a few examples of devices
presently on the market that are beginning to be equipped with LTE radios. The UE
communicates with the eNodeB over the E-UTRAN Uu interface [65].

6.3.1.2 eNodeB (eNB)

The eNodeBs are the base stations that make up the E-UTRAN and provide wireless
connectivity for the UE. The term base station is used loosely and can refer to any
number of cell deployment scenarios. For instance, the common three-sector site de-
ployment covers three cell areas that comprise the same eNodeB [57]. While remi-
niscent in some ways of the UMTS NodeB, the Evolved NodeB has assumed many
additional responsibilities, such as performing header compression and cyphering (en-
cryption/decryption) of user plane data over the air link along with the following Radio
Resource Management (RRM) tasks [66].

• Radio Bearer Control (RBC): The establishment, maintenance and release of ra-
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dio bearers. The eNB takes stock of available resources along with the require-
ments of existing sessions and attempts to fulfill the QoS requirements of new
sessions when setting up radio bearers (see Section 6.3.2.1 for more on bearers).
• Radio Admission Control (RAC): The eNB must determine if the QoS require-

ments of requested radio bearer sessions can be met and accept or reject requests
accordingly.
• Dynamic Resource Allocation (DRA) and Packet Scheduling (PS): As we shall

see in Section ??, wireless resources can be assigned to users and sessions over
the dimensions of both time and frequency in the form of Resource Blocks (RBs).
The eNB must leverage the requirements of in-progress radio bearers, CQI feed-
back information from UEs, buffer status and other factors to optimize scheduling
of user data. DRA also involves downlink and uplink power control on a per-RB
basis.
• Inter-Cell Interference Coordination (ICIC): An eNB must communicate over

backhaul links (X2 or S1-U interface) with eNBs in neighboring cells to perform
multi-cell RRM and coordinate the use of wireless capacity.

Some other noteworthy aspects of RRM include cell selection procedures and load
balancing over multiple cells. Additionally, eNodeBs coordinates handover procedures
with one another (over the X2 interface) and with the MME (using the S1-MME inter-
face). All user plane packets are forwarded between the eNodeB and S-GW over the
S1-U interface.

6.3.1.3 Mobility Management Entity (MME)

The MME is the main control node in the EPC and performs a broad range of functions
for session management, mobility, gateway selection, tracking and paging procedures
for the UE, which are mostly considered part of the Non-Access Stratum (NAS) proto-
col [58, 67]. The NAS protocol handles all control-plane signaling between the MME
and UE. The MME communicates with the multiple S-GW over the S11 interface for
such purposes as bearer management and similarly has a one-to-many relationship with
eNodeBs connected by the S1-MME interface.21

6.3.1.4 Serving Gateway (S-GW)

The S-GW is the termination point of the E-UTRAN into the EPC and is primarily
concerned with the operations listed below [57, 58, 67].

• User data forwarding: All user-plane data to and from the UE is sent between
the eNodeB and S-GW over the S1-U interface. The GPRS Tunneling Protocol
(GTP) maps EPS bearers carrying data to and from UEs to tunnels for the purpose
classifying user data. The S-GW also buffers downlink data during handovers
until bearers can be re-established.
• Mobility anchoring: The S-GW is the mobility anchor point for the UE during

inter-eNB handover and receives control messages from the MME for tearing
down and setting up new bearers. It is also the connection point with S-GWs or
SGSNs in other 3GPP mobile networks (or for supporting legacy GPRS in the

21While the role of the MME is diminished in the implementation introduced in Section 9, we feel it
is still important to give an overview of its principle functionality and associated interfaces.
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same network or administrative domain), which forward data traffic on behalf of
roaming UEs.

6.3.1.5 PDN Gateway (P-GW)

The P-GW node is the connection point (i.e. the SGi interface) of the EPS to external
Packet Data Networks like the Internet. It is connected to the S-GW by the S5/S8
interface, which can be GTP or PMIPv6-based (See Section 6.3.3.3). Its primary tasks
are as follows [58].

• Connections to external networks: The P-GW is the point of the presence of the
core network on a particular PDN. UEs connecting to multiple PDNs (different
Autonomous Systems in the Internet, for instance) may so do through multiple
P-GWs.
• UE IP addressing: IP addresses are allocated to each UE for routing external data

traffic at the time of default bearer activation (see Section 6.3.2.1).
• Packet filtering and traffic shaping: Deep packet inspection and filtering is per-

formed by applying Traffic Flow Templates (TFT), which supply the QoS param-
eters for each user session (i.e. EPS bearer).
• Mobility anchoring (non-3GPP access): The P-GW provides the anchor point for

UEs roaming in non-3GPP access networks. Such concepts related to heteroge-
neous networking are, however, beyond the scope of this document (the reader is
referred to [58] for more on this subject).

6.3.1.6 Policy and Charging Rules Function (PCRF)

The PCRF is the central node responsible for managing policy (e.g. access control,
QoS parameters) and flow-based charging [58] based on subscriber information from
the Home Subscriber Server (HSS). While both are important entities in any practical
deployment, we forgo thorough attention to the functions provided by the PCRF or
HSS in this iteration of our work as these functions are not essential to our basic EPS
representation in simulation.

6.3.2 EPC Procedures

Before getting into the technical aspects of the protocols employed by the various en-
tities for network operation, we should understand some of the high-level services that
the EPS as a whole must provide. Session management refers to the handling of connec-
tions between UEs and PDN hosts. As the user moves, mobility management functions
take care of maintaining active sessions. The UE must associate with an eNodeB and
core network entities or reassociate as a result of handover (or other events) though the
attach and selection procedure. 22

6.3.2.1 Session Management

6.3.2.1.1 EPS Bearers

User plane sessions over the RAN and packet core are realized through the bearer sys-
tem [58, 68]. End-to-end bearers are known as EPS bearers and, as illustrated above,

22Security services are also an integral aspect of practical EPS networks and are provided in some form
by each core entity. We omit a discussion of these aspects as they are outside the scope of this work.
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are decomposed into three parts:

• Radio bearers (RB) carry data over the E-UTRAN-Uu interface and are controlled
by the RRC protocol (see Section ??). Uplink RBs have an associated UL-TFT
(Uplink Traffic Flow Template), which include information for classifying appli-
cation data and associate it with certain QoS paramters used in scheduling (by the
eNodeB) and packet filtering at the P-GW.
• S1 bearers between the eNodeB and S-GW take the form of GTP tunnels and are

identified by the TEID (Tunnel Endpoint ID) parameter in the GTP-U header.
• E-RAB or E-UTRAN Radio Access Bearers refer to the combined radio and S1

bearers.
• S5/S8 bearers are specific to the GTP-based S5/S8 interface and are also identified

by the TEID field. In the downlink direction, the DL-TFT information assigned
to S5/S8 bearers provides the QoS values for the session.

Default bearers are established when the UE initially connects to the PDN and re-
main for the lifetime of the connection. They are usually assigned the default QoS
values for standard data traffic. A UE connecting to hosts in multiple external net-
works has one default bearer for each respective PDN. Any additional bearers are then
known as dedicated bearers and can be established on-demand as needed by the UE.
Each dedicated bearer may have special QoS settings to suit the requirements of specific
application data.

6.3.2.1.2 Traffic Flow Templates (TFT) and QoS Profiles

As mentioned, the TFT typically contains such information as source and destination
(public) IP addresses and transport layer port numbers along with the Type of Service
(TOS) field from IP header, which is used by the UE for discriminating data belonging
to different IP flows. The TFT is mapped to a QoS profile for determining MAC-layer
scheduling priority at the eNodeB and is also used in packet filtering by the P-GW as
data ingresses or egresses the network. The QoS profile of an EPS bearer includes the
following fields:

• QoS Class Identifier (QCI): The QCI value specifies the scheduling priority, packet
delay budget and allowable packet loss for different types of traffic. Along with

Figure 6.2: EPS bearer (GTP-based S5/S8, figure taken from [68])
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being incorporated into MAC scheduling decisions, the QCI determines the RLC
mode for each logical channel [56].
• Allocation and Retention Policy (ARP)): The ARP is a value between 1 and 15

(1 being the highest priority) specifying the priority level used in Radio Admis-
sion Control to determine if a bearer can be established that preempts an existing
session.
• Guaranteed Bit Rate (GBR): The expected data rate for an IP flow.
• Maximum Bit Rate (MBR): The maximum allowable data rate for a flow that,

which, along with the GBR, is used for traffic shaping.

6.3.2.1.3 IP Connectivity

The foremost role of the EPC is to provide transport of user application data. By ap-
plication data, we mean data associated with protocol layers including the IP layer and
above. Multiple connections between the UE external hosts, identified by the typical
“5-tuple” parameters, may be transported over a single PDN connection, which is sup-
ported by a default or dedicated bearer instance. The IP connections (again we mean
end-to-end connections represented by 5-tuple information) are tunneled through the
underlying transport network by the user plane entities, which are entirely transparent
to the UE. Furthermore, the IP domain of the PDN (including the UE’s publicly routable
address) is separate from that of the EPS. The UE therefore sees no intermediate hops
between itself and the PDN Gateway. We see this situation illustrated in the figure
below [58].

Figure 6.3: Application data tunnel over the EPS (figure based on [58] - Section 6.1.1.3)

6.3.2.1.4 Address Allocation

We mentioned how PDN connections and the core transport network exist in separate IP
routing domains. Core network entities may be addressed using a private IPv4 or IPv6
scheme. The address assigned to the UE must be in a public range to be routable on the
PDN, which may IPv4- or IPv6-based. IPv4 address allocation may be done during the
initial attach procedure as part of the attach accept message from the MME.
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6.3.2.2 Mobility Management

The purpose of mobility management and, specifically, the chief role of the MME is
threefold: (i) Tracking the UE so it can be reached by the network at all times (in
the case of incoming connections, for instance), (ii) ensuring the user the ability to
initiate outbound connections and (iii) maintaining active connections as the user moves
around.

6.3.2.2.1 Tracking and Paging

UEs in the active mode (RRC CONNECTED) state presently have an active connection
to the network. A UE can also be in the idle mode (RRC IDLE) state, during which
it periodically listens for paging messages from the MME. Section ?? elaborates on
these RRC states. Idle mode UEs can move between cells (i.e. eNodeBs) in the same
Tracking Area (TA) without notifying the MME. The MME directs paging messages to
all eNodeBs in a particular TA in the event of an incoming connection. When moving
to another cell outside of its present TA, it must send a Tracking Area Update to the
MME so that it can be paged. The reader is referred to [58] Section 6.3.2.1 and [62]
Section 7.2 for more information.

6.3.2.2.2 Active Mode Mobility

Active mode mobility involves sustaining active sessions while the UE moves between
parts of the network or, in the case of inter-RAT handover (HO), between different
access networks entirely. We shall direct our attention to two cases within the EPS
domain known as X2 and S1 HO.

X2 HO, also known as direct HO, involves detaching from the UE’s present serving
eNB (the Source-eNB) and associating with a Target-eNB in a neighboring cell. HO
events may be initiated after the source coordinates with the target NodeB and deter-
mines that the channel conditions in the target cell are significantly better for a specific
UE. Coordination is done over the X2 interface, which is the backhaul transport link be-
tween eNB. In this case, the UE maintains its association with its current Serving GW
and MME. Once the HO decision has been made and resources have been prepared in
the target cell, the connection to the S-eNB is dropped before it is reestablished with
the target (i.e. “break-before-make”). The S-eNodeB requests the MME to switch the
downlink data path to the target eNB, which is then carried out by the S-GW. The
source must finally forward any backlogged packets (that arrived for the UE during the
process) to the target eNB [58, 62]. 23

Without a X2 backhaul link, S1 HO (indirect handover) must take place using the
S-GW as an intermediary. S1 HO is also performed when the source MME determines
that the UE should associate with a new S-GW or MME. This process involves the
additional steps of reconfiguring the tunnels between P-GW and S-GW along with the
end-to-end EPS bearers serving the UE at hand.

6.3.3 Interfaces

Here we address some of the interfaces or reference points found in the EPS (defined
in 3GPP TS 23.401), which characterized by standard protocol stacks that facilitate
communication between network entities. A practical EPS deployment involves many

23A detailed diagram depicting X2 HO is given in [63].
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entities and interfaces that we exclude from our discussion, as understanding them is
not immediately relevant to our project goals.

Figure 6.4: EPS user-plane interface (copied from [58]-Section 10.3.10)

6.3.3.1 LTE-Uu

The LTE-Uu (sometimes E-UTRAN-Uu) is the air interface connecting the UE to the
eNodeB. In the user plane, the Uu interface is characterized by the LTE PHY, MAC,
RLC and PDCP protocols, as we see in Figure 6.4. These protocols are concerned with
segmentation/reassembly, cyphering, encapsulation/decapsulation, and the ultimate ra-
dio transmission and reception of user data. 24 25

Each of these protocols also takes part in the control plane and, along with the RRC
protocol, perform control signaling with the eNodeB. The “relay” function shown in
the interface diagrams in this section facilitates communication between interfaces of a
node. When we later discuss the LENA LTE implementation in Section 9, we see how
relaying is performed by the LteEnbNetDevice class. 26

6.3.3.2 S1-U

The S1-U forwards user data between the eNodeB and Serving GW over GTP-U tunnels
(mapped to S1 bearers).

6.3.3.3 S5/S8

The S5 and S8 interfaces are referred to jointly because they both serve to interconnect
the Serving GW and PDN GW. Specifically, the S5 connects the S-GW to a P-GW
within the home network, while the S8 terminates at the P-GW in a visited network in a
roaming scenario. Both can be GTP or Proxy Mobile IPv6 (PMIPv6)-based. In the case
of a GTP-based S5/S8, GTP-U sits in the user plane and GTP-C in the control plane. For
a PMIP S5/S8, Generic Routing Encapsulation (GRE) is used for IP tunneling of user
data and PMIPv6 performs the control plane aspects. Throughout this work, we center
our attention on the former case because it significantly simplifies our implementation.

24We introduce these aspects of the LTE radio in Section ??.
25It should also be noted that IP-layer traffic is transparent to the eNodeB and is simply forwarded

along to the core network.
26Relaying in this sense should not be confused with multi-hop radio communications.
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6.3.3.4 SGi

SGi defines the connection point between the P-GW and the PDN. The P-GW appears to
be essentially a border router to neighboring networks and performs ingress and egress
filtering on traffic incident on this IP-based interface.

6.3.3.5 S1-MME

Figure 6.5: S1-MME interface (copied from [68]-Section 5.1.1.3)

The S1-AP protocol, which is responsible for all control plane signaling between the
eNodeB and MME, is specific to the S1-MME interface. Stream Control Transmission
Protocol (SCTP) provides transport for S1-AP messages. 27

6.3.3.6 S11

Figure 6.6: S11 interface (copied from [68]-Section 5.1.1.8)

GTP-C tunnels control plane messages between the MME and S-GW and is trans-
ported over UDP socket connections.

27SCTP is used for transport on many EPS interfaces and is defined in IETF RFC 2960 [71].
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Part III

Design and Implementation
7 Simulation Platform Implementation
We now begin our presentation of our design methods and implementation of a parallel,
real-time software emulator for LTE/SAE networks, which is composed of three parts.
In this section, we discuss this core simulator platform, including the event scheduler,
logging, tracing, configuration and other utility classes provided in the ns-3 framework.
In Section 8, we describe our approach to building a dedicated compute cluster for
running test simulations. In Section 9, we review the EPS model implemented on top
of this simulation substrate.

The ns-3 project is a framework for discrete-event simulation of Internet systems
[72]. It is the successor to the ns-2 simulator, a tried and tested tool that has been in use
by the networking community for over a decade in the design and validation of network
protocols [73]. The ns-3 library is a collection of C++ classes that include a variety
of modular simulation models, which can be instantiated to build diverse simulated
network scenarios. These modules are designed around a simulation core layer, which
provides the DES nuts and bolts, and is typically transparent to the user and not directly
manipulated when building basic simulations. Instead, helper classes give the user a
standard API for accessing core simulator functionality. As we shall explain, it was
not enough to simply adopt ns-3 “as-is” in the release version; Many core ns-3 classes
required extensive modification in order to suitably match our requirements. Modules
and classes from third-party developers were also integrated into the base simulator and
modified as needed.

Figure 7.1: Architecture of the ns-3 framework (taken from [72])

Figure 7.1, taken from the ns-3 manual, shows the structure of a typical ns-3 ap-
plication.28 Applications must be linked to ns-3 libraries as well as the C++ Standard
Template Library (STL). Simulations are generally constructed by instantiating ns-3
objects in the int main() function, the program entry point.29 The C++ source file
containing main must, at the very minimum, include the header file for one of the core
simulator classes given in this section. Individual .h files must also be included for any
additional model, helper or utility classes.

28Python bindings to ns-3 C++ classes are also provided so that simulation scenarios can be coded in
Python, however we make no use of this feature in our work.

29For practical examples of how ns-3 simulations are constructed, see Section 10.
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7.1 Core Simulator

The following classes implement the essential components of a DES network simu-
lator that we described in Section 4. In the standard object-oriented C++ fashion,
internal simulator entities, such as the event set, are declared private, and the API
used to perform core functions like scheduling events, canceling events, starting the
simulation, etc., are public methods. Each of the following classes inherits from the
SimulatorImpl abstract class, which specifies prototypes of methods common to
each core simulator implementation.30

As the inner workings of the core DES layer are abstracted out to the model layer,
similarly the core layer operates completely independently of any network model. The
role of the core layer is to efficiently schedule and process events; It has no knowledge
of the nature of such events, nor does it even distinguish that it is simulating a network.
Though a fundamental principle of modular software design, which is a hallmark of ns-
3 design, this factor causes some difficulty when introducing parallel design patterns.
As we shall see, some clever means have been employed to modify the core simulator
to incorporate the necessary modifications as unobtrusively as possible.

7.1.1 Default Implementation

The DefaultSimulatorImpl class is the basic, single-threaded core implementa-
tion and defines only the standard methods declared in SimulatorImpl. Not spec-
ifying the simulator implementation type will result in this class being used. Some of
its more interesting methods are described in Table C.1. Each of these methods have
essentially the same behavior across the board.

7.1.2 Distributed Implementation

The full functional and implementational details of the DistributedSimulator-
Impl class are provided by its authors in [82].31 This core simulator type allows sim-
ulations to be run in a multi-process MPI environment. The number of ranks (i.e. pro-
cesses) is specified at runtime using mpirun (see [86]).

Partitions are defined in the simulation source file (i.e. in main) by specifying the
partition ID of each Node or NodeContainer object.32 Each MPI rank then pro-
cesses events for all nodes within a partition. Furthermore, a network topology can
only be partitioned between sets of nodes joined together by point-to-point links (i.e.
PointToPointNetDevice devices connected by PointToPointRemoteChan-
nel links.) Nodes at a simulation boundary communicate with remote nodes by calling
PointToPointNetDevice::Send(), which in turn calls MpiInterface::Se-
ndPacket() to perform a non-blocking send of the serialized packet object over MPI.
On the remote partition, at the beginning of each iteration of the event processing loop
for the respective rank, MpiInterface::ReceiveMessages() is called to re-
ceive all packets from remote nodes sent during the previous iteration, deserialize said
packets, and schedule PointToPointNetDevic- e::Receive() events to re-
ceive the packets on the appropriate devices. In this way, the DistributedSimulat-
orImpl singleton works in tandem with the MpiInterface singleton and PointTo-

30For the sake of brevity, we only describe some useful API methods provided by each implementation
since these classes are already well-documented in the ns-3 Doxygen (see [74]).

31Simulations specifying this core simulator type must be compiled with the –enable-mpi option (see
[72]).

32Here the partition ID is equivalent to the rank ID
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PointNetDevice objects.
The UML activity diagram in Figure B.1 shows the program flow within the Run()

routine and the main event processing loop.33 To summarize the procedure, after each
event is executed, we must determine if the timestamp of next event in the queue is
within the allowed window of time (i.e. less than the current LBTS). If it is, we go ahead
and call ProcessOneEvent() to process it. Otherwise, we must resynchronize with
neighboring partitions by sending and receiving LBTS messages containing the current
minimum event TS. The blocking MPI Allgather() routine is invoked to exchange
LBTS messages, acting as a barrier and forcing the process to wait until all processes
have performed the call. Also at this point, we receive any packets sent from nodes on
remote partitions. This process repeats until the stop event is encountered or the event
set is empty.

7.1.2.1 MpiInterface class

This class is used as a singleton (all members are static). Calling MpiInterface::E-
nable() should be done at the start of main to ensure the MPI communicator is es-
tablished before the core simulator attempts to use it. Table C.3 gives some noteworthy
public methods provided by the ns-3 MPI API, which in some cases are nothing more
than wrapper for MPI routines. The user does not typically use these methods directly,
unless one is developing a model that requires MPI. Currently the only model support-
ing MpiInterface is PointToPointRemoteChannel, which is not covered in
this document.34

7.1.3 Multi-Threaded Implementation

The MultiThreadedSimulatorImpl class is not part of the release version of ns-
3 and is the contribution of a third-party developer, as detailed in [83]. A multithreaded
parallel implementation was sought to compare against the message passing-based ver-
sion, DistributedSimulatorImpl to determine if the shared memory model of-
fers any potential performance gain over the distributed model. 3536 This parallel DES
algorithm creates a one-to-one relationship between nodes and partitions, with assigned
partition IDs being equivalent to node IDs (i.e. contexts). 37 Each node, then, has its
own event set and simulation clock.38

This parallel DES algorithm closely follows the basic Chandy-Misra-Bryant algo-
rithm discussed in Section 4.4.5.1 and makes use of the notion of scheduling events

33Not shown in the activity diagram are other ranks performing this same procedure symmetrically.
34See [74] for the ns-3 Doxygen.
35While it may intuitively seem that a shared memory algorithm should perform better than a

functionally-equivalent message passing version due to reducing copy operations, a deeper understand-
ing of the MPI implementation is needed to before this assumption can be made. OSU MVAPICH2 1.8
[88], a popular MPI incarnation, does, in fact, use a shared memory channel (known as the Nemesis chan-
nel) for intranode message passing [51]. Thus presents the need to assess an MPI-based core simulator
side-by-side with a pthread-based version.

36The MultiThreadedSimulatorImpl class along with the helper class and example simula-
tions in [83] were originally developed for ns-3 3.9. Some minor modifications were required to inte-
grate it into v3.11, which was the release version at the time this work was conducted. See Section 13 for
information on obtaining the source code for this project.

37The MultiThreadingHelper class handles installing partitions.
38We experimented with redesigning the algorithm to support partitioning based on clusters of nodes,

in a similar fashion to the distributed algorithm. Considerable debugging was still required at the time
this document was composed, so a discussion of this line of investigation is omitted.
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with context. We therefore have a separation of events into local events, specific to
a partition context, and global events, which apply to the simulation a whole. Un-
like the distributed implementation, partitions are not specified during node creation,
but instead the MultiThreadingHelper helper class is used to create partitions
for each node. The helper also computes the lookahead for each partition by calling
GetMinDelay() on each link connected to a net device on the respective node.39

The API for the helper class is given in Table C.4.
The activity diagram in Figure B.2 shows the procedure in Run(), which performs

some initializations such as creating the thread synchronization barrier with the barrier
type specified by the BarrierType attribute.40 41 A number of worker threads are
then spawned, which enter the DoRunThread() method for processing events. As
shown in the diagram, each iteration of the event processing loop begins by synchro-
nizing partitions and computing the LBTS for individual partitions, as in the distributed
model. Global events are then processed by the primary thread (with thread ID 0). All
threads must then arrive at a barrier before selecting a partition for processing. All
events up to the local LBTS are processed, after which threads must resynchronize.

7.1.4 Real Time Implementation

RealtimeSimulatorImpl is designed to be used in combination with ns-3 tap-
bridge feature, as we shall soon introduce, for doing real-time emulation [38]. It em-
ploys a WallClockSynchronizer singleton for delaying event processing by the
appropriate amount of wall-clock time. The synchronizer accomplishes this by calling
the SleepWait() routine followed by the SpinWait() routine. SleepWait()
calls pthread cond timedwait() (see [53]) to put the thread to sleep for an
amount of time slightly before the real-time deadline.42 This is to ensure that the sleep
operation does not overshoot the deadline due to some delay induced by the kernel
scheduler if, for instance, the thread is being preempted. A more precise wait oper-
ation is achieved with SpinWait(), which continuously calls gettimeofday()
and loops for the remainder of the delay. The only discernible reason for the initial
sleep wait is to allow a thread to be preempted in order to use the ns-3 emulation fea-
ture on a uniprocessor system.43 As mentioned in Section 5, we wish to control the sys-
tem scheduler to provide for full utilization of processors by the simulator program. It
was subsequently determined experimentally that doing away with the sleep wait func-
tion and relying entirely on finer-precision spin wait improved performance in terms of
reducing real-time jitter.44

Some attributes are given in Table C.7. HardLimit parameter sets the real-time
deadline, that is, the maximum allowable jitter. If this jitter is exceeded, the Synchron-
izationMode parameter defines whether the simulation should abort, log the in-
stance, or do nothing.45

39While this core simulator is not completely married to PointToPointRemoteChannel, as is
the case with DistributedSimulatorImpl, all channels must implement the GetMinDelay().

40The different barrier types are covered in [83]
41Table C.5 enumerates the available attributes that can be set using the ns-3 configuration system.
42The precision of pthread cond timedwait(), like gettimeofday(), is actually measured

in jiffies or ticks of the system timer interrupt. Most modern architectures and kernel versions support a
High Resolution Timer (HRT) with nanosecond resolution. The concept of a jiffy is covered in [54].

43The ns-3 tap-bridge feature uses a separate thread for polling the tap device. This is also why some
locking primitives are employed in the real-time core implementation for ensuring thread safety.

44These ancillary results are omitted for conciseness.
45The option SYNC SOFT LIMIT was added to output a debugging message in the case of a missed
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7.1.5 Real Time-Distributed and Multithreaded Implementations

We implement real-time capability for the DistributedSimulatorImpl and Mult-
iThreadedSimulatorImpl classes simply by incorporating the wall-clock syn-
chronizer functionality into the ProcessOneEvent() method for each class. Real-
time synchronization can then be enabled with the attribute IsRealTime (see Ta-
ble C.2).

7.2 Tap-Bridge Emulation

The TapBridge class is used to integrate ”real” network hosts with ns-3 simulations.46

The basic architecture for using ns-3 as an emulator is shown in Figure 7.2.47 What is
effectively accomplished through this seemingly daunting configuration is a host that
has a presence in both the real and simulated world.

7.2.1 Linux Container (LXC) Virtualization

Virtual Machines are used to create multiple real Linux hosts on the physical server
hosting the simulation. We adopt the Linux Container (LXC) tools package (see [75])
for creating lightweight user-space VMs called containers.48 Each container appears as
an independent Linux host with a unique network stack and Ethernet interface (eth0, in
this case). Interface eth0 is bridged with a virtual tap Ethernet interface, veth, on the
host OS, which provides an IPC socket through which data can be tunneled from the
container to the host machine. The veth interface is then bridged with another manually-
created tap device to which the corresponding TapBridge device in the simulation
can attach. 49

8 Compute Cluster Architecture
Our approach to developing a hardware platform for testing our software is centered
around pursuing hardware components that can be procured inexpensively and easily
scaled to support larger (i.e. more simulated network elements) and more computationally-
intensive simulations. Due to the highly parallel nature of our proposed DES software,
the computational power for individual processors is perceived as being of lesser utility
than the number of these processing elements. In simpler terms, quantity is preferred
over quality. With these design principles in mind, the natural solution presents itself
in a beowulf cluster, as it is sometimes known, which is a cluster of homogeneous, in-
expensive hosts or compute nodes networked together for running parallel applications.
The original notion of beowulf clusters, as presented in [78], assumes supercomputer-
grade hardware is expensive, and involves the use of personal computer hardware for
each compute node and LAN technologies such Ethernet for networking. Fortunately,

deadline instead of raising an exception, as is the behavior when SYNC HARD LIMIT is specified as the
synchronization mode.

46The ns-3 model library documentation (see [72]) covers the basic concepts and usage of the
TapBridge class. [40] is a thorough tutorial on setting up ns-3 emulation with Linux Containers
(LXC), covering the topics in this section in greater detail. [39] demonstrates how ns-3 can be integrated
into a practical testbed.

47Throughout this section, we refer to the use of the TapBridge UseBridge mode. See [72] for
details on TapBridge modes.

48It was found that Linux Containers are more ideally suited for our purposes than other standard vir-
tualization products, such as VMWare and OpenVZ, because LXCs do not require separate disk images
for each VM instance and require significantly less system resources and setup time.

49The tunctl package [77] is used to manage TUN/TAP devices. The brctl package [76] includes
utilities for managing bridges.
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Figure 7.2: Integration between Linux Container VMs and an ns-3 simulation device using tap
devices (taken from [40]).

this is no longer the case, as cheap multi-core SMPs are now widely available off-the-
shelf along with the same high-speed interconnects found in many large-scale super-
computing clusters.50

Figure 8.1 shows the overall architecture of the two-node cluster built for this project.
Each of the two identical hosts is based on AMD Opteron 6000-series SMP technology
and communicate over 10Gb/s InfiniBand Host Channel Adapters (HCAs) connected to
an InfiniBand fabric switch. Within each node, the AMD Direct Connect Architecture
(DCA) (see [17]) supports two 6-core SMPs sharing a single motherboard in a hybrid
UMA-NUMA configuration. Each SMP can uniformly access its own cache and shared
DDR memory and has non-uniform access to the shared memory for the other SMP via
HyperTransport inter-IC technology. Each SMP also has access to the PCI Express bus
for communicating with the HCA.

8.1 InfiniBand Interconnect

InfiniBand is a low-latency, high-data rate network technology often found in commer-
cial data centers and HPC applications [89]. An InfiniBand switched fabric takes the
form of a Fat-Tree or mesh topology and is designed for scalability in that it allows for

50Each of the powerful compute nodes built for this project were procured for less than $2000.00 USD.
The total price of all networking components amounted to less than $1300.00 USD
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Figure 8.1: Two node Opteron (2x2x8-core) cluster with InfiniBand interconnect

compute nodes to be added to the topology without resulting in increased end-to-end
latency. For this project, the fabric consists only of two bi-directional links between
each compute node and switch. InfiniBand HCA and switch products offer signaling
rates of up to 300Gbps and sub-microsecond end-to-end latencies.51 52

9 LTE/EPS Model Implementation
The core simulator components, operating system and hardware aspects we have thus
far considered are undoubtedly critical to achieving our requirements of a real time,
parallel-distributed system. Nevertheless these aspects are only supplementary to our
primary interest of realistic simulation of Evolved Packet System networks. We now
have a solid software emulator foundation on top of which we may begin to build our
model of the LTE radio interface and EPC core network entities.

9.1 ns-3 LENA Project Features

Our work is not the first effort to develop such a model, and in attempt to avoid “rein-
venting the wheel” as much as possible, we have again sought to adopt existing, pub-
licly available, open source software that we may extend to meet our specifications.
The ns-3 model developed as part of the LENA (LTE-EPC Network Simulator) project
by Ubiquisys and the Centre Tecnològic de Telecomunicacions de Catalunya (CTTC)
implements many features that we wish to incorporate into our simulation environment
[79]:

• Comprehensive channel model: A channel realization using industry standard
models provided by the ns-3 Spectrum framework [81].

51[90] compares the performance of various InfiniBand and other HPC networking products. With
Mellanox InfiniHost III 10Gbps HCAs and an 8-port Flextronic 10Gbps (4x SDA) switch employed by
our cluster, sub-10µs latencies were demonstrated for RDMA reads and writes of 1KB or less.

52For tuning and optimizing MPI over InfiniBand, we employ the OSU Micro-Benchmarks package,
which provides some basic example programs for testing the performance of MVAPICH2 MPI routines
over Infiniband [87].
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• Basic physical uplink/downlink shared and control channel functions: The PHY
layer provides a basic OFDM scheme allowing data to be multiplexed over time
and frequency. Control signaling such as DCI messages and CQI reporting is also
performed. SINR is calculated for each subframe to be used in CQI feedback.
• MAC scheduler and Femto Forum API: Two types of scheduling algorithms are

implemented for dynamic resource allocation. The functionality of the MAC
scheduler is accessed through an interface based on the Femto Forum API spec-
ification [59]. The MAC layer also performs Adaptive Modulation and Coding
and power control based on CQI information.
• Radio bearer control: Radio bearers (mapped to logical channels) are assigned

a QoS Class Identifier, which prioritize traffic by influencing MAC scheduling
decisions.

9.2 Shortcomings of LENA

We give a detailed technical description of the LENA classes in subsequent sections.
These classes not only offer many desirable features but comprise a good architectural
basis for our EPS model as well. Still these features only make up a subset of the
capabilities that we wish to realize in this and future iterations of the project. From
taking stock of the components that can be effectively gleaned from the LENA source
code, we identify the components that are left to be implemented in order to fulfill the
requirements outlined in Section 3.

• Error model: While the LENA PHY layer classes do calculate the interference
experienced by each received Resource Block, there is no mechanism to deter-
mine if blocks were received in error (if, for instance, the MCS of a RB did not
correctly match the channel conditions) based on the SINR value, the MCS and
Transmission Bandwidth Configuration (i.e. the total bandwidth for a particular
RB).
• Hybrid ARQ: HARQ with soft combining is fundamental to LTE radio perfor-

mance. The HARQ model must be effectively tied into the error model as we
shall soon explain.
• Basic RLC modes: Only the MAC and PHY layers of the LTE radio interface are

partially implemented in the LENA model. At the very minimum, the basic func-
tionality of the RLC layer, including segmentation, reassembly and reordering of
RLC PDUs, must be realized.
• Basic PDCP protocol: At the bare minimum, PDCP sequence numbering should

be implemented to be used in combination with RLC Acknowledged Mode, which
would be required for simulating any kind of handover scenario.
• GTP protocol: Since no components of the core network are offered by the LENA

model, we must “start from scratch” when implementing the EPC protocols and
network entities. Implementing the GTP-Uv1 protocol is a necessity as is re-
sponsible for all user plane data forwarding. Also, for simulating many interest-
ing scenarios such as handovers, the GTP-Cv2 protocol and the S5/S8 interface
may also be needed in some form. In many cases we choose to approximate the
behavior of such control signaling as we shall see.
• S1-AP and NAS protocols: The control-plane functionality of the MME is nec-

essary for coordinating handovers among other processes we are interested in
simulating.
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9.3 Comments on Implementation Complexity

Production hardware and software systems found in cellular networks are enormously
complex, with every aspect fine-tuned for optimal performance. For the purposes of
realistic simulation, it is not always necessary or practical to precisely recreate each
and every such aspect in the model in great detail. Such would not only be an unneces-
sary burden from the viewpoint of a programmer but also a waste of computational re-
sources, potentially slowing down execution time of experiments drastically. Through-
out the implementation process, we attempt to represent each EPS protocol, process and
operation in the simplest possible way that still results accurate “black box” imitation
of the behavior of the real system. As an example, for the sake of simplicity much of
the control-plane functionality in the LENA model as well as in our modifications and
extensions is done over an “ideal” (i.e. unimpaired) channel and is simulated by direct
invocation of class methods (often the corresponding protocol on a remote entity). The
implementational details of such control signals are introduced layer in this section.
Such design decisions that improve the efficiency of simulations while not sacrificing
the validity of results are embraced whenever possible. We shall make note of these and
other important design considerations when they come up.

9.4 Architecture of EPS Network Elements

The protocol stack representation for each EPS network entities is shown in Figure B.5.
Individual classes are discussed in the following sections.

9.4.1 UE Protocol Stack Representation

Figure 9.1: ns-3 representations of UE protocols

Figure 9.1 shows the protocol stack for UE nodes. The LteUeNetDevice pro-
vides the interface to LTE protocols to higher-layer protocols. Classes belonging to the
LENA model are detailed in [80] and [79].
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9.4.2 eNodeB Protocol Stack Representation

Figure 9.2: ns-3 representations of eNodeB protocols

Here we see the major protocols and their ns-3 class representations for eNodeB
network nodes. In the user plane, the eNodeB has the dual roles of providing the air
interface (i.e. the E-UTRAN-Uu reference point) for the UE as well as forwarding user
data over the S1-U interface. The EpsGtpU class bridges the LTE device with the
TCP/IP-based PPP device on the S1-U interface.

9.4.3 Gateway Protocol Stack Representation

Figure 9.3: ns-3 representations of gateway protocols

We have previously explained the roles of the S-GW and P-GW in the EPS topology.
Initially we choose to combine all gateway functionality into a single network entity.
This representation does not deviate all that much from reality, as these nodes are often
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co-located. A gateway node may have multiple PPP devices on the S1-U interface as
well as the SGi interface for networking with external hosts or PDN border routers.

9.5 PHY Layer Model

The LENA PHY model and Spectrum channel model are detailed in [79] and [81] re-
spectively. We give descriptions for PHY-layer classes in Table C.10.

9.5.1 Subframe Triggering

The process for building downlink subframes and triggering the UE to send UL sub-
frames is shown in the sequence diagram in Figure B.9.

9.5.2 DCI Messages

The MAC scheduler initiates building of Data Control Indication messages, which com-
municate DL and UL resource block allocations to the UE. This process is shown in
Figure B.10.

9.5.3 CQI Reporting

The procedure for CQI feedback messaging over the ideal control channel is given in
Figure B.11.

9.6 MAC Layer Model

The LENA MAC representation is detailed in [79].

9.6.1 MAC Scheduler and Femto Forum MAC Interface

The Femto Forum is an initiative to encourage the standardization of LTE femtocell
technology and has released the non-proprietary Femto Application Platform Interface
to promote interoperability between different vendors’ LTE radio components and soft-
ware. The FAPI MAC scheduler interface specifies an API for upper-layer protocols to
access the scheduler, allowing the functions provided by the scheduler to be abstracted
from the scheduling algorithm itself. A set of primitives, the fundamental information
elements passed between components, are also defined. Two Service Access Points
(SAPs) are provided: the CMAC (Control plane MAC) SAP and the MAC (user plane
MAC) SAP. The CMAC SAP is the interface between the RRC layer and MAC control
plane function at the eNodeB. It communicates with the CSCHED SAP, the scheduler
control interface, by sending REQ (request) primitives and receiving IND (indication)
and CNF (configuration) primitives, which are periodically pushed from upper layers.
The MAC SAP facilitates communication between RLC instances (at both the eNodeB
and UE) and the SCHED SAP in the user plane. Additionally, as we see in Figure B.8,
the subframe block is responsible for triggering the scheduler each TTI and receiving
the results of scheduling requests [59].

9.7 RRC Layer Model

The details of the LENA RRC model are given in [79]. A description of the relevant
classes are given in Table C.12.

9.8 RLC Layer Model

We implement RLC Unacknowledged Mode to perform segmentation and reassembly
of RLC PDUs in accordance with the 3GPP specifications in [69]. A description of the
relevant classes are given in Table C.12.
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9.9 GTP-U Model

See Table C.12 for a description of the relevant classes.
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10 Testing and Validation
10.1 Core Simulator Implementation Performance Evaluation

In Section 7, we discussed the types of core simulator implementations at our disposal.
To recap, the MultiThreadedSimulatorImpl class provides a shared memory,
multi-threaded simulation scheme along with real-time synchronization of event pro-
cessing.53 In this scheme, there is one-to-one mapping between network nodes and
logical processes (i.e. partitions) by default. A specified number of threads can inde-
pendently process events for separate LPs occurring before the local lower-bound times-
tamp (LBTS), which is determined after each iteration of event processing. Alterna-
tively, the parallel-distributed scheme used by the DistributedSimulatorImpl
class involves the mapping of one or more nodes to partitions, which, in turn, are stat-
ically assigned to an MPI rank.54 Each rank processes events for all nodes in its parti-
tion up until the LBTS. After each event processing iteration, each LP exchanges null
messages over the simulation boundaries, informing neighboring partition of the local
LBTS.

Each of these schemes is distinct in its approach to the problems of partitioning and
parallel synchronization, however their intent is the same: Speedup. As they both have
unique advantages and disadvantages, it is yet to be determined which will offer the best
performance or if some measure of speedup is even achievable in certain simulation
scenarios given the limitations of conservative synchronization algorithms.55 In this
section, we have devised several experiments to compare the performance of these two
schemes and determine the speedup they offer over the default, single-threaded core
ns-3 implementation.

10.1.1 Non-Real-Time Performance Comparison

The key metric throughout our evaluation in this and the following sections is time. In
the following two basic tests, we measure the time consumed by each simulation using
the GNU Linux time utility. This command outputs the following values at the end of
program execution [84].

• Real time, the total wall clock time elapsed during execution.
• User CPU time is how long the program spends in user mode. This is the sum-

mation of time elapsed by all forked threads and processes while actually running
the program and does not include time spent while blocked.
• System CPU time is the total time spent in kernel mode while executing system

calls on behalf of the program. This is also summed over all execution paths,
since multiple threads or processes may be accumulating CPU time waiting for
system calls to return.

Using this simple and useful tool, we can not only determine the runtime of a simulation
program but also get a rough idea of how long the program spends being blocked while
waiting at a barrier or performing some other system call.
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Figure 10.1: Distributed star topology test case with simple traffic generation

10.1.1.1 Distributed Implementation - Bottleneck Test

This experiment is designed to test a very practical situation where there is an uneven
distribution of events that must be processed by certain logical processes. In real world
networks, some sections (partitions) of the topology may infrequently communicate
with each other or may even be effectively disjoint in that sense. As we shall exam-
ine in the later simulation scenarios, such topologies lend well to parallelization. Here
we examine the opposite case where there is no clear-cut segregating of traffic. Fur-
thermore, as is often the case in hierarchical and partial mesh topologies, core routers
require greater throughput capacity than edge nodes in order to avoid creating a bot-
tleneck for network traffic. With our simple techniques for LP partitioning, which can
only be done with the granularity of a node with the aforementioned implementations,
we cannot allocate more than one thread or process to handle events for an LP or node.
Therefore we cannot increase throughput for event processing for some LPs over others.
We propose several solutions to this fundamental problem in parallel network simula-
tion in Section 12. For now, within the capabilities of our partitioning regime, we
would like to demonstrate the speedup (or lack thereof) possible when one node poses
an “event bottleneck” in the simulation.

Figure 10.1 shows the star topology in our ns-3 program, which consists of a hub
router and n spoke nodes. Each spoke is a host running an instance of UdpEchoClient,
which periodically sends UDP data to the hub node. The hub, running an instance of
UdpEchoServer, echos back the reply to the sending client. We use these basic
classes to generate dummy traffic.56

10.1.1.1.1 Simulation Configuration

Our simulation program source file, rt-distributed.cc, contains the int main() defi-
nition that is the program entry point from which all simulation objects are instantiated.

53See Section 7.1.3.
54See Section 7.1.5.
55See Section 4.4 for the relevant background.
56It should be noted that our methods for traffic generation do not conform to any standard traffic

models and, as in this scenario, are designed to induce high overall load on the network.
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To better acquaint the reader with how simulations are configured and initialized, we
dissect each of the components as follows. For the sake of conciseness, we shall refrain
from going into so much detail for subsequent experiments. The first code we find in
the main routine is the following.

1 uint32_t nSpokes = 2;
2 double stopTime = 10.0;
3 bool isRealtime = false;
4

5 CommandLine cmd;
6 cmd.AddValue ("nSpokes", "Number of nodes in the star", nSpokes);
7 cmd.AddValue ("stopTime", "Simulation duration", stopTime);
8 cmd.AddValue ("isRealtime", "Enable real time syncing", isRealtime);
9 cmd.Parse (argc, argv);

Here we parse some parameters passed in from the command line, which are fairly
self-explanatory. We can turn real-time synchronization on or off with the IsRealTime
attribute. Next we set the simulator implementation type.

1 MpiInterface::Enable (&argc, &argv);
2 GlobalValue::Bind ("SimulatorImplementationType",
3 StringValue ("ns3::DistributedSimulatorImpl"));
4 Config::SetDefault ("ns3::RtDistributedSimulatorImpl::IsRealTime",
5 BooleanValue (isRealtime));
6 uint32_t systemId = MpiInterface::GetSystemId ();
7 uint32_t systemCount = MpiInterface::GetSize ();

Here, also, we call MpiInterface::Enable () to initialize the MPI communica-
tor. The call to GetSystemId () returns the rank ID, while GetSize () returns
the communicator size determined at runtime.

1 NodeContainer nodes;
2 for (uint32_t i = 0; i <= nSpokes; i++)
3 {
4 uint32_t myRank = i % systemCount;
5 Ptr<Node> p = CreateObject<Node> (myRank);
6 nodes.Add(p);
7 }

We create nSpokes spoke nodes plus one hub node and evenly distribute them over the
ranks. The hub node (node 0) is assigned to rank 0. Next use
PointToPointHelper and PointToPointStarHelper to aggregate one
PointToPointNetDevice to each spoke and nSpokes devices to the hub and link
them together. Nodes assigned to rank 0 are connected to the hub with a PointToPoi-
ntChannel, while those on remote ranks use PointToPointRemoteChannel.

1 PointToPointHelper pointToPoint;
2 pointToPoint.SetDeviceAttribute ("DataRate", StringValue ("100Mbps"));
3 pointToPoint.SetChannelAttribute ("Delay", StringValue ("1ms"));
4 PointToPointStarHelper star (nodes, pointToPoint);

The DataRate and Delay channel parameters ultimately determine the delay between
scheduling TX and RX events. We then use the star helper class to aggregate the TCP/IP
stack to each node and assign IPv4 addresses.

1 InternetStackHelper internet;
2 star.InstallStack (internet);
3 star.AssignIpv4Addresses (Ipv4AddressHelper ("10.1.1.0", "255.255.255.0"));
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Addresses are assigned in as depicted in Figure 10.1. We then create an instance of
UdpEchoServer (listening on port 9) on the hub along with one UdpEchoClient
instance for each spoke. Client instances are set to start 10 ms apart and send 1KB-sized
packets every 100 ms to the hub in order to create a somewhat varied traffic pattern.

1 uint16_t port = 9;
2 UdpEchoServerHelper server (port);
3 ApplicationContainer apps = server.Install (star.GetHub ());
4 apps.Start (Seconds (0.01));
5 apps.Stop (Seconds (60.0));
6

7 for (uint32_t i = 0; i < star.SpokeCount (); ++i)
8 {
9 uint32_t packetSize = 1024;

10 uint32_t maxPacketCount = 100;
11 Time interPacketInterval = MilliSeconds (100);
12 UdpEchoClientHelper client (star.GetHubIpv4Address (0), port);
13 client.SetAttribute ("MaxPackets", UintegerValue (maxPacketCount));
14 client.SetAttribute ("Interval", TimeValue (interPacketInterval));
15 client.SetAttribute ("PacketSize", UintegerValue (packetSize));
16 apps = client.Install (star.GetSpokeNode (i));
17 apps.Start (Seconds (1.0 + (.01*i)));
18 apps.Stop (Seconds (60.0));
19 }

Finally, we run the simulation for the given time.

1 Simulator::Stop(Seconds(stopTime));
2 Simulator::Run ();
3 stream->WriteToFile ();
4 Simulator::Destroy ();
5 MpiInterface::Disable ();

After the simulation completes and Run () returns, we dump the contents of the trace
stream to the disk and clean a few things up. This program is compiled using the waf
build environment.

./waf -d optimized configure –enable-sudo –enable-examples –enable-mpi

The important options here are –enable-mpi, which sets the NS3 MPI directive, and -d
optimized, which enables full compiler optimizations.57

10.1.1.1.2 Simulation Execution

Before running the simulation, we use ./waf shell to set the requisite ns-3 environmental
variables.58 We can now execute the program using the mpirun utility.

/usr/bin/time -p mpirun -np 2 -H ltesim1 ./rt-distributed –nSpokes=32
–stopTime=10 –isRealtime=0

The first token is the time command. The -p option sets the output format to display
time in seconds. The mpirun utility is used to execute parallel jobs with MPI. The -np
option specifies the number of processes (ranks) and -H is used in place of a host file to
indicate the list of hosts on which to run them.59 We measure elapsed real, user-space

57Equivalent to g++ -O3 [85]
58See [72].
59The mpirun utility is included with OpenMPI 1.4.3 compiled on CentOS 5.6. See [86] for usage.
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and kernel-space time for simulations of size nSpokes = {128, 256, 1024} nodes with
rank assignments evenly distributed to np = {1, 2, 4, 8, 16} processes. That is, for the
combination of nSpokes = 128 and np = 8, each rank has 16 nodes (LPs) to tend
to. We initially limit our experiment to the intranode case, where all MPI ranks are
confined to a single SMP system. As discussed in Section 8, our test cluster employs
dual 8-core SMP compute nodes (16-cores per cluster node), so we should be safe from
excessive context switching and process movement as long as we maintain a one-to-one
affinity between processors and ranks.60

10.1.1.1.3 Analysis of Debugger Output

In order to confirm that our simulation behaves in the expected way, we enable the
following log messages to debug certain components of interest.61

1 LogComponentEnable("MpiInterface", LOG_LEVEL_ALL);
2 LogComponentEnable("Ipv4L3Protocol", LOG_LEVEL_ALL);
3 LogComponentEnable("UdpEchoClient", LOG_LEVEL_ALL);
4 LogComponentEnable("UdpEchoServer", LOG_LEVEL_ALL);

The MpiInterface class wraps all calls to MPI routines, so by enabling full debug
messages we can see whenever data packets and null messages are being sent over
the simulation boundary (i.e. between LPs, individual nodes in this case, on different
ranks). Logging Ipv4L3Protocol calls allows us to see the IP header information
whenever packets are TXed or RXed at the IP layer, and finally we can enable logging
when packets arrive at the application with the latter two statements. Below is a sample
of the output from running rt-distributed in debug mode with nSpokes = 2 and np = 2.
Lines 1-20 show the function call chain at node 1 from the application layer client down
to the link layer interface and then to the channel itself. We see the IP forwarding table
lookup in lines 4-5 and the IP header built in line 7. Then the PPP header is added and
the link layer frame is sent to node 0 by calling MpiInterface::SendPacket(),
which in turn calls the non-blocking MPI Isend routine. Lines 22-30 log the reception
of the packet at each layer on node 0. Though these messages only feature a small
subset of simulation components, it is enough to demonstrate the correct sequence of
events.

1 UdpEchoClientApplication:ScheduleTransmit()
2 UdpEchoClientApplication:Send()
3 Ipv4L3Protocol:Send(0x1f22ed0, 0x1f2df50, 10.1.1.2, 10.1.1.1, 17, 0x1f2df30)
4 Testing address 127.0.0.1 with mask 255.0.0.0
5 Testing address 10.1.1.2 with mask 255.255.255.0
6 Ipv4L3Protocol::Send case 3: passed in with route
7 Ipv4L3Protocol:BuildHeader(0x1f22ed0, 10.1.1.2, 10.1.1.1, 17, 1032, 64, 1)
8 Ipv4L3Protocol:SendRealOut(0x1f22ed0, 0x1f2dfc0, 0x7fffff61c1d0)
9 Send via NetDevice ifIndex 0 ipv4InterfaceIndex 1

10 PointToPointNetDevice:GetMtu()
11 Send to destination 10.1.1.1
12 PointToPointNetDevice:Send()
13 p=0x1f2dfc0, dest=ff:ff:ff:ff:ff:ff
14 UID is 4294967296
15 PointToPointNetDevice:AddHeader()
16 PointToPointNetDevice:TransmitStart(0x1f1d7a0, 0x1f2dfc0)
17 UID is 4294967296)
18 Schedule TransmitCompleteEvent in 0.0016864sec
19 MpiInterface::SendPacket(): Node 1 on rank 1 sending packet to 0 at +1003686400.0ns

60We discuss CPU affinity in Section 8.
61The ns-3 logging system is only available when programs are compiled in debugging mode (i.e. waf

-d debug configure).
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20 Sent 1024 bytes to 10.1.1.1
21 PointToPointNetDevice:TransmitComplete()
22 PointToPointNetDevice:Receive(0x26d2590, 0x26e3b00)
23 Ipv4L3Protocol:Receive(0x26d4070, 0x7fff259688a0, 0x26e3b00, 2048,
24 02-06-00:00:00:00:00:02)
25 Packet from 02-06-00:00:00:00:00:02 received on node 0 of size 1052
26 For me (destination 10.1.1.1 match)
27 Ipv4L3Protocol:LocalDeliver(0x26d4070, 0x26e41c0, 0x7fff25968540)
28 Received 1024 bytes from 10.1.1.2

10.1.1.2 Analysis of Simulation Runtime Results

For each combination of number of spoke nodes (nSpokes) and number of ranks (np),
we average the three time metrics from the time utility over two trials. The results from
these trials are tabulated in Table C.13 and graphed per each value of np in Figures B.12
through B.14. The total user and kernel mode times are shown along with the average
(normalized) per-process times. We observe that for the 128-node case, real time de-
creased only slightly from 1.11s in the uniprocess trial to 1.03s in the 2-process trial.
While average per-process user time decreased by 80%, with the total user time de-
creasing almost threefold from the 1-process case, the average per-process system time
increased by 71%.62 The increase in system time makes sense as it can be attributed
to two factors that, as we shall find out, are particularly debilitating from the perspec-
tive of efficient network simulation. There is an unavoidable, though so small as to be
negligible, delay incurred by the non-blocking MPI send and receive for interprocess
communication. This is not of concern. The real issue is with synchronization. After
each event processing iteration, the MPI rank issues a call to MPI Allgather to ex-
change LBTS messages with other ranks. As a blocking routine, this call is, in effect, a
barrier. Thus the first process to arrive must wait for all np− 1 other processes to finish
their iteration before resynchronization can occur.63 While we have not devised a test
to directly measure the amount of time spent waiting at this barrier, the only conclusion
that can be drawn from the data is that this is a significant bottleneck in performance.
It is a well-known issue in discrete event network simulation that such synchroniza-
tion is the foremost limiting factor in parallel simulation. When the delays (ultimately,
the lookahead) between neighboring nodes on separate logical processes is small, the
speedup and the degree to which actual work can be parallelized may be overshadowed
by the increase in communication and synchronization time (i.e. time spent waiting at
barriers).64

62Quite anomalously, the total user time elapsed by both processes decreased from 0.9s to .35s, which
would indicate a computational speedup of over 2 (an impossibility, in principle, with only two pro-
cesses). It is apparent that this cannot be the case, however it is unknown what factors influence the user
mode time in this way and further investigation is required. At present, due to the complex interactions
between simulator objects during user-mode execution along with the frequent use of system calls, such
as memory allocations, throughout all code paths, it would be difficult to directly analyze exactly how
much time is spent in user mode versus kernel mode for certain sections of code by, for instance, inserting
calls to the glibc clock function. This may also reflect our lack of understanding of how time computes
these metrics.

63See Section 7.1.2 for a discussion of the distributed synchronization algorithm.
64In our simulation, we set the propagation delay of all PPP connections to 1ms. Just doing some

back-of-the-napkin calculation, we know that it would take at take around 80µs to transmit a full 1024-
byte packet over 100Mbps connection. Other factors also impact the total packet delay which are not so
trivial to model such as propagation delay, processing of checksums and forwarding and queuing time
for routers. With the incorporation of all these factors, 1ms seems a reasonable estimate for our purposes
here. Our hand-waving of some these aspects could result in inaccurate and unrealistic results, but our
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We see this detrimental effect to an even greater degree as we increase the num-
ber of processes. For the 128-node test, we have a near doubling of the total real time
and, while the normalized user time decreases from the 1-process case, the system time
shoots up dramatically. We continue to see this trend for cases with additional pro-
cesses, with an 50% increase in total runtime between the 1 and 16-process case. This
is, of course, the opposite effect of what we had hoped to achieve and, while slightly
disappointing, it is not at all surprising. This test is designed to show that it does not
make sense to parallelize over nodes that are highly interdependent in terms of commu-
nication. For the 256 and 1024-node trials, we see even less overall speedup between
the 1 and 2-process case and, again, an increase in runtime for additional processes.
While these results suggest that there may be a fundamental shortcoming with our syn-
chronization algorithm, it should be noted that this rough benchmark does not directly
tell anything about the execution time for simulation events (the measure we are trying
to improve). In subsequent tests, we will look closely at traces of event timestamps to
give us a better understanding of the impact of each core simulator implementation on
real-time event processing performance.

10.1.1.3 Distributed Implementation - Embarrassingly Parallel Test

Figure 10.2: Distributed dumbbell topology test case simple traffic generation

This test is contrived to minimize communication between logical processes in at-
tempt to demonstrate a best-case situation where events scheduled on two neighboring
LPs can be processed as independent from one another as possible. This clear-cut ap-
portioning of work to tasks with minimal communication between the tasks is known as
an embarrassingly parallel algorithm. In this situation, some degree of communication
and synchronization is still required, since even disjoint LPs must exchange LBTS mes-
sages to synchronize. In the figure, we see a dumbbell topology of two point-to-point
star topologies with hub routers connected by an additional PPP link. As in the previous
experiment, spoke nodes only communicate with the hub node for their local star. No
data packets are exchanged over the router link at all.

estimate is acceptable for the purpose in this series of trials of testing the limits our algorithm.
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10.1.1.3.1 Simulation Configuration

Our simulation configuration is simply a mirroring of the single star topology, with the
addition of a PointToPointRemoteChannel connecting the two stars. The num-
ber of spoke nodes given at the command line is divided evenly between the two stars.
We separate nodes into two NodeContainers, leftNodes and rightNodes,
and create the link as follows.

1 NetDeviceContainer routerDevs = pointToPoint.Install(rightNodes.Get (0),
2 leftNodes.Get(0));

The node with index 0 from each container is the hub node for that star. Left and right
nodes are statically assigned to MPI rank 0 and 1, respectively. Addresses are assigned
to each routerDevs as shown in Figure 10.2.

10.1.1.3.2 Simulation Execution

Our distributed dumbbell network is represented in the rt-distributed2 program. As be-
fore, we execute this program with the time utility for nSpokes = {128, 256, 1024} for
1 and 2 processes. We average the output from time over two trials.

/usr/bin/time -p mpirun -np 2 -H ltesim1 ./rt-distributed2 –nSpokes=128 –stopTime=10
–isRealtime=0

10.1.1.3.3 Analysis of Debugger Output

We again run the program in debug mode to confirm the correct behavior. We observe
that no MPI messages are logged beside synchronization null messages.

10.1.1.3.4 Analysis of Simulation Runtime Results

As in the previous experiment, we take the average of two trials for each measure of
time for simulations of size 128, 256 and 1024 nodes. The numeric results from these
trials are tabulated in Table C.14 and plotted in Figure B.15, B.16 and B.17. The results
expose once for all the degree to which synchronization cost is impairing the ability
to effectively parallelize the simulation. For the 128-node case, we see an 172% in-
crease in total runtime. Although user-mode time for all processes was nearly halved,
the system time increased 7-fold. In the 256-node case, we see a 74% increase in run-
time, with a similar trend in user and system time. We do see a slight improvement
in runtime for the large-scale, 1024-node test, with a speedup of just over a 2%. This
suggests that there is a point in scaling up the number of nodes per each partition at
which the gain from parallelizing computation exceeds the added cost of synchroniza-
tion.65 Again, we attribute this dramatic increase in system time to time waiting for
the MPI Allgather call to return. Even though there are no events being sched-
uled across simulation boundaries, and each LP could safely process events without
any need for synchronization at all (theoretically resulting in a speedup approaching 2),
the simplicity of the algorithm does not take this factor into consideration. Therefore,

65We do not include results for larger size simulations because, as we shall see in later experiments, the
real-time jitter starts to become excessive with partitions of 128 nodes or greater, despite any potential
speedup from parallelization.
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null messages must still be exchanged periodically across the boundary, and that means
waiting at the blocking MPI call.

These results confirm the conclusion of the authors of the DistributedSimula-
torImpl class in [82] that, when lookahead becomes small, standard conservative
techniques can no longer function effectively without some additional optimizations
such as event bundling and other methods discussed in Section 12.66. While the results
are discouraging, they have brought us closer to understanding the real challenges of
DES for practical networks and helped to identify the bottlenecks in our algorithm.

10.1.1.4 Multithreaded Implementation - Bottleneck Test

We now move on to applying the same simple approach of runtime analysis in order
to do some initial benchmarking of the MultiThreadedSimulatorImpl POSIX
thread-based simulator implementation. While this algorithm only presents the possi-
bility of intranode parallelism in its present form, we have previously discussed how it
could be combined with the distributed model implementation to create a hybrid par-
allel programming model.67 For now, we evaluate its intranode performance with the
time utility for the star topology depicted in Figure 10.1. This is the same bottleneck
scenario as in Section 10.1.1.1, although the behavior of the algorithm is fundamentally
different.

10.1.1.4.1 Simulation Configuration

The simulation program code is similar to that of the distributed bottleneck test with
several key differences. The parameters for initializing the core simulator object are
passed in as follows.

1 CommandLine cmd;
2 cmd.AddValue ("nThreads", "", nThreads);
3 cmd.AddValue ("stopTime", "", stopTime);
4 cmd.AddValue ("isRealtime", "", isRealtime);
5 cmd.Parse (argc, argv);
6

7 Config::SetDefault ("ns3::MultiThreadedSimulatorImpl::ThreadsCount",
8 UintegerValue (nThreads));
9 Config::SetDefault ("ns3::MultiThreadedSimulatorImpl::IsRealTime",

10 BooleanValue (isRealtime));
11

12 MultiThreadingHelper multiThreadingHelper;
13 multiThreadingHelper.Enable ();

With these command line arguments we can enable or disable real time synchronization
(we disable it for this test), specify the number of threads along with the simulation du-
ration. We then create a MultiThreadingHelper object and initialize it by calling
Enable (). The remaining code is identical to rt-distributed in Section 10.1.1.1 up
until the these statements.

1 multiThreadingHelper.Install ();
2 Simulator::Stop(Seconds(stopTime));
3 Simulator::Run ();
4 Simulator::Destroy ();

66We refer to the concept of horizontal parallelization in Section 4
67See Section 4.4.3.
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We must call MultiThreadingHelper::Install () after node and device
creation. This assigns nodes to partitions (a one-to-one association) and sets the looka-
head per each partition to the minimum channel delay for all links incident on the node,
which is uniformly 1ms for each PPP link in the star topology.

10.1.1.4.2 Simulation Execution

We execute the multi-threaded program for combinations of nSpokes = {128, 256, 1024}
and -nThreads = {1, 2, 4, 8, 16} and observe the output from the time utility.

/usr/bin/time -p ./mt-star –nSpokes=2 –stopTime=10.0

10.1.1.4.3 Analysis of Debugger Output

We temporarily enable debugging of the MultiThreadedSimulator object with
this logging statement at the beginning of the main routine.

1 LogComponentEnable("MultiThreadedSimulatorImpl", LOG_LEVEL_DEBUG);

This allows us to see the dynamic selection of partitions by threads.

1 Partition 3 NextPartitionEventTs 0 minMessageTs 0
2 Partition 3 being processed by thread 0
3 Processing events at partition 3 going from 0 until 2000000
4 Partition 2 NextPartitionEventTs 0 minMessageTs 0
5 Partition 2 being processed by thread 1
6 Processing events at partition 2 going from 0 until 2000000
7 Thread 0 processed 4 events at current iteration.
8 Thread 1 processed 4 events at current iteration.

This snippet of log output shows the parallel execution of events for partitions 3 and 2
by threads 0 and 1, respectively, confirming the expected behavior of the algorithm. We
also observe that the LBTS for both partitions for the shown iteration is 2 ms.

10.1.1.4.4 Analysis of Simulation Runtime Results

We measure the real, user and system time for combinations of 128, 256, and 1024-
nodes with 1, 2, 4, 8 and 16 worker threads and average the results of two trials. The
data collected from these trials are given in Table C.15 and displayed in Figures B.18
through B.20. We observe the total runtime for the 128 and 256 node case increases by
a small degree for each number of threads. For these trials, both the user and system
time increase significantly with the number of threads for all cases except for when
nThreads = 2, for which the system time actually decreases from 0.05 s to 0.02 s.
The increasing system time can again be blamed on the pthread barrier wait () that
all threads must reach after each event processing iteration. As observed in [83], the
cost of this operation increases with the number of threads, which is to be expected.
A possible explanation for the rise in user-mode time is the added complexity of the
algorithm compared to the MPI-based implementation. Once more, for a large number
of nodes, we find that our algorithm does produce a small speedup, with a decrease
in runtime from 11.86 to 11.16 between the single-threaded and 8-thread tests. This
minute improvement reflects the results found in [83] for a topology of 1024 nodes.
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The results demonstrate that this algorithm is also deficient in providing the desired
speedup, synchronization once again being the unavoidable crippling factor. There are
some obvious design flaws that present themselves, the most obvious of which is the
inability to assign more than one node to a partition, resulting in a large number of
null messages that must exchanged and frequent resynchronization. We suggest some
proposed amendments to the algorithm in Section 12.

10.1.2 Real-Time, Distributed Implementation Test

In the non-real-time tests, we made use of the time utility to give us an rough idea of
the performance of our parallel algorithms. We have so far disabled real-time event
synchronization, leaving the simulator to process events as fast as possible. For the
remaining experiments discussed in this in the following sections, we approach mea-
suring algorithm performance when real-time mode is enabled in terms of the jitter,
the difference between an event’s scheduled simulation time and the wall-clock time at
which it completes.

jitter = |twall − tsim| (10.1)

Logging of jitter is performed using the ns-3 trace system.68 69 The particular
trace source that we make use of is PointToPointNetDevice MacRx source
that is invoked at the end of a PointToPointNetDevice::Receive () event.
This gives us the exact time (in nanoseconds) elapsed during event processing for the
Receive () event, at the conclusion of which the PPP packet is decapsulated and
passed up to the IP layer.

10.1.2.0.5 Simulation Configuration

For this experiment, we repeat essentially same procedure used in the non-real-time test.
At the end of our simulation source file rt-distributed.cc but before Simulator::Run
() is called, we include the following source.

1 std::string filename;
2 if(systemId == 0)
3 {
4 filename = "rt-distributed-0.tr";
5 }
6 else
7 {
8 filename = "rt-distributed-all.tr";
9 }

10 AsciiTraceHelper ascii;
11 Ptr<OutputStreamWrapper> stream = ascii.CreateFileStream (filename);
12 pointToPoint.EnableAsciiAll (stream);

In order for us to more easily distinguish between intra- and inter-rank events, we sepa-
rate trace output into two files as shown. We then run the simulation for the given time.
When Run () returns, we do the following.

1 stream->WriteToFile ();

OutputStreamWrapper::WriteToFile () dumps the trace output to the files
given above.

68See [72]
69Modifications to the OutputStreamWrapper class were made so that traces remain in memory

and are not written to the disk until the simulation completes. Frequent costly disk I/O operations would
have a detrimental effect on achieving real-time performance, so this is seen as a simple way avoid them.
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10.1.2.0.6 Simulation Execution

In addition to observing the results of distributing the simulation over more processes,
we wish to see what added latency is induced in the inter-node case as compared to the
intra-node case. We run the simulation for combinations of nSpokes = 16, 32, 128 and
np = 1, 2, 14, 16, 32 processes (with real-time mode enabled) using this command.70

mpirun -np 2 -H ltesim1,ltesim2 –nSpokes=2 –realtime=1 –distributed=1 –stopTime=10.0

In this example, we have two processes, one assigned to host ltesim1 and the other to
ltesim2. We run the with all processes confined to a single compute node by specifying
only ltesim1 in the host list.

10.1.2.0.7 Analysis of Real-Time Jitter Results

Table C.16, C.18 and C.19 give the maximum, minimum, and mean and standard devi-
ation for the jitter over two trials of each intra-node test case for 16, 32 and 128-node
topologies. For comparison, Table C.17 gives the inter-node results for 16 nodes.71 We
separate the data for the hub node (node 0) and spoke nodes to observe the bottlenecking
effect at its source.

For the 16-node, uni-process control case, we observe an average jitter of 1.47µs,
with the maximum recorded jitter of 7.10µs for the hub node. As we shall discuss in
Section IV, this is a very good basis as it is well beneath our real-time event deadline
of 1 ms. As we previously saw in the total runtime for the non-real time distributed
bottleneck test, we see a slight improvement in performance over the uni-process case
in the 2-process test, with the maximum jitter being reduced by several microseconds.
We find that the added inter-node latency does not have a significant impact on average
jitter for the 2-process test, as only a few microseconds are added to the average. The
maximum jitter, however, increases more than 10-fold to 68.6µs, still well within the
desired 1 ms. We see for increased numbers of processes a gradual increase in the
average and maximum jitter, which agrees with the data from the non-real-time tests.

We see that with a 32-node topology, the average and maximum jitter for the hub
node is actually less than it is for the 16-node tests. While the difference is minute (only
a few hundred nanoseconds), it is admittedly counterintuitive. For now, the only expla-
nation that presents itself is that the altered traffic pattern is actually more efficiently
processed by the algorithm, even though there is a larger volume of events. We also ob-
serve that the 2-process performs worse than the uni-process case, unlike the 16-node
topology.

10.2 LTE Model Test Cases

We now begin our evaluation of the LTE/SAE network model previously introduced.
Three scenarios are contrived in order to produce data that is meaningful in analyz-
ing the performance of the ns-3 model in terms of real-time latencies or jitter. We
begin by ”stress testing” a simulated E-UTRAN network, consisting of a single eN-
odeB and multiple UEs, as we collect statistics on the real-time jitter. We then show

70We choose these values for nSpokes somewhat arbitrarily but with the intention of providing data
that shows the achievable performance for a small number of nodes as well as a moderately-sized topol-
ogy that still produces an acceptable amount of jitter of less than 1 ms.

71We also give the difference in max, min, mean and std between each of two identical trial.
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combine the simulated E-UTRAN with a simple core network consisting of a gateway,
which tunnels traffic between the eNodeB and a host in the external PDN. The same
UdpEchoServer traffic generation scheme is used for this experiment. Finally, we
demonstrate a scenario involving an emulated PDN host and mobile, with real HTTP
traffic transmitted over a simplified EPS network.

10.2.1 RAN Saturation Test Case

Figure 10.3: LTE radio network saturation test case (DL data transmitted in all resource ele-
ments)

This scenario is devised to observe the resulting jitter statistics when a simple LTE
E-UTRAN model is under maximum load, which is effectively achieved by trans-
mitting dummy data in every available Resource Element (that is, across all subcar-
riers for each subframe).72 We measure the wall-clock time elapsed between when
LteSpectrumPhy::EndRx () events are scheduled and when the decapsulated
RLC SDU is passed up to the IP layer.73 The RxPDU trace is invoked at the end of the
LteRlcUm::DoReceivePdu () method, which records the desired jitter.

As of yet, neither of the parallel DES algorithms we introduced earlier allow par-
titioning of wireless networks.74 For this test case, we therefore evaluate the single-
threaded performance of our simulated E-UTRAN. We later combine this RAN model
with our core network model, which can be partitioned across PPP links.

10.2.1.1 Simulation Configuration

The file lte-network-saturation.cc contains the int main () function that defines
our simulation scenario. In main (), we first parse in values from the command line
for the number of mobiles and the simulation duration.

1 uint32_t numUe = 2;
2 double stopTime = 10.0; // seconds

72RLC saturation mode (RLC SM, see Section 9) is configured with the RlcMode attribute of the RRC
protocol (LteEnbRrc) at the eNodeB. For each UE, the default RLC UM mode (set with the RlcMode
attribute for LteUeRrc) is used to receive downlink PDUs.

73Recall that the PDCP protocol is not yet implemented, so we pass packets directly between the RLC
and IP layer.

74We shall address why designing a parallel simulator for wireless networks is problematic in Sec-
tion IV.
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3

4 CommandLine cmd;
5 cmd.AddValue ("numUe", "", numUe);
6 cmd.AddValue ("stopTime", "", stopTime);
7 cmd.Parse (argc, argv

We set the simulation type to the RealtimeSimulatorImpl class and enable
the calculation of checksums for packets.75

1 GlobalValue::Bind ("SimulatorImplementationType", StringValue ("ns3::RealtimeSimulatorImpl"));
2 GlobalValue::Bind ("ChecksumEnabled", BooleanValue (true));

We then create one eNodeB and a number of UEs equal to numUe.

1 NodeContainer enb;
2 NodeContainer ue;
3 enb.Add (CreateObject<Node> (0));
4 for(uint32_t i = 0; i < numUe; ++i)
5 {
6 ue.Add (CreateObject<Node> (0));
7 }

Next we install the ConstantPositionMobilityModel on both node contain-
ers.76

1 MobilityHelper mobility;
2 mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
3 mobility.Install (enb);
4 mobility.SetMobilityModel ("ns3::ConstantPositionMobilityModel");
5 mobility.Install (ue);

We then instantiate a LenaHelper to configure LTE model parameters. We set the
MAC scheduler type and RLC modes for the eNodeB and UEs. We then install LTE
network devices on all nodes and attach each UE to the cell.

1 Ptr<LenaHelper> lena = CreateObject<LenaHelper> ();
2 lena->SetSchedulerType ("ns3::PfFfMacScheduler");
3 lena->SetAttribute("EnbRlcMode", EnumValue(LteRlc::RLC_SM));
4 lena->SetAttribute("UeRlcMode", EnumValue(LteRlc::RLC_UM));
5

6 NetDeviceContainer enbUtranDev = lena->InstallEnbDevice (enb.Get(0));
7 NetDeviceContainer ueDev = lena->InstallUeDevice (ue);
8 lena->Attach (ueDev, enbUtranDev.Get (0));

Before calling Run (), we set the trace output filename. After the simulation com-
pletes, we call LenaHelper::WriteTraces () to dump the trace output to the
disk.

1 lena->EnableDlRlcTraces ("dl-rlc-trace.csv");
2

3 Simulator::Stop(Seconds(stopTime));
4 Simulator::Run ();
5

6 lena->WriteTraces ();

75Checksums pass or fail based on classes derived from ErrorModel for different packet types (see
[74].)

76We use the origin as the default position for all nodes, resulting in zero propagation delay calculated
from the mobility model. Of course this is not a practical scenario, however we are only concerned with
measuring the real-time jitter in these experiments, which is unrelated to he mobility model. It should
be noted that we are not in any way trying to validate the PHY and MAC-layer components of the LTE
model, since their correctness and non-real-time performance has already been evaluated in [80]. See
Section IV for further discussion.
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10.2.1.2 Simulation Execution

We run the simulation for numUe = 1, 2, 4, 8, 16, 32, 64 mobiles for 5 seconds and
average the jitter statistics from two trials.

./lte-saturation-test --numUe=1 --stopTime=5.0

10.2.1.3 Analysis of Real-Time Jitter Results

We skip the procedure for checking log messages it is sufficient to observe the trace
output in order to verify the correct behavior of the model. Table C.20 gives the jitter
statistics for this test case. The RLC RxPDU jitter is plotted over time in Figure B.21
and B.22. We see that for one and two UEs, we never exceed 1ms of real-time la-
tency, with an average jitter for the 2-UE case of 71µs and a maximum of 268µs.
Note that this average jitter is over ten times what is was for the MacRx event for
PointToPointNetDevice, which is owed to the overall complexity of the LTE
model. For numUe = 8, we observe an average jitter of 178µs, but, as we can see in
Figure B.21, there are consistent spikes in latency in excess of 1ms, with a maximum
recorded jitter of 3.4ms over two trials. We observe the same pattern for numUe = 16,
with the jitter not exceeding 2.46ms. For the first time, we observe that an unsustainable
amount of computation that is evidently required 32 and 64 mobiles. In Figure B.22,
the jitter seems to increase linearly with time and quickly exceeds 1ms. It appears that,
after a certain point, event execution can no longer keep up with real-time at all, and so
latencies become additive. We should keep in mind that we are simulating the theoret-
ical worst-case traffic pattern for a single cell. The eNodeB is the bottleneck here, and
it is interesting that the latencies are dependent on the number of mobiles since we are
still transmitting the same volume of data in the 1-UE case as in the 64-UE case.

10.2.2 Simple Traffic Generator Test Case

We now hope to demonstrate more practical traffic pattern that still creates a scenario of
high load but does not completely saturate the simulated network, thereby allowing the
algorithm more of a window of opportunity to resynchronize with real-time after each
event and, in turn, allowing a larger number of UEs to be supported.

Figure 10.4: LTE network test case with simple traffic generation

Here we constructed a simplified EPS network with one gateway (representing a
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co-located P-GW/S-GW), which filters traffic from an external host and transmits IP
packets a GTP-U tunnel to the eNodeB. A UdpEchoClient installed on the PDN host
to send a KB-sized packet every 100ms to each UE. As we increase the number of
UEs, we increase the load on the core network links and E-UTRAN and observe the
jitter statistics for both PointToPointNetDevice::Receive () (the output of
the MacRx trace) and LteSpectrumPhy::EndRx () events (from the LteUeRlc
RxPDU trace).

10.2.2.1 Simulation Configuration

The file lte-network.cc contains the int main () function that defines our simula-
tion scenario. We first parse command line arguments as in the last example code. We
then create four NodeContainer objects: pdn, gw, enb and ue. We install the mobil-
ity model on the eNodeB and UEs and set up the RAN network using a LenaHelper
as before, but using RLC UM now instead of RLC SM for the eNodeB. We also create
the aforementioned PPP links.

1 PointToPointHelper ppp;
2 ppp.SetDeviceAttribute ("DataRate", StringValue ("1000Mbps"));
3 ppp.SetChannelAttribute ("Delay", StringValue ("1ms"));
4

5 NetDeviceContainer sgiDev = ppp.Install (pdn.Get(0), gw.Get(0));
6 NetDeviceContainer s1uDev = ppp.Install (gw.Get(0), enb.Get(0));

In the saturation test case, no TCP/IP protocol stack was installed on our nodes.
As we are now dealing with application-layer traffic and not dummy PDUs, we use
InternetStackHelper to allocate the stack and Ipv4AddressHelper to as-
sign IP addresses to PPP and LTE devices.

1 Ipv4ListRoutingHelper list;
2 Ipv4GlobalRoutingHelper globalRouting;
3 Ipv4StaticRoutingHelper staticRouting;
4 list.Add (staticRouting, 10);
5 list.Add (globalRouting, 0);
6

7 InternetStackHelper epsStack;
8 epsStack.SetRoutingHelper (list);
9 epsStack.Install (pdn.Get(0));

10 epsStack.Install (gw.Get(0));
11 epsStack.Install (enb.Get(0));
12

13 InternetStackHelper utranStack;
14 utranStack.SetRoutingHelper(staticRouting);
15 utranStack.Install (ue);
16

17 Ipv4AddressHelper sgiIpAddr;
18 sgiIpAddr.SetBase ("203.82.48.0", "255.255.255.0");
19 Ipv4InterfaceContainer sgiIpIf = sgiIpAddr.Assign (sgiDev);
20

21 Ipv4AddressHelper s1uIpAddr;
22 s1uIpAddr.SetBase ("192.168.1.0", "255.255.255.0");
23 Ipv4InterfaceContainer s1uIpIf = s1uIpAddr.Assign (s1uDev);
24

25 Ipv4AddressHelper ueIpAddr;
26 ueIpAddr.SetBase ("203.82.50.0", "255.255.255.0");
27 Ipv4InterfaceContainer ueIpIf = ueIpAddr.Assign (ueDev);

We use the private address range 192.168.1.x for S1-U devices (between the GW
and eNodeB) and the public ranges of 203.82.48.x and 203.82.50.x for the PDN and
mobiles, respectively. We must also do some magic with the routing configuration.
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1 globalRouting.PopulateRoutingTables ();
2

3 Ptr<Ipv4> pdnIpv4 = pdn.Get(0)->GetObject<Ipv4> ();
4 Ptr<Ipv4StaticRouting> pdnRoutes = staticRouting.GetStaticRouting(pdnIpv4);
5 pdnRoutes->AddNetworkRouteTo("203.82.50.0", "255.255.255.0",
6 pdnIpv4->GetInterfaceForDevice(sgiDev.Get(0)));
7

8 Ptr<Ipv4> enbIpv4 = enb.Get(0)->GetObject<Ipv4> ();
9 Ptr<Ipv4StaticRouting> enbRoutes = staticRouting.GetStaticRouting(enbIpv4);

10 enbRoutes->AddNetworkRouteTo("203.82.50.0", "255.255.255.0",
11 enbIpv4->GetInterfaceForDevice(enbUtranDev.Get(0)));
12

13 for(uint32_t i = 0; i < ue.GetN (); ++i)
14 {
15 Ptr<Ipv4> ueIpv4 = ue.Get(i)->GetObject<Ipv4> ();
16 Ptr<Ipv4StaticRouting> ueRoutes =
17 staticRouting.GetStaticRouting(ueIpv4);
18 ueRoutes->AddNetworkRouteTo("255.255.255.255", "0.0.0.0",
19 ueIpv4->GetInterfaceForDevice(ueDev.Get(i)));
20 }

Since the global routing helper is not able to dynamically resolve routes between the
gateway and eNodeB, we must establish static routes between the PDN and mobiles.

1 Ptr<EpcGtpU> gwGtpU = CreateObject<EpcGtpU> ();
2 gwGtpU->Install(EPC_PGW, s1uDev.Get(0));
3

4 Ptr<EpcGtpU> enbGtpU = enbUtranDev.Get(0)->GetObject<LteEnbNetDevice> ()->GetGtp ();
5 enbGtpU->Install (EPC_ENODEB, s1uDev.Get(1));
6

7 std::vector<Ipv4Address> ueIpAddrs;
8 Ipv4Address ueIpAddrBase = Ipv4Address("203.82.50.1");
9 for(uint32_t i = 0; i < ue.GetN (); ++i)

10 {
11 Ipv4Address nextUeIpAddr = Ipv4Address (ueIpAddrBase.Get () + i);
12 ueIpAddrs.push_back (nextUeIpAddr);
13 }
14

15 Ptr<LteEnbRrc> enbRrc = enbUtranDev.Get(0)->GetObject<LteEnbNetDevice> ()->GetRrc ();
16 gwGtpU->Attach(s1uDev.Get(0), s1uDev.Get(1), enbRrc, ueIpAddrs);

We also must configure the GTP-U protocol on the S1-U interface and add an en-
try for each UE (including IP addresses) to a data structure used by the gateway for
mapping of data traffic to tunnels.

10.2.2.2 Simulation Execution

We run the simulation for numUe = {1, 2, 4, 8, 16, 32, 64} mobiles for 5 seconds and
average the jitter statistics from two trials.

./lte-saturation-test --numUe=1 --stopTime=5.0

10.2.2.3 Analysis of Real-Time Jitter Results

Table C.21 gives the jitter statistics logged by the RLC RxPDU and PPP MacRx traces.
The jitter for these events is plotted over time in Figures B.23 through B.26. The average
and maximum-recorded RLC jitter is actually higher than it is in the RAN saturation
scenario for less than 8 mobiles. This can be accounted for by the additional PPP
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events in the event set. For numUe = 8, we see the jitter is slightly less than it is
in RLC SM at 102µs, with the maximum jitter dropping to 229µs. We see similar
latencies for PPP events on the order of hundreds of microseconds. In Figure B.24 and
B.26, we see an interesting behavior for numUe = 16. While most events experience
a latency of a couple hundred µs, intermittent spikes of over 1ms are accompanied
by more infrequent spikes of multiple milliseconds. As this same behavior occurs for
other trials as we shall see, it would seem that event processing becomes backlogged at
certain identifiable points. In our future work, we hope to investigate the source of this
bottlenecking effect further.

10.2.3 Distributed Network Test Case

We repeat the previous experiment parallelized using the DistributedSimulatorImpl
core simulator with the topology in Figure 10.4 partitioned into the core and RAN
across the S1-U interface (between the eNodeB and GW).

10.2.3.1 Simulation Configuration

We configure the simulator to use the DistributedSimulatorImpl algorithm,
as previously demonstrated in Section 10.1.1.1. We then assign the enb and ue node
containers to rank 0 and the pdn and gw node containers to rank 1. All other code
remains the same.

10.2.3.1.1 Simulation Execution

We execute the lte-network-dist program using the mpirun utility. For the internode
case, we include the hostname ltesim2 in the host list (delimited by -H). We run the
simulation for numUe = {1, 2, 4, 8, 16, 32, 64} mobiles for 5 seconds and average the
jitter statistics from two trials.

mpirun -np 2 -H ltesim1 ./lte-network-dist –numUe=2 –stopTime=5.0 –isRealtime=1

10.2.3.2 Analysis of Simulation Real-Time Jitter Results

Results from this test case are tabulated in Table C.22 (the intranode case) and Ta-
ble C.23 (for the internode case). The jitter is plotted over time in Figures B.23 through
B.26. For the distributed version of the simple traffic generator experiment, we see a
notable improvement over the single-process case PPP events, with jitter experienced
at the gw and pdn host nodes dropping from 150µs to 22µs in the 8-UE case. A slight
improvement is seen for RLC events at UE nodes and PPP events at the eNodeB. The
average and maximum jitter generally increased in the internode case, although only by
tens of microseconds.

10.2.4 Real Traffic Test Case

At last, we have arrived at our proof-of-concept testbed simulation, which is the prod-
uct of our implementation efforts up to this point. Using the tap-bridge emulation
feature of ns-3, an HTTP connection is established over our simulated EPS topology
between a VM representing a LTE User Equipment and another VM representing a
web server in the external packet data network, as shown in Figure 10.5. With the
wget utility, we transfer a large file hosted by the HTTP server to the UE. As before,
we observe the real-time jitter for PPP and RLC events for both the default real-time
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Figure 10.5: LTE network test case with real traffic (software-in-the-loop)

(RealtimeSimulatorImpl) and distributed (DistributedSimulatorImpl)
core simulators.

10.2.4.1 Simulation Configuration

Our simulation source file, lte-network-tap.cc, Gw and enb nodes are configured as in
the preceding sections. For the pdn and ue nodes, we do not install the ns-3 TCP/IP
stack using InternetStackHelper or assign addresses, as this is handled by the
native stack in each VM.

We first parse in the isDistributed argument from the command line. We use this to
enable or disable distributed mode in the TapBridge settings.

1 bool isDistributed = false;
2

3 CommandLine cmd;
4 cmd.AddValue ("isDistributed", "", isDistributed);

1 TapBridgeHelper tapBridge;
2 tapBridge.SetAttribute ("Mode", StringValue ("UseBridge"));
3 tapBridge.SetAttribute ("IsDistributed", BooleanValue(isDistributed));
4 tapBridge.SetAttribute ("Rank", UintegerValue(pdnRank));
5 tapBridge.SetAttribute ("DeviceName", StringValue ("tap-left"));
6 tapBridge.Install (pdn.Get (0), sgiDev.Get (0));
7

8 tapBridge.SetAttribute ("Rank", UintegerValue(0));
9 tapBridge.SetAttribute ("DeviceName", StringValue ("tap-right"));

10 tapBridge.Install (ue.Get (0), ueDev.Get (0));

Using a TapBridgeHelper, we install a tap-bridge device on each of the two
“real” nodes, setting the device to UseBridge mode.77 We assign these devices to the
TUN/TAP interfaces tap-left and tap-right, corresponding to the virtual interfaces for
the HTTP server and UE VMs, respectively. We have extended the TapBridge class
to work with the DistributedSimulatorImpl simulator by statically assigning
each device to a rank, as shown above.78

We must now set up our bridge and virtual TUN/TAP interfaces with the brctl and
tunctl utilities. We follow the procedure in [40] to create the interfaces br-left, br-right,
tap-left, and tap-right on the host OS.

77See [40] for a detailed tutorial on ns-3 emulation.
78This feature does not yet support internode MPI operation. Processes spawned with mpirun must

belong to a single host.



63

We then configure and start our Linux Container VM environments. Two simple
config files, lxc-left.conf and lxc-right.conf, contain parameters for initializing each
LXC. The contents of lxc-left.conf are as follows.

1 lxc.utsname = left
2 lxc.network.type = veth
3 lxc.network.flags = up
4 lxc.network.link = br-left
5 lxc.network.ipv4 = 203.82.48.2/24

The container is assigned the hostname left. A virtual interface with the prefix veth
is automatically created when the container is started, and is bridged with the tap-left
device by br-left. Within the container, veth appears as eth0 with the IP address shown.
The lxc-right.conf file for the UE container has the same format, with br-left replaced
by br-right and the address 203.82.50.1 assigned to its virtual eth0.

10.2.4.1.1 Simulation Execution

Before running the simulation, we create and then start each container with the follow-
ing commands.

lxc-create -n lxc-left lxc-start -n left /bin/bash

We repeat these commands for the right container in a separate terminal window. After
entering the second command on the host OS, we are presented with a root bash shell
for the LXC environment.79

For the two-process case, we run the lte-network-tap program using mpirun from
the shell of the host OS.

mpirun -np 2 -H ltesim1 ./lte-network-tap –isDistributed=1 –stopTime=120.0

For the uniprocess case, we simply omit the mpirun component in the above command.
We also specify the stop time as 120 seconds. Once the simulation has started, we enter
the right container (i.e. the virtual UE) and, using the wget command, request the file
from the HTTP server.

wget http://203.82.48.2/largefile.bin

10.2.4.1.2 Analysis of Simulation Results

Table C.24 gives the RLC RxPDU and PPP MacRx event jitter statistics for each test.
The jitter is also plotted over time in Figures B.35 and B.36.80 Table C.25 gives statis-
tics on the HTTP transfer as reported by wget. The difference in average, maximum
and minimum jitter between the one and two-processes tests is negligible. From Fig-
ure B.35, we see that only once does the latency exceed 200µs in the reception of RLC

79Root privileges are required to create, start and destroy LXC containers.
80The jitter plot for each trial appears slightly shifted in time due to the HTTP transfer starting at

different times.
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PDUs at the UE, spiking to about 1.4ms for just a single event. While t average jit-
ter is only 12µs for PPP events, Figure B.36 shows frequent spikes above 1 and 2ms.
The occurrence of these spikes seems to be reduced in the two-process, distributed test,
though the average is roughly the same when compared to the uni-process case.

Part IV

Conclusion
11 Realization of Goals
Significant progress has been made towards laying the groundwork for a software plat-
form that should prove to be an invaluable tool for researching next-generation cellular
wireless systems. The proof-of-concept software-in-the-loop experiment in the preced-
ing section demonstrates the culmination of our efforts toward the realization of the
requirements defined in Sections 2 and 3 for this phase of the project. Undertaking to
achieve these initial goals, which are quite broad in scope, requires technical knowledge
from a variety of disciplines. The background given in the first half of this thesis draws
from such a wide array of topics as discrete-event simulation, parallel programming,
the GNU Linux kernel, high-performance computing, telecommunications networks
and digital wireless communications systems. Bringing together all of the requisite in-
formation represents a substantial achievement by itself, and strides were made in the
design and implementation of the software systems and compute cluster platform, as
well. Nonetheless, there is still much room left for improvement. We shall now return
to each of the high-level goals outlined in Section 2 and analyze our progress toward
achieving them. In Section 12, we propose a plan for advancing each of these areas in
future iterations of the project.

11.1 Model Validity

Only the most minimal set of features required to demonstrate end-to-end IP connectiv-
ity over an LTE/SAE network have thus far been implemented. In addition to the PHY
and MAC-layer functions of the LTE radio offered by the LENA project classes [80], a
simplified model of RLC Unacknowledged Mode and GTP-U tunneling were incorpo-
rated into the overall model. Validation of the channel model (i.e. the Spectrum model
for ns-3), LTE MAC scheduler, Adaptive Modulation and Coding scheme, and other
components of the LENA model is detailed in [81] and [80]. The implementation of
the RLC protocol is also correctly follows the segmentation and reassembly procedure
prescribed in 3GPP TS 36.322 [69], with the format of RLC headers and PDUs accu-
rately reflecting the specifications bit-for-bit. Similarly, the GTP-Uv1 model provides
an accurate bit-level representation of the GTP-U header and includes all relevant data
elements (see 3GPP TS 29.281 [70]) needed to properly encapsulate basic IP pack-
ets and tunnel them between the external network and user equipment over the core
network. More advanced traffic filtering and QoS aspects of GTP are as yet unimple-
mented. The same can be asserted for all relevant protocols in the TCP/IP stack that
are provided in the ns-3 model library. The relevant specifications and RFCs for the
IP (Ipv4L3Protocol), TCP (TcpL4Protocol), UDP (UdpL4Protocol) and
other classes are cited in [74].
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11.2 Real-Time Performance

Considerable time and effort was devoted to analyzing the real-time performance of
core DES algorithms and LTE/SAE model components. For the very basic LTE test
simulations in Section 10, it was shown that for a small number (less than 16) of mo-
biles, real-time jitter averaged to no more than several hundred microseconds for in-
dividual events, with infrequent, intermittent latency spikes of over 1 millisecond. In
the real traffic test case involving one “real” PPP host and one LTE mobile, we see an
average of around 60µs, with the jitter never exceeding 1.5ms. The degree to which this
added delay in event processing affects simulation accuracy and validity depends on the
scenario being tested and the nature of the desired results. For testing protocols purely
over the air interface, a jitter of over 1ms may be unacceptable. Since we are mostly
interested in testing the behavior of protocols and their effects on higher-layer proto-
cols and applications, the impact of an additional 1ms delay may be imperceptible. For
instance, if we wish to observe the subframe error rate of a new coding scheme and the
resulting effects on streaming video over Real-Time Streaming Protocol and TCP, the
only deviation from true emulation of such a system would be the delay experienced at
the IP layer and above. In this example, an added delay of 1ms is unlikely to have any
compromising effect on the behavior of any applicable protocol and will not apparent
in the playback of the video.

11.3 Parallel DES Algorithms

The one area in which our product clearly comes up short of the intended project goals
is efficient parallel simulation. The pthread and MPI-based core simulator implementa-
tions we tested both offered only a small fraction of performance gain over the default
implementation when two concurrent execution paths were employed. For additional
threads or processes, both simulators performed worse than the default. Their failure
is a result of the simplicity of the algorithms, which are not optimized for the kinds of
practical, real-world cellular networks that we are dealing with. In [82], it was shown
that a linear performance gain (proportional to the number of processes) is possible with
the DistributedSimulatorImpl simulator for a network with 200ms of looka-
head. This 200ms delay is not common to any practical technology. Instead, the 1ms
lookahead for PPP links in our simulation scenarios resulted in much less of a window
of opportunity for parallelization of events. Any gain from parallelization was dom-
inated by the cost of frequent synchronization and communication of null messages
between logical processes.

Furthermore, neither of these core simulators support partitioning of wireless net-
works, or any type of broadcast network for that matter. Only network partitions con-
nected by point-to-point links are supported. This feature will be incorporated during
the next iteration of the project by allowing a many-to-many communications scheme
for scheduling remote events and exchanging null-messages.

12 Future Work
12.1 Improved Parallel Simulation Algorithms

It is apparent that a more advanced conservative synchronization algorithm must be
employed to achieve a superior speedup. As discussed, real-time simulations are, in
principle, limited to conservative techniques, and optimistic algorithms that have found
success in simulators such as Georgia Tech Time Warp [28] would not be effective. [21]
and [27] evaluate several horizontal partitioning algorithms that use the technique of
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event bundling to reduce the frequency of synchronization. [24], [26] and [25] suggest
several methods for increasing lookahead for wireless networks by exploiting properties
of protocols. The concepts of protocol lookahead and event lookahead are introduced
in [27] as a way to augment the standard transmission delay-based lookahead model.

Furthermore, we propose two novel approaches to synchronization, the first of
which is based on our observation that synchronization is the true performance bot-
tleneck in such simulations in contrast to the communication cost of exchanging null
messages, which is relatively cheap. If, in the process of scheduling an event, all neigh-
boring LPs could be asynchronously updated with the timestamp of the new event, there
would be no need to wait at a barrier after each event processing iteration in order to
resynchronize. LPs could then continuously process events without running the risk
of becoming inconsistent. The number of null messages would increase considerably,
however, as each partition would need to maintain the minimum timestamp of the event
set for neighboring partitions. This would also increase the overall memory require-
ments of the simulation.

The second proposed solution requires increased integration between the network
model and the core simulator algorithm. If each event could be given some tag that
lists other partitions that are effected by an event, only those events would need to be
considered in the calculation of Lower Bound Timestamps, which would, in some cases,
result in a larger parallelization window. Both of these modifications will be evaluated
in our future work.

12.2 VM-Synchronized Emulation

SliceTime [29] is a system that enables non-real-time emulation by integrating ns-3
event processing with the system scheduler in the Xen hypervisor. By effectively slow-
ing down the execution of instructions for a Xen-based virtual machine to match the
execution time of ns-3 events, real applications can be integrated with a simulation that
requires more computation than can be supported in real-time. As a result, simulations
can be scaled up indefinitely, with non-real-time results being theoretically identical to
those of a real-time emulation.

12.3 Alternative Parallel and Distributed Solutions

While still widely in use today, the pthread, MPI and OpenMP frameworks we have so
far investigated are no longer the only option for developers of parallel applications. The
CUDA [93] and OpenCL [92] frameworks enable programs to harness multiple shared-
memory CPUs as well as Graphics Processing Units (GPUs), which can have hundreds
of parallel processing units per chip.81 We hope to investigate how these frameworks
can be integrated with the ns-3 simulator. General-purpose Computing on Graphics
Processing Units (GPGPU) may enable computationally-expensive operations such as
error calculations to be sped up significantly.

13 Source Code Availability
Our code is still in need of extensive testing and debugging before it will be made avail-
able through the ns-3 code repository at http://code.nsnam.org/ns-3-dev. Presently, the
code can be obtained at our SourceForge repository at http://chic.svn.sourceforge.net.
One can also visit the website for the NYU Poly Center for Advanced Technology in
Telecommunications at http://catt.poly.edu.

81[91] presents some initial work with integrating CUDA support into ns3.
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API Application Programming Interface
ARP Address Resolution Protocol
CMAC Control-plane Media Access Control
CQI Channel Quality Indication
DCI Data Control Indication
DES Discrete Event Simulation
DSP Digital Signal Processing
eNB eNodeB
EPC Evolved Packet Core
EPS Evolved Packet System
E-UTRAN Evolved UMTS Terrestrial Radio Access Network
FPGA Field-Programmable Gate Array
GBR Guaranteed Bit Rate
GPRS General Packet Radio System
GTP GPRS Tunneling Protocol
HO Handover
HPC High-Performance Computing
HSPA High Speed Packet Access
HSS Home Subscriber Server
ICIC Inter-Cell Interference Coordination
ICMP Internet Control Message Protocol
IE Information Element
IMS IP Multimedia System
IP Internet Protocol
LBTS Lower Bound Timestamp
LCID Logical Channel Identifier
LP Logical Process
LTE Long Term Evolution
LXC Linux Container
MAC Media Access Control (layer)
MBR Maximum Bit Rate
MCS Modulation and Coding Scheme
MME Mobility Management Entity
MPI Message Passing Interface
OFDM Orthogonal Frequency Division Multiplexing
OFDMA Orthogonal Frequency Division Multiple Access
PCC Policy and Charging Control
PCRF Policy and Charging Rules Function
PDCCH Physical Downlink Control CHannel
PDCP Packet Data Convergence Protocol
PDN Packet Data Network
PDSCH Physical Downlink Shared CHannel
PDU Protocol Data Unit
PF Proportional Fair (scheduler)
P-GW PDN Gateway
PHY Physical (layer)
PMIP Proxy Mobile IP
PRACH Physical Random Access CHannel
PSD Power Spectral Density
PSTN Public Switched Telephone Network
PUCCH Physical Uplink Control CHannel
PUSCH Physical Uplink Shared CHannel
QoS Quality of Service
QCI QoS Class Identifier
RAN Radio Access Network
RAT Radio Access Technology
RB Radio Bearer
RB Resource Block
RBC Radio Bearer Control
RBG Resource Block Group
RE Resource Element
RLC Radio Link Control (layer)
RNC Radio Network Controller
RR Round Robin (scheduler)
RRC Radio Resource Control (layer)
RRM Radio Resource Management
RT Real Time
RTT Round-Trip Time
SAE System Architecture Evolution
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SAP Service Access Point
SC-FDMA Single Carrier Frequency Division Multiple Access
SDU Service Data Unit
S-GW Serving Gateway
SINR Signal to Interference-Noise Ratio
SMP Symmetric Multiprocessor
SNR Signal to Noise Ratio
TA Tracking Area
TB Transport Block
TCP Transmission Control Protocol
TEID Tunnel Endpoint Identifier
TFT Traffic Flow Template
TS Time Stamp
TTI Transmission Time Interval
UDP User Datagram Protocol
UMTS Universal Mobile Telecommunications System
VM Virtual Machine

B Figures
B.1 LTE/SAE Supplementary Figures
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B.2 Core Simulation Implementation Figures
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B.3 LTE Model Implementation
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Figure B.8: Femto Forum MAC Scheduler Interface (taken from [59]).



85

Fi
gu

re
B

.9
:D

ow
nl

in
k

su
bf

ra
m

e
tr

ig
ge

ri
ng



86

Fi
gu

re
B

.1
0:

D
ow

nl
in

k
D

at
a

C
on

tr
ol

In
di

ca
tio

n
se

nt
fr

om
eN

od
eB

to
U

E



87

Fi
gu

re
B

.1
1:

D
ow

nl
in

k
C

Q
If

ee
db

ac
k

re
po

rt
in

g
fr

om
U

E
to

eN
od

eB



88

B.4 Results from Core Simulator Implementation Performance Tests

Figure B.12: Non-real time, distributed bottleneck test (num nodes=128)
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Figure B.13: Non-real time, distributed bottleneck test (num nodes=256)

Figure B.14: Non-real time, distributed bottleneck test (num nodes=1024)
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Figure B.15: Non-real time, distributed embarrassingly parallel test (num nodes=128)

Figure B.16: Non-real time, distributed embarrassingly parallel test (num nodes=256)
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Figure B.17: Non-real time, distributed embarrassingly parallel test (num nodes=1024)

Figure B.18: Non-real time, multithreaded bottleneck test (num nodes=128)
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Figure B.19: Non-real time, multithreaded bottleneck test (num nodes=256)

Figure B.20: Non-real time, multithreaded bottleneck test (num nodes=1024)
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B.5 Results from LTE Simulation Test Cases
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Figure B.21: LTE saturation test case: Timing jitter for DL RLC RX events at UE (nu-
mUe={1,2,4,8})

Figure B.22: LTE saturation test case: Timing jitter for DL RLC RX events at UE (nu-
mUe={16,32,64})
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Figure B.23: LTE simple traffic generator test case: Timing jitter for DL RLC RX events at UE
(numUe={1,2,4,8})

Figure B.24: LTE simple traffic generator test case: Timing jitter for DL RLC RX events at UE
(numUe={16,32})



96

Figure B.25: LTE simple traffic generator test case: Timing jitter for DL PPP RX events at nodes
0 and 1 (server and GW)

Figure B.26: LTE simple traffic generator test case: Timing jitter for DL PPP RX events at node
2 (eNodeB)
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Figure B.27: LTE distributed network test case (intranode): Timing jitter for DL RLC RX events
at UE (numUe={1,2,4,8})

Figure B.28: LTE distributed network test case (internode): Timing jitter for DL RLC RX events
at UE (numUe={1,2,4,8})
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Figure B.29: LTE distributed network test case (intranode): Timing jitter for DL RLC RX events
at UE (numUe={16,32})

Figure B.30: LTE distributed network test case (internode): Timing jitter for DL RLC RX events
at UE (numUe={16,32})
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Figure B.31: LTE distributed network test case (intranode): Timing jitter for DL PPP RX events
at node 2 (rank 1, numUe={1,2,4,8})

Figure B.32: LTE distributed network test case (internode): Timing jitter for DL PPP RX events
at node 2 (rank 1, numUe={1,2,4,8})
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Figure B.33: LTE distributed network test case (intranode): Timing jitter for DL PPP RX events
at node 2 (numUe={16,32})

Figure B.34: LTE distributed network test case (internode): Timing jitter for DL PPP RX events
at node 2 (numUe={16,32})
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Figure B.35: LTE real traffic test case (): Timing jitter for DL RLC RX events at UE (node 3)
(num proc=1,2)

Figure B.36: LTE real traffic test case (): Timing jitter for DL PPP RX events at nodes 0,1,2
(num proc=1,2)
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C Tables
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C.1 Simulator Platform Implementation - API
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C.2 LTE Model Class Descriptions
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C.3 Results from Core Simulator Implementation Performance Tests
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C.4 Results from LTE Simulation Test Cases
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