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ABSTRACT

Channel Modeling and Multi-Cell Hybrid Beamforming for

Fifth-Generation Millimeter-Wave Wireless Communications

The rapid growth of mobile communications and the soaring popularity of smart

phones, tablets, and other mobile devices are creating unprecedented challenges for

wireless service providers to surmount a global bandwidth crunch. This has also

motivated the evolution of wireless communications from the fourth-generation to

the fifth-generation (5G). To overcome the bandwidth shortage and to meet the

ever increasing data rate demands expected for 5G systems, the millimeter-wave

(mmWave) frequency band (usually considered as 30 GHz to 300 GHz) is being

explored for cellular communications, where a tremendous amount of raw bandwidth

exists. Nevertheless, while the knowledge on mmWave propagation channels in

various outdoor environments is being gained via numerous measurement campaigns

carried out by both the academia and industry around the world over the past few

years, channel modeling for 5G including mmWave systems is still ongoing, and the

system performance, especially combined with the multiple-input multiple-output

(MIMO) technology, is yet to be fully evaluated.

This thesis investigates some fundamental aspects of 5G channel modeling and

the evaluation of mmWave MIMO system performance, with the use of multi-

cell multi-user analog-digital hybrid beamforming (HBF) approaches. A practical

omnidirectional path loss synthesizing method and systematic study of various
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omnidirectional path loss models considered by the standards bodies are first

demonstrated, followed by the introduction of a 5G channel simulator, NYUSIM.

The thesis then systematically compares the modeling methodology and system

performance prediction of two popular channel models developed for 5G systems:

the 3rd Generation Partnership Project (3GPP) TR 38.901 Release 14 channel

model, and the NYUSIM channel model. Next, focuses on shifted to mmWave

MIMO systems, where a novel channel estimation codebook construction strategy is

proposed, and multi-cell multi-user system spectral e�ciency is examined using the

above two channel models and several HBF approaches, leveraging the coordinated

multi-point (CoMP) concept. Specifically, eigenvalue densities for mmWave channels

coupled with radio-frequency (RF) precoding are derived, which has never been done

in the vast literature. Moreover, a general methodology is provided to analytically

compute the average (expected) per-cell sum spectral e�ciency of a mmWave

multi-cell single-stream system using phase-shifter-based analog beamforming and

regularized zero-forcing digital beamforming, and the results are validated through

numerical simulations.

The investigations in this thesis concludes that it is vital to develop an accurate

channel model applicable for all the potential 5G spectrum, as the channel model

has a profound impact on deployment decisions and on various metrics, such as

spectrum e�ciency, coverage and performance, cell radius, and hardware/signal pro-

cessing requirements. For instance, compared to NYUSIM, the larger cluster number

(i.e., more rich multipath) in the 3GPP model results in more eigen channels and

more similar powers among those eigen channels, thus is advantageous for spatial

multiplexing. On the other hand, the real-world measurement-based NYUSIM

channel exhibits sparsity and has fewer but stronger dominant eigenmodes, hence
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generating higher spectral e�ciency when combined with appropriate HBF proce-

dures. Numerical results show that CoMP based on the signal-to-leakage-plus-noise

ratio (SLNR) method provides highest spectral e�ciency in most cases (e.g., up to

67% higher spectral e�ciency for the weakest 5% of users as compared to the non-

CoMP case), thus is worth using in mmWave multi-cell networks. Furthermore, the

benefits of multi-cell base station coordination (as opposed to the no-coordination

case) are ultimately governed by the underlying propagation model, as well as the

aggregate interference levels proportional to the cell radius and the number of users

per cell. Specifically, a relatively small cell radius (e.g., 50 m) and a small number

of users (e.g., three) per cell usually give rise to high per-user spectral e�ciency

given a constant transmit power for each user.
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Chapter 1

Introduction

The rapidly increasing demands from consumers for high data rates, ubiquitous

connectivity, high-quality video streaming, and low-latency control or communi-

cation are driving the development of fifth-generation (5G) wireless communica-

tions [1, 2]. Compared to 4G/International Mobile Telecommunications-Advanced

(IMT-Advanced) standards, 5G is envisioned to support a higher density of mobile

broadband users, better implementation of Internet of Things (IoT), virtual reality,

augmented reality, and many other use cases. There is currently no standard for

5G deployments, but the millimeter-wave (mmWave) spectrum (from around 30

gigahertz (GHz) to 300 GHz) is expected to be a key ingredient due to its massive

amount of raw available bandwidths [2]. In July 2016, the Federal Communications

Commission (FCC) in the United States approved nearly 11 GHz of spectrum above

24 GHz for 5G, including the 28 GHz, 37 GHz, 39 GHz, and 64 - 71 GHz bands [3],

which was more than four times larger than the total amount of licensed spectrum

currently available for mobile services.
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1.1 Technologies Required to Realize 5G

The demand for cellular data tra�c continues to outstrip forecasts and is currently

growing at a rate of 40-70% per annum [4, 5]. This growth rate implies that relative

to current levels, a 1000 times capacity increase within the next decade may be

required to be met by the new radio capabilities of the fifth-generation (5G) wireless

communications [1, 2, 6, 7, 8, 9, 10, 11, 12]. The capacity gains required by 5G are

expected to be provided by:

• Massive multiple-input multiple-output (MIMO) antenna arrays at base

stations (BSs) and smaller arrays at the mobile user equipment (UE) [13, 14,

15, 16, 17, 18, 19]

• Increased spectrum bandwidth and use of wideband (> 100 MHz) channels [20,

21]

• Multi-user and three-dimensional (3D) MIMO [22, 23, 24, 25, 26]

• Network densification using smaller cell coverage zones [27, 28, 29, 30]

• New modulation waveforms [31, 32, 33, 34, 35]

A discussion of the above is given in [6] and references therein, but it is clear that

new waveforms will o↵er the smallest capacity increase, while increased spectrum

bandwidth and channel bandwidth will provide the largest capacity increases.

1.2 Spectrum Bands Suitable for 5G

Increased spectrum bandwidth cannot come from existing microwave bands which

are already congested and allocated for other purposes, thus new millimeter-wave
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(mmWave) spectrum bands of 30-300 GHz are being considered for 5G and beyond,

since they have ample unused spectrum relative to the microwave bands [4] and are

potential candidates for allocation to mobile services. The World Radio Conference

in 2015 (WRC-15) approved a number of candidate bands for 5G, which are: 24.25-

27.5 GHz, 31.8-43.5 GHz, 45.5-50.2 GHz, 50.4-52.6 GHz, 66-76 GHz, and 81-86

GHz (see Table 1.1). A final list of the bands will be approved by WRC-19. In

addition to these bands, spectrum in the unlicensed bands (60 GHz) may also be

used [36]. A judicious contribution of spectrum use across all bands is necessary

to keep up with capacity demands, and this is likely to include lower ultra-high

frequency (UHF)/microwave frequencies for wider area coverage, and high rate

mmWave links for both licensed and unlicensed use.

Table 1.1: Candidate spectrum bands for 5G

Group 30 Group 40/50 Group 70/80

24.25-27.5 GHz 37-40.5 GHz 66-76 GHz

40.5-42.5 GHz 81-86 GHz

31.8-33.4 GHz 42.5-43.5 GHz

45.5-47 GHz

47-747.2 GHz

47.2-50.2 GHz

50.4-52.6 GHz

The WRC-15 candidate bands are carefully chosen in terms of low-loss atmo-

spheric attenuation versus (vs.) frequency as shown in Fig. 1.1. In particular, they

avoid the oxygen absorption peaks in Fig. 1.1 that represent molecular oxygen and

water vapor loss [38]. The very small wavelengths of mmWave signals combined

with advances in CMOS technology enable the fabrication of large numbers of

antenna elements to be placed in extremely small dimensions [39, 40, 41, 42, 43, 44],

for example, 128 cross-polarized antennas (equal to 256 elements) can be placed
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Figure 1.1: Atmospheric attenuation vs. frequency (from [37]).

in a small area of 8 cm x 16 cm. Also, the large relatively unused bandwidths in

these bands will enable the allocation of very large spectrum (up to several GHz)

per operator in most countries.

1.3 Role of Channel Models in 5G Systems

The radio channel is fundamental to wireless communications [45]. Almost every

aspect of wireless communications, ranging from real-world performance predic-

tion, equipment design and system design, antenna architectures, and system

performance, to capacity and coverage evaluation, depends upon an accurate un-

derstanding of the performance of radio signals when they propagate via a radio

channel. The modeling of a radio channel is therefore vital to wireless communica-

tions research [46, 47, 48].

1.4 Technical Report Outline

Subsequent to the introduction chapter, the technical report is organized as follows.
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Chapter 2 provides a comprehensive background of channel model basics and

di↵erences between microwave and mmWave channel modeling, followed by litera-

ture review of channel models and simulators, channel estimation, and single-cell

and multi-cell beamforming approaches for mmWave MIMO systems.

Chapter 3 presents a practical method for synthesizing omnidirectional received

power and path loss from field mmWave measurements using directional horn

antennas [49]. The omnidirectional antenna pattern and omnidirectional received

power are synthesized by summing the received powers from all measured unique

pointing angles obtained at antenna half-power beamwidth step increments. The

method is shown to provide accurate results while enhancing the measurement

range substantially through the use of directional antennas.

Chapter 4 compares three candidate large-scale propagation path loss models for

use over the entire microwave and mmWave radio spectrum: the alpha-beta-gamma

(ABG) model, the close-in free space reference distance (CI) model, and the CI

model with a frequency-weighted path loss exponent (CIF) [50]. The accuracy and

sensitivity of the three path loss models are studied using measured data from 30

propagation measurement data sets from 2 GHz to 73 GHz over distances ranging

from 4 m to 1238 m. A series of sensitivity analyses show that the physically-based

CI and CIF models o↵er very similar goodness of fit as compared to the ABG

model but with fewer parameters, exhibit more stable model parameter behavior,

and yield smaller prediction error in sensitivity tests over a vast range of microwave

and mmWave frequencies, scenarios, and distances.

Chapter 5 demonstrates details and applications of a novel channel simulation

software named NYUSIM (New York University SIMulator) [51], which can be used

to generate realistic temporal and spatial channel responses to support realistic
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physical- and link-layer simulations and design for 5G cellular communications.

NYUSIM is built upon the statistical spatial channel model for broadband mmWave

wireless communication systems developed by researchers at New York University

(NYU) [52]. The simulator is applicable for a wide range of carrier frequencies

(500 MHz to 100 GHz), radio-frequency (RF) bandwidths (0 to 800 MHz), antenna

beamwidths, and operating scenarios, and also incorporates MIMO antenna arrays.

Chapter 6 systematically compares the 3rd Generation Partnership Project

(3GPP) TR 38.901 Release 14 channel model and the measurement-based NYUSIM

channel model [53], including the line-of-sight (LOS) probability model, large-scale

path loss model, outdoor-to-indoor penetration model, clustering methodology,

large-scale and small-scale parameters, and their prediction performance for mobile

systems. Particularly, the number of clusters in the 3GPP model is over two to four

times as large as the maximum number of spatial lobes found through many years of

measured data in New York City [2, 52, 54] and implemented in NYUSIM, leading

to di↵erent channel sparsity levels in the two models. Compared to NYUSIM, the

larger cluster number (i.e., more rich multipath) in the 3GPP model results in

more eigen channels and more similar powers among those eigen channels, thus is

advantageous for spatial multiplexing. On the other hand, the NYUSIM channel

exhibits sparsity and has fewer but stronger dominant eigenmodes, hence generating

higher spectral e�ciency when combined with appropriate analog-digital hybrid

beamforming (HBF) procedures. Results show that di↵erent channel models can

lead to substantially varied predictions on diverse channel performance metrics and

hardware requirements, thus it is vital to select an accurate channel model for 5G

wireless system performance evaluation.

Chapter 7 presents a novel approach of constructing beamforming dictionary
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matrices for mmWave sparse channel estimation using the continuous basis pursuit

(CBP) concept [55], and proposes two novel low-complexity algorithms to exploit

channel sparsity for adaptively estimating multipath channel parameters. The

performance of the proposed CBP-based beamforming dictionary and the two

algorithms are verified using NYUSIM. Numerical results show that the CBP-based

dictionary o↵ers significantly lower estimation error and higher spectral e�ciency

than the existing grid-based counterpart, and the proposed algorithms render

better performance while requiring less computational e↵ort compared with existing

algorithms.

Chapter 8 provides a general methodology to analytically compute the average

(expected) per-cell sum spectral e�ciency of a mmWave multi-cell single-stream

system using phase-shifter-based analog beamforming and regularized zero-forcing

digital beamforming [56]. Four analog-digital hybrid beamforming techniques for

multi-cell multi-stream mmWave communication are also proposed, in which it

is assumed that base stations in di↵erent cells share channel state information to

cooperatively transmit signals to its home-cell users. Spectral e�ciency performance

of the proposed hybrid beamforming approaches are investigated and compared

using the 3GPP and NYUSIM channel models. Numerical results show that the

benefits of base station coordination (as opposed to the no-coordination case) are

ultimately governed by the underlying propagation model, as well as the aggregate

interference levels proportional to the cell radius and the number of users per

cell [56, 57].

Finally, Chapter 9 draws the concluding remarks of the technical report and

presents potential future research directions based on the topics of the technical

report.
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Chapter 2

Background

In order to properly design and deploy 5G wireless systems, accurate channel models

are needed. Channel models describe and model how wireless channel parameters

behave in a given scenario, and help analyze link-level and system-level performance,

thus playing an important role in wireless system design. A proper channel model

should be able to faithfully reproduce the channel parameters obtained in real-

world measurements and accurately predict channel performance. As the mmWave

frequency band is expected to be exploited in 5G due to its tremendous amount of

raw bandwidths, knowledge and modeling for mmWave channels are in huge need,

which can be gained via field measurements.

2.1 MmWave Propagation Measurements Con-

ducted by NYU WIRELESS

In order to build realistic channel models, channel measurements are needed to

learn the channel and to study channel parameter statistics. NYU WIRELESS has
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conducted extensive propagation measurements at multiple mmWave frequencies

in various scenarios, such as urban microcell (UMi), urban macrocell (UMa), rural

macrocell (RMa), and indoor o�ce, from 2012 to 2017 [2, 54, 58, 59]. In what

follows, several measurement campaigns with over one Terabytes of raw data used

over 2012-2016 for developing the NYUSIM channel model [51] are described.

2.1.1 28 GHz Propagation Measurements in UMi Scenario

The 28 GHz propagation measurements were conducted in summer 2012 in down-

town Manhattan around NYUs main campus, with a maximum RF transmit power

of 30.1 dBm over an 800 MHz first null-to-null RF bandwidth, yielding a maximum

measurable dynamic range of 178 dB [2, 54]. Measurements were performed for a

typical base station-to-mobile (access) scenario with the transmitter (TX) antenna

on relatively low rooftops and the receiver (RX) antenna located at a mobile height

(1.5 m) around common city blocks typical of a dense urban environment. Narrow-

beam TX and RX antennas were used, each with 24.5 dBi boresight gain and 10.9�

and 8.6� half-power beamwidths (HPBWs) in azimuth and elevation planes, respec-

tively. The narrowbeam outdoor-to-outdoor measurements in Manhattan consisted

of over 10,000 recorded PDPs using three TX locations and 27 RX locations that

were visited repeatedly for each TX location, providing for a total of 74 TX-RX

location combinations. For each TX-RX location combination, the RX antenna

was swept in 10� increments (approximately the antenna HPBW) in the azimuth

plane for three di↵erent RX antenna elevation pointing angles and three di↵erent

TX azimuth angles, all with a fixed TX downtilt elevation of 10�, where a PDP was

acquired at each distinct azimuth pointing increment at the RX. One TX antenna

sweep was conducted as well, resulting in 10 total azimuth sweeps for each TX-RX
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combination. T-R separation distances ranged from31 m to 425 m, but PDPs were

not measurable beyond 200 m. Fig. 2.1 illustrates the TX and RX hardware and

measurement locations used in the 28 GHz campaign. More detailed information

on the measurement procedure and results are provided in [2, 54].

2.1.2 73 GHz Propagation Measurements in UMi Scenario

The 73 GHz outdoor propagation measurements were conducted in downtown

Manhattan around the NYU campus in summer 2013, with a maximum RF transmit

power of 14.6 dBm over an 800 MHz first null-to-null RF bandwidth, yielding a

maximum measurable dynamic range of 181 dB. The measurements consisted of five

TX locations and 27 RX locations with a few of them repeated for more than one

TX location, for both base station-to-mobile and backhaul-to-backhaul scenarios.

RX antenna heights of 2 m and 4.06 m were used to emulate base station-to-mobile

access and wireless backhaul scenarios, respectively [54]. Four TX sites were 7 m

above ground and one was 17 m. PDPs were recorded using rotatable 27 dBi gain

antennas at the TX and RX to capture azimuthal sweeps in 8� (approximately the

antenna HPBW) increments using many RX antenna elevation angles for di↵erent

fixed TX antenna azimuth and elevation angles. Azimuthal TX sweeps were also

performed with the RX antenna fixed in the azimuth and elevation planes. Up to ten

RX azimuthal sweeps and up to two TX azimuthal sweeps were conducted for each

TX-RX location combination for both mobile and backhaul measurement scenarios.

Fig. 2.2 displays the TX and RX hardware and measurement locations used in

the 73 GHz UMi campaign. More information on the measurement procedure and

results is detailed in [54].
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(a) (b)

(c)

Figure 2.1: (a) Transmitter, (b) receiver, and (c) measurement locations used in
the 28 GHz propagation measurements in New York City in 2012 [2].



21

(a) (b)

(c)

Figure 2.2: (a) Transmitter, (b) receiver, and (c) measurement locations used in
the 73 GHz propagation measurements in New York City in 2013 [54].
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2.1.3 73 GHz Propagation Measurements in RMa Scenario

The 73 GHz RMa measurements were carried out in Riner and Christiansburg,

Virginia, rural towns in southwest Virginia in summer 2016. The TX was positioned

on a porch at Professor Rappaports mountain home at a height of 110 m above

the surrounding terrain [58, 59]. A narrowband continuous wave (CW) signal was

transmitted with a maximum RF power of 14.7 dBm (29 mW) using a rotatable

7� azimuth and elevation HPBW horn antenna with 27 dBi of gain. An identical

rotatable antenna with 27 dBi of gain and 7� azimuth and elevation HPBW was

used at the RX to capture the RF signal, providing a maximum measurable path

loss of 190 dB. The RMa measurements were made over a two-day period of clear

weather using a receiver measurement van, with the receiving antenna fixed on a

tripod outside of the van at an average height between 1.6 m and 2 m above the

ground along country roads and streets near rural homes and businesses [58, 59].

Measurements were made at 14 LOS and 17 NLOS locations where a measurable

signal was detected. The 2D T-R separation distance for LOS locations ranged

from 33 m to 10.8 km, and from 3.4 km to 10.6 km for NLOS locations [58, 59].

Remarkably, signals can be detected with a T-R separation distance of over 10

km even in NLOS environments. Fig. 2.3 shows the TX and RX locations and

surrounding areas in the 73 GHz RMa campaign. More information on measurement

procedure and results can be found in [58, 59].

Extensive indoor measurements were also made during 2013-2016 [60, 61, 62, 63],

but this technical report focuses on the outdoor UMi, UMa, and RMa scenerios

since these are of greatest interest to wireless carriers who will bid on spectrum

and deploy 5G networks.
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(a)

(b)

Figure 2.3: (a) Sketch of the TX location on the porch of the mountain home,
and surrounding areas in the 73 GHz RMa measurements in 2016. (b) Map of
TX and RX locations in the 73 GHz RMa measurements in 2016. The yellow star
represents the TX, red pins indicate NLOS locations, and blue pins indicate LOS
locations [58, 59].
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2.2 Channel Model Basics

A radio channel is the medium linking the TX and the RX. Various objects, such

as glass windows, concrete buildings, plants, moving cars, etc., exist in the real

environments, thus the radio waves may be reflected, scattered or di↵racted, arriving

at the RX with di↵erent paths [64, 65], and transmitted signal experiences dramatic

variation when going through the radio channel. The received signal is thereby the

sum of multiple radio waves with di↵erent phases and delays. Fig 2.4 illustrates an

example wireless channel with a base station, a user, and obstructions (buildings

and a bus), where the transmitted signal is decomposed into several clusters (defined

jointly in the space and time domains) as defined in the 3GPP channel model [66],

or, spatial lobes as defined in the NYUSIM channel model [51] (NYUSIM also

defines time clusters, where a time cluster could contain rays in di↵erent spatial

lobes, and a spatial lobe could also contain rays in di↵erent time clusters [52]), and

subpaths/rays within clusters (3GPP)/spatial lobes (NYUSIM), stemming from

LOS propagation, reflection, scattering, and di↵raction.

The signal variation is categorized into large-scale and small-scale fading [64,

65, 67]. Large-scale fading describes the average channel gain over a distance of

tens to a few hundred of wavelengths, and is important for coverage prediction

and interference analysis of a radio system. Shadow fading, which belongs to

large-scale fading and is caused by large terrain features between the BS and

mobile station (MS), is generally modeled as a Gaussian variable in dB. Small-scale

fading describes the signal variation over a short distance scale [62, 68, 69, 70], e.g.,

fractions of wavelengths. For instance, measurement results in [62] showed that

the small-scale spatial fading was very small over a 35.31-cm (⇠ 87 wavelengths)

linear track at 73 GHz with a 1 GHz bandwidth, with at most -4 dB to +2 dB
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Figure 2.4: An example wireless channel with a base station, a user, and obstructions
(buildings and a bus), where the transmitted signal is decomposed into several
clusters (defined jointly in the space and time domains) as defined in the 3GPP
channel model [66], or, spatial lobes as defined in the NYUSIM channel model [51]
(NYUSIM also defines time clusters, where a time cluster could contain rays in
di↵erent spatial lobes, and a spatial lobe could also contain rays in di↵erent time
clusters [52]), and subpaths/rays within clusters (3GPP)/spatial lobes (NYUSIM),
stemming from LOS propagation, reflection, scattering, and di↵raction.
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fading depth relative to the mean for an omnidirectional antenna, while the fading

depth for a directional RX antenna depends on the RX orientation in relation to

the environment and the TX [62]. Small-scale fading determines the performance

of air interface technologies. In the delay domain, root-mean-square (RMS) delay

spread is defined as the standard deviation in propagation time between multipath

components (MPCs), and large delay spread often induces strong inter-symbol

interference. RMS angular spread is defined as the standard deviation in the

angles between MPCs. It is found from the published literature [2, 52, 71, 72, 73]

that similar modeling philosophy can also be used for mmWave frequencies, as

introduced below.

2.2.1 Path Loss and Large-Scale Fading

Path loss is the reduction in power of a radio wave as it propagates through the

channel, which is defined as [67, 74]:

PL[dB] = 10log10
PT

PR
, (2.1)

where PT and PR are the transmitted and received power, respectively. In free

space, the received power is a function of distance and wavelength/frequency, also

known as Friis’ law [64, 67]:

PR(d,�) = PTGTGR

✓
�

4⇡d

◆2

, (2.2)

where GT and GR are the antenna gains at the TX and RX, respectively, � is the

wavelength, d3D is the spatial distance between the TX and RX. However, in real
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environments, there are many dielectric and conducting obstacles and path loss

is more severe than in free space, thus a lot of e↵ort has been devoted to field

measurements and path loss modeling. Several empirical path loss models have been

widely used for frequencies below 6 GHz, including the Hata model for 2G systems

[? ], ITU-R M. 1225 for 3G [75], and ITU-R M. 2135 for 4G [76], etc. Similarly, for

mmWave, numerous field measurements [54, 58, 59, 77, 78, 79, 80, 81] have been

carried out in the 28, 38, 60, 73, and 80 GHz bands. Two main types of path loss

models for mmWave channels, along with their corresponding shadow fading values,

have been proposed and used by researchers and standards bodies [50, 82], i.e., the

ABG model and the CI model, which are detailed in Section 6.1.2.

2.2.2 Small-Scale Fading

Small-scale fading is involved in the channel impulse response (CIR). Considering

a narrowband flat fading channel, the CIR can be described as:

h(t, ⌧) = V + g(t, ⌧), (2.3)

where V is a complex and deterministic component, which exists in the LOS case

with a strong and dominant path between the TX and RX. If assuming the multiple

received radio waves are wide-sense stationary uncorrelated scattering (WSSUS),

g(t, ⌧ ) is typically a complex zero-mean Gaussian random variable with its envelope

obeying the Rayleigh distribution. However, if there is a fixed LOS component, the

phase and quadrature components of the CIR are not zero-mean variables. For

such a composite channel, the amplitude obeys the Ricean distribution [83]. The

Ricean factor (also named K-factor) is the power ratio of the LOS component to
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that of the other components, e.g., scattered and di↵racted components, and it

indicates the severity of fading. When the K-factor decreases to zero, the amplitude

of the fading channel becomes the Rayleigh distribution. As the channel bandwidth

increases, the RX can resolve multiple paths according to their delays and the CIR

will change to:

h(t, ⌧) = V �(⌧ � ⌧0) +
NX

i=1

gi(t)�(⌧ � ⌧i), (2.4)

where gi(t) is a complex Gaussian variable with the excess delay ⌧i, �(·) is the Dirac

function and N is the number of resolvable delay bins. This tapped delay line

(TDL) model can describe the channel variation in delay dispersion. However, as the

channel bandwidth increases from 5 MHz to 20 MHz, even to 100 MHz, the delay

resolution is also enhanced significantly and more multipaths can be expected below

6 GHz. This makes the TDL model extremely complex and increases computational

complexity. In [84], a novel CIR model, known as the Saleh and Valenzuela (SV)

model, was proposed based upon the analysis of indoor measurements. In this model,

the MPCs are assumed to arrive in clusters, where the clusters and components

within a cluster form a Poisson arrival process with di↵erent rates. Then the CIR

is given by:

h(t, ⌧) =
NX

n=0

MX

m=0

an,m(t, ⌧)�(⌧ � ⌧n,m), (2.5)

where N denotes the number of clusters, M is the number of MPCs in a cluster,

an,m is the complex amplitude of the mth MPC within the nth cluster, and ⌧n,m is

the delay of the mth MPC in the nth cluster. Clusters are also defined and used in

3GPP/ITU/WINNER models, e.g., the spatial channel model (SCM). Furthermore,

in the SCM, directions of MPCs and antenna patterns are considered, and it

describes not only delay dispersion, but also angular dispersion, which consists of a
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sum of contributions from the MPCs [85]. For the nth cluster, the impulse response

can be written as follows:

hn(t, ⌧,�tx,�rx) =
MX

m=1

an,mFrx(�n,m,rx)Ftx(�n,m,tx)�(⌧ � ⌧n,m)�(�� �n,m,rx)�(�� �n,m,tx)

(2.6)

where an,m is the complex amplitude of the mth MPC within the nth cluster, Ftx

and Frx are the antenna patterns at the TX and RX, respectively, �n,m,rx and

�n,m,tx are the angle of arrival (AoA) and angle of departure (AoD) of this MPC,

respectively. For a LOS scenario, the impulse response consists of two parts, a

deterministic component, i.e., the LOS path, and a random component (often

composed of scattered components). The impulse response is expressed as:

hn(t, ⌧,�rx,�tx) =

r
1

K + 1
hn(t, ⌧,�rx,�tx) + �(n� 1)

r
K

1 +K
aLOSFtx(�LOS)Frx(�LOS)

⇥ exp(j2⇡��1(vecrrx,LOS · vecdrx))exp(j2⇡��1(vecrtx,LOS · vecdtx))

(2.7)

where K is the K-factor, vecrrx,LOS denotes the spherical unit vector corresponding

to the LOS angle at the RX, vecrtx,LOS denotes the spherical unit vector corre-

sponding to the LOS angle at the TX, vecdrx and vecdtx represent the location

vectors of the RX and TX antenna elements, respectively. Variables with subscript

LOS represent the parameters of the LOS path. This model assumes that the LOS

path appears in the first cluster.

The Geometry-based Stochastic Channel Model (GSCM) is another modeling

method (used in the COST modeling framework)[85], in which the geometric

position of scatterers is determined by a probability density function and ray tracing



30

is used to determine the actual double-directional impulse response. Furthermore,

large-scale parameters (e.g., path loss, shadow fading, K-factor, angular spread (AS)

and delay spread (DS)) and small-scale parameters (e.g., delays, cluster powers,

cross polarization ratios (XPRs), arrival and departure angles) are proposed to

describe the GSCM.

For 3D MIMO systems with NT TX antennas and NR RX antennas, the chan-

nel between the uth RX antenna and the sth TX antenna is characterized by

a complex coe�cient hu,s(⌧) in (2.8) [86], where (n,m) stands for the mth sub-

path/ray in the nth cluster, Pn,m represents the normalized received power of

subpath/ray m in cluster n such that
P

n

P
m Pn,m = 1, Frx,u,✓ and Frx,u,� are

the field patterns of RX antenna u in the direction of the spherical basis vectors

✓̂ and �̂ respectively, ✓n,m and �n,m denote the elevation and azimuth angles for

subpth/ray m in cluster n, respectively, Ftx,s,✓ and Ftx,s,� are the filed patterns of

TX antenna s in the direction of the spherical basis vectors ✓̂ and �̂, respectively,

n,m is the cross-polarization power ratio in linear scale, �✓✓
n,m,�

✓�
n,m,�

�✓
n,m,�

��
n,m

are random initial phases for subpath/ray m in cluster n for four di↵erent polar-

ization combinations (✓✓, ✓�,�✓,��), [exp(j 2⇡
�0
(Wtxrtx(✓n,m,ZoD,�n,m,AoD)))]s and

[exp(j 2⇡
�0
(Wrxrrx(✓n,m,ZoA,�n,m,AoA)))]u are the TX and RX array response vectors

evaluated at the TX antenna s and the RX antenna u, respectively, Wtx and Wrx

denote location matrices of the TX and RX antennas in 3D Cartesian coordinates,

rtx(✓n,m,ZoD,�n,m,AoD) and rrx(✓n,m,ZoA,�n,m,AoA) are the angular spherical unit vec-

tors of the TX and RX corresponding to subpath/ray m in cluster n, respectively,

�0 denotes the wavelength, and �n,m in the Doppler frequency. If polarization is not

considered, the 2⇥ 2 polarization matrix

"
exp(j�✓✓

n,m)
q
�1
n,mexp(j�

✓�
n,m)

q
�1
n,mexp(j�

�✓
n,m) exp(j���

n,m)

#
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hu,s(⌧) =
NX

n=1

MX

m=1

p
Pn,m

"
Frx,u,✓(✓n,m,ZoA,�n,m,AoA)
Frx,u,�(✓n,m,ZoA,�n,m,AoA)

#T

⇥
"

exp(j�✓✓
n,m)

q
�1
n,mexp(j�

✓�
n,m)q

�1
n,mexp(j�

�✓
n,m) exp(j���

n,m)

#"
Ftx,u,✓(✓n,m,ZoD,�n,m,AoD)
Ftx,u,�(✓n,m,ZoD,�n,m,AoD)

#

⇥

exp(j

2⇡

�0
(Wrxrrx(✓n,m,ZoA,�n,m,AoA)))

�

u

⇥

(exp(j

2⇡

�0
(Wtxrtx(✓n,m,ZoD,�n,m,AoD))))

H

�

s

�(⌧ � ⌧n,m)

(2.8)

is replaced by exp(j�n,m) and only vertically polarized filed patterns are applied.

In the 3GPP model [66], the number of clusters and the number of subpaths/rays

per cluster are fixed for a given scenario, whereas both numbers are statistical

and variable in certain regions in NYUSIM. For the 3GPP LOS channel model,

hu,s(⌧ ) is obtained by adding a LOS coe�cient to the non-line-of-sight (NLOS) CIR

and scaling both terms according to the Ricean K-factor [66]. In NYUSIM, the

LOS channel matrix is calculated in the same manner as the NLOS case but with

di↵erent parameters derived from measured data, both of which can be expressed

by (2.8) [52].

The channel impulse response matrix H(⌧) is then given by:

H(⌧) =

2

66666664

h1,1(⌧) h1,2(⌧) . . . h1,NT(⌧)

h2,1(⌧) h2,2(⌧) . . . h2,NT(⌧)

...
...

. . .
...

hNR,1(⌧) hNR,2(⌧) . . . hNR,NT(⌧)

3

77777775

Let p(⌧) denote a pulse-shaping function for TS-spaced signaling evaluated at ⌧
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seconds [87], then the delay-ds channel matrix, H(ds), is formulated as [87]:

H(ds) = H(⌧)p(dsTS � ⌧n,m) (2.9)

Assuming OFDM modulation which is used in 4G systems, where the RF bandwidth

is divided into K OFDM narrowband (e.g., 15 kHz for 4G LTE, but likely 75 GHz

for 5G pre-trial [6]) sub-carriers stacked in a wide band, the frequency-domain

channel response at sub-carrier kf (kf = 0, ..., Kf � 1) can be obtained from the

impulse response H(ds) as follows [87]:

H(kf) =
Ds�1X

ds=0

H(ds)e
�j2⇡dskf/Kf (2.10)

where H(kf) is the matrix frequency response at sub-carrier kf , Ds denotes the

number of delay bins, and H(ds) represents the channel matrix impulse response at

delay ds. Eq. (2.10) indicates that for a narrowband channel with a single carrier

frequency f , the frequency-domain channel response matrix is equivalent to [87]:

H(f) =
D

s

�1X

d
s

=0

H(ds) (2.11)

In what follows, H(f) will be denoted as H for simplicity. As 5G MIMO systems

will likely employ OFDM modulations similar to 4G systems but with larger sub-

carrier spacings [6], this technical report will focus on OFDM-like modulations

with narrowband (e.g., 15 kHz for 4G LTE and 75 kHz for 5G pre-trial [6]) flat-

fading sub-carriers. Note that the maximum omnidirectional RMS delay spread in

mmWave channels is on the order of 250 ns [52], such that the coherence bandwidth

is roughly 1/(250 ns) = 4 MHz [67], hence RF bandwidths smaller than 4 MHz can
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be considered as flat-fading. This narrowband flat-fading assumption is also used

in most of the literature works to be demonstrated later in this chapter.

For mmWave channels, special changes in channel model are needed to describe

the new characteristics, e.g., frequency dependency, varying cluster numbers and

high path loss. For example, new models have to consider the high path loss and

high penetration loss in mmWave propagation. The di↵erences between mmWave

models and microwave models are discussed below in detail.

2.3 MmWave and Microwave Model Di↵erences

Due to the increase in frequency, radio waves with high frequency have di↵erent

propagation characteristics compared to microwave [64]. For example, mmWaves

can not e�ciently penetrate and di↵ract around obstacles, e.g., cars, buildings and

people. This results in less di↵racting MPCs and high path loss. The following

subsections focus on several channel properties in mmWave bands and discuss new

requirements for channel models.

2.3.1 Frequency Dependence

MmWave channels have high free space path loss in the first meter of propagation

due to its frequency dependence [50], to be shown by Eq. (4.2). Furthermore,

frequency dependence on other channel parameters, e.g., delay spread and angular

spread, also need further investigation. In 3GPP TR 38.901 Release 14 [66], both

delay spread and angular spread are modeled as a function of frequency for the

channels (except for the rural macro (RMa) scenarios) above 6 GHz.
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2.3.2 Attenuation and Blockage

During propagation, mmWaves may be partially or totally absorbed by an absorbing

medium, which results in additional loss. Thus, rain attenuation and atmospheric

attenuation [88, 89, 90, 91] should be considered in mmWave systems, although this

is not a concerned problem in microwave systems. Additionally, mmWave systems

are much more sensitive to blockage by obstacles. For example, the path loss

increases with the propagation distance. In [92], it was found that outdoor tinted

glass had a penetration loss of 40.1 dB at 28 GHz, and three interior walls of an

o�ce building had a penetration loss of 45.1 dB, with a distance of 11.39 m between

the TX and RX. Table 6.5 shows the penetration loss of di↵erent materials. If

stationary or moving objects stand between the TX and RX, channel characteristics

will be dramatically changed when the signal is blocked, especially for mmWave

channels [93]. The shadowing caused by these objects is important for the link

budget and the time variance of the channel. Furthermore, such dynamic blocking

is perhaps important to capture in evaluations of technologies, e.g., beam-finding

and beam-tracking capabilities.

2.3.3 Channel Sparsity

It is usually claimed that mmWave channels are sparse in the angle and delay

domains [2, 71]. For example, in [52], only up to five spatial lobes are found in

dense-urban NLOS environments, and the delay/angle spreading within each cluster

is relatively small. However, more experimental verifications of this are needed.

Nonetheless, a lower bound on the channel sparsity can still be established based

on existing measurements, and in many environments the percentage of delay/angle
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bins with significant energy is rather low while it is higher at centimeter-wave

frequencies.

2.3.4 Large Bandwidth and Large Antenna Array

To meet the demand of future mobile data growth [94], bandwidths on the order of

1 GHz are needed. In mmWave bands, there are large bandwidths available (see

Table 1.1). On the other hand, smaller wavelengths make large antenna arrays

feasible [95]. Thus, the channel model should consider high resolution in both delay

and angular domains. In order to model this e↵ect, the o↵set angles and relative

delay within a cluster should be modeled as variable rather than constant. Various

types of antenna arrays, such as the uniform linear array (ULA), uniform rectangle

array (URA), and uniform cylinder array (UCA), are being considered. In [96], lens

antenna arrays were proposed to enable mmWave MIMO communications. Besides,

compared to uniform planar arrays (UPAs), lens antenna arrays can significantly

reduce the signal processing complexity and RF chain cost without performance

degradation.

2.3.5 Spatial Consistency

Spatial consistency is identified as an important feature for 5G channel models [97].

The spatial consistency of a channel means that the channel evolves smoothly

without discontinuities when the TX and/or RX moves or turns. It also means

that channel characteristics in closely located users are highly correlated. Spatial

consistency covers various aspects, e.g., large-scale parameters and small-scale

parameters of delays, AoAs and AoDs, outdoor/indoor state, and LOS/NLOS

state. In [66], a spatial consistency procedure is used for both cluster-specific and
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ray-specific random variables to be spatially consistent. For example, cluster delays

⌧n = ⌧maxXn, where ⌧max is the maximum delay (2 · 10µlgDS

+�
lgDS), Xn is a spatially

uniform random variable within (0,1), µlgDS and �lgDS are the mean value and

standard deviation of RMS DS (see Tables 6.7 and 6.8), respectively.

2.3.6 Stationarity Regions

The study of channel stationarity plays an important role in channel modeling

and estimation, since stationarity has to be assumed in order to obtain accurate

estimates and reproduce channel parameters. Measurements at 2 GHz to 30 GHz

have indicated that the spatial stationarity regions of mmWave bands (less than 0.09

m or so) are much smaller than those at microwave frequencies (around 0.6 m) for

an allowance of similarity level of 0.6 [98]. Furthermore, recent field measurements

have shown very sharp spatial decorrelation over small distance movements of just

a few tens of wavelengths at mmWave frequencies [62], yet it is noteworthy that the

orientation of directional antennas with respect to the surrounding environment

can impact the stationarity and correlation distances, as demonstrated in [62].

Additionally, the average received power of wideband 73 GHz signals can change

by 25 dB as the mobile RX transitioned around a building corner from NLOS to

LOS in a UMi scenario [62]. Therefore, stationarity regions need to be carefully

characterized in 5G channel modeling that incorporates mmWave bands.

2.3.7 Random Cluster Numbers

In the existing channel model for microwave bands, the number of clusters is a

constant [76]. For the mmWave bands, this assumption may not be reasonable.

According to recent literature, cluster/time-cluster numbers are small and random,
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and are well-modeled by a Poisson distribution [52, 71]. In [99], the mean cluster

number is 12 while it is less than 4 in [71] (Note that the definition of cluster is

di↵erent in these two references). By making the cluster numbers random, some

channel properties, e.g., capacity, will change correspondingly.

2.4 Review of Channel Models and Simulators

The construction and implementation of channel models are becoming increasingly

important for wireless communication system design, and computer-aided design

tools such as channel simulators are essential for performance evaluation of commu-

nications systems and for simulating network deployments, before moving forward

with new technologies.

There are several channel simulators that have been developed and used by

previous researchers [100, 101, 102, 103, 104, 105, 106]. For instance, Smith [107]

built simulation software for indoor and outdoor propagation channels by making

use of the two-ray Rayleigh fading channel model developed by Clarke [108].

Fraunhofer Heinrich Hertz Institute developed a 3-D multi-cell channel model

that can accurately predict the performance for an urban macrocell setup with

commercial high-gain antennas, upon which a channel simulator has been built

that supports features such as time evolution, scenario transitions, and so on [101].

A channel simulator for indoor scenarios was developed for machine-to-machine

applications [102]. Rappaport and Seidel developed a measurement-based statistical

indoor channel model named SIRCIM (Simulation of Indoor Radio Channel Impulse

Response Models) for the early development of WiFi [103] and the corresponding

simulation software to generate channel impulse responses (CIRs) for indoor channels
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operating from 10 MHz to 60 GHz. A similar open-source RF propagation simulator

is SMRCIM (Simulation of Mobile Radio Channel Impulse Response Models), that

was useful for simulating outdoor channels [104, 105]. Another software simulation

program, called BERSIM [106], developed by Fung et al., was able to simulate

mobile radio communication links and calculate average bit error rate (BER) and

bit-by-bit error patterns, that was useful for evaluating link quality in real time

without requiring any radio frequency hardware. More detailed descriptions and

comparisons of several popular channels models are provided below.

2.4.1 SIRCIM Channel Model and Simulator

The SIRCIM model, which is a statistical radio channel impulse response model,

was developed based on propagation measurements in indoor factory and open plan

o�ce scenarios at 1.3 GHz [103] in both LOS and obstructed (OBS) topographies.

The model can describe the distribution of the number of multipath components in

a particular multipath delay profile, the distribution of the number of multipath

components received within a local area, the probability of receiving each multipath

component at a particular excess delay, the distributions of the amplitudes, phases,

and time delays of multipath components received within a local area, and the

probability of receiving a multipath component at small scale locations. The

computer simulator SIRCIM, which is built based upon the aforementioned channel

impulse response model, is able to recreate multipath power delay profiles (PDPs)

and continuous-wave (CW) fading profiles that are representative of measured

results. SIRCIM allows the prediction of arriving signals at a receiver from one

(or many) transmitters by performing convolutions of transmitted signals with

simulated channels.
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2.4.2 SMRCIM Channel Model and Simulator

The SMRCIM channel model and simulator are aimed for outdoor environments

including urban microcell (UMi) and suburban scenarios [104], which can generate

realistic channels based on extensive measured data. The software package SMRCIM

belongs to Wireless Valley Communications, Inc. SMRCIM accurately models

various types of multipath, including flat-fading, small delay spreads, and very large

delay spreads, which are usually encountered in an urban cellular scenario, and it also

models the spatial correlation in small-aperture two-element arrays [104]. SMRCIM

has been utilized to generate empirically derived random multipath channel for

examining the performance of various techniques in CDMA systems [109].

2.4.3 QuaDRiGa Channel Model and Simulator

QuaDRiGa is developed at the Fraunhofer Heinrich Hertz Institute to enable the

modeling of MIMO radio channels for specific network configurations, such as

indoor, satellite or heterogeneous configurations. The QuaDRiGa channel model

is geometry-based stochastic channel model, which collects features created in

SCM(e) and WINNER channel models along with novel modeling approaches which

provide features to enable quasi-deterministic multi-link tracking of users (receiver)

movements in changing environments. It supports 3D propagation, 3D antenna

patterns, time evolving channel traces, scenario transitions and variable terminal

speeds. In the QuaDRiGa channel model, it is assumed that the base stations

are fixed, the mobile terminals are moving, and scattering clusters are fixed as

well and the time evolution of the radio channel is deterministic. QuaDRiGa also

supports massive MIMO modeling enabled through a new multi-bounce scattering
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approach and spherical wave propagation. It will be continuously extended with

features required by 5G and frequencies beyond 6 GHz. The QuaDRiGa channel

model is supported by data from extensive channel measurement campaigns at

10/28/43/60/82 GHz performed by the same group.

2.4.4 COST 2100 Channel Model

The COST 2100 channel model [110] is a geometry-based stochastic channel model

for MIMO systems that is built on the framework of the earlier COST 259 and

273 models [111], which covers aspects such as multi-user, multi-cellular, and

cooperative operation in MIMO systems. The most distinguishing feature of the

COST 2100 channel model lies in that it is a cluster-based model which is not

constrained by large-scale parameters (LSPs), and the environment is described

independent of the mobile station location. Specifically, the COST 2100 channel

model defines a large number of clusters with consistent stochastic parameters

throughout the simulation environment according to the base station location, as

well as the mobile station location, and determining the scattering from the visible

clusters at each channel instance, and synthesizes the LSPs based on the cluster

scattering. There are two key modeling concepts: visibility region and cluster [110].

A visibility region denotes a circular region given a fixed size in the simulation area,

which determines the visibility of only one cluster. When the mobile station enters

a visibility region, the related cluster smoothly increases its visibility. A cluster

is represented by an ellipsoid in space as viewed from the base station and from

the mobile station, which is characterized with specific positions and orientations

toward the base station and mobile station [110].
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2.4.5 METIS Channel Models

The METIS channel models consist of a map-based model, a stochastic model,

and a hybrid model as a combination of both [112]. The map-based model is

based on ray tracing using a simplified 3D geometric description of the propagation

environment and thus inherently accounts for major propagation mechanisms

such as di↵raction, specular reflection, di↵use scattering, blocking, etc. Channel

realizations are generated with an implementation of the map-based model and

are compared to the measurement results in some selected scenarios by analysing

propagation parameter statistics [112]. The stochastic model extends the geometry

based stochastic channel model (GSCM), which has been further developed from

WINNER/3GPP, in order to provide multi-dimensional shadowing maps with low

complexity, mmWave parameters, direct sampling of the power angular spectrum,

and frequency dependent path loss models [112]. The hybrid model provides a

flexible and scalable channel modelling framework that tries to ibalance between

the simulation complexity and realism. The METIS channel models are intended

for the frequency range from sub-1 GHz to 86 GHz and beyond, bandwidths greater

than 500 MHz, massive MIMO, extremely large arrays even beyond stationarity

interval, direct device-to-device (D2D), machine-to-machine (M2M) and vehicular-

to-vehicular (V2V) communications, spatial consistency between topologies and

between users (e.g., birth-death process and/or visibility regions for clusters).

2.4.6 MiWEBA Channel Model

The MiWEBA channel model is a quasi-deterministic channel model aimed for

millimeter-wave outdoor mobile access links of small cell base stations with a
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typical cell radius of several hundred meters [113]. The MiWEBA channel model

is developed based on a measurement campaign conducted at 60 GHz with an

RF bandwidth of 250 MHz on a plaza in downtown Berlin, Germany. The quasi-

deterministic channel model is a combination of a geometry-based method for a

limited number of multipath components and a stochastic approach, and builds

on the representation of the mmWave channel impulse response comprised of a

few quasi-deterministic strong rays, a number of relatively weak random rays

originating from the static surfaces reflections, and flashing rays originating from

moving cars, buses, and other dynamic objects reflections [113]. The key benefit of

the quasi-deterministic modeling approach compared to pure statistical models is

its inherent support for spatial consistency, since it takes into account the positions

of the transmitter and receiver. In the MiWEBA channel model, the propagation

loss is calculated by the Friis equation, taking additional losses from the oxygen

absorption into consideration. The parameters of reflected rays are calculated based

upon the Fresnel equations, plus additional losses due to surface roughness [113].

The quasi-deterministic modeling approach requires a precise description of the

scenario, thus it is only applicable to the specific scenario investigated and cannot

be extended to other scenarios.

2.4.7 WINNER II Channel Model

The WINNER family is a set of geometry-based stochastic channel models. The

channel parameters are determined stochastically, based on statistical distributions

extracted from channel measurements. The WINNER II channel model is applicable

for link-level and system-level simulations of local area, metropolitan area, and

wide area wireless communication systems [114]. The channel model is antenna
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independent, i.e., di↵erent antenna configurations and di↵erent element patterns

can be inserted. The channel parameters are determined stochastically, based on

statistical distributions extracted from channel measurement. Channel realizations

are generated by summing contributions of rays with specific channel parameters

like delay, power, angle-of-arrival and angle-of-departure. The channel model is

applicable to any wireless system operating in 2 - 6 GHz frequency range with

up to 100 MHz RF bandwidth. As the WINNER II channel model is devised for

cellular communication between a fixed base station and a mobile user terminal, it

is not adequate for situations where both link ends can be at arbitrary locations,

or even ultra-dense deployment, where closely located base stations see partly the

same environment. Another known defect of the WINNER approach is the lack of

support for spherical waves and consistent modeling of closely located users. In

particular, it yields poor realism for cases that need high spatial resolution such as

massive MIMO and pencil beamforming.

2.4.8 ITU-R IMT-Advanced Channel Model

The ITU working party 5D has recently been developing a recommendation on the

framework and objectives of the future development of IMT for 2020 and beyond.

The ITU-R IMT-Advanced channel model is a geometry-based stochastic channel

model [115], which is known as a double directional channel model. The modeling

methodologies of the ITU-R IMT-Advanced channel model are similar to those in

the 3GPP channel model to be described in the following subsection.
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2.4.9 3GPP Channel Model

The 3GPP channel model is also a geometry-based stochastic spatial channel

model developed based on the 2D channel models from ITU and WINNER II,

and has been extended to 3D, which is also inspired by the extension from 2D

to 3D channel model published as part of WINNERII/WINNER+ [116]. The

channel model is suitable for link-level and system-level simulations to estimate

realistic channels between a base station, and one or more UEs, that account for

empirical correlations between large-scale parameters. The large-scale parameters

denote the omnidirectional RMS delay spread, the azimuth spread, the shadow

fading, and the Rician K-factor (for LOS channels), and were shown to exhibit

significant correlation for a given base-to-mobile link. It is assumed that each

multipath component can be represented by a planar wavefront, characterized by

small-scale parameters such as path delays, powers, AoAs, and AoDs, extracted

from measurement-based statistical distributions. In the 3GPP channel model,

a cluster is defined as a group of multipath components traveling close in both

the temporal and spatial domains, and a ray is defined as a multipath component

within a cluster. A joint delay-angle clustering approach is adopted in the 3GPP

channel model, such that a group of traveling multipaths must depart and arrive

from a unique AoD-AoA angle combination centered around a mean propagation

delay. The 3GPP TR 38.901 Release 14 channel model [66] is targeted for carrier

frequency range from 0.5 GHz to 100 GHz and large channel bandwidths (up to

10% of the carrier frequency), and takes into account mmWave propagation aspects

such as blocking and atmosphere attenuation. The channel model is also aimed

to accommodate user terminal mobility with mobile speeds up to 500 km/h, and

develop a methodology considering that model extensions to D2D and V2V may be
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developed in future work. One of the most prominent blemish of the 3GPP channel

model is the unrealistically large number of clusters, which might be proper to

model sub-6 GHz channels, but is not suitable for modeling mmWave channels that

exhibit sparsity [52, 54, 117].

2.4.10 Statistical Spatial Channel Model by NYU

NYU WIRELESS conducted mmWave measurements from 2012 through 2017 [2, 54,

58, 59], having acquired a total of over 1 Terabytes of data, at frequencies from 28

to 73 GHz in various outdoor environments in UMi, UMa, and RMa environments.

as presented in Section 2.1. A 3D SSCM [52] has been developed based upon

the measured data, which is comprised of similar modeling steps to the 3GPP

channel model [66] such as LOS probability model, large-scale path loss model,

large-scale parameters, and small-scale parameters, but with di↵erent modeling

approaches and/or parameters in each step. For instance, for the large-scale path

loss model, the CI model is utilized that has solid physical basis and provides

lower computational complexity, higher prediction accuracy and higher parameter

stability than the ABG model, as demonstrated in [50] and Chapter 4 of this

technical report. For multipath clustering, the time-cluster-spatial-lobe (TCSL)

clustering approach is proposed that extends the existing ultra-high frequency

(UHF) 3GPP model through the additional model parameters of directional RMS

lobe angular spreads for spatial lobes [52].

In the SSCM, TCs are composed of multipath components traveling close in

time, and arriving from potentially di↵erent directions in a short propagation time

window. SLs denote primary directions of departure (or arrival) where energy

arrives over several hundred nanoseconds [52]. Per the definitions given above,
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a TC contains multipath components traveling close in time, but may arrive

from di↵erent SL angular directions, such that the temporal and spatial statistics

are decoupled and can be recovered separately. Similarly, an SL may contain

many multipath components arriving (or departing) in a space (angular cluster)

but with di↵erent time delays. This distinguishing feature is obtained from real-

world propagation measurements [2] which have shown that multipath components

belonging to the same TC can arrive at distinct spatial pointing angles and that

energy arriving or departing in a particular pointing direction can span hundreds or

thousands of nanoseconds in propagation delay, detectable due to high-gain steerable

directional antennas. The TCSL clustering scheme models the directionality of

mmWave channels via separate TCs that have time-delay statistics, and via SLs

that represent the strongest directions of multipath arrival and departure [52]. The

TCSL framework is physically based (e.g., it uses a fixed inter-cluster void interval

to represent the minimum propagation time between possible obstructions causing

reflection, scattering, or di↵raction), and is derived from field observations based on

about 1 Terabytes of measured data over many years, and can be used to extract

TC and SL statistics for any measurement or ray-tracing data sets [52]. Fig. 2.5

illustrates an omnidirectional PDP, where there are four multipath taps which are

grouped into two time clusters with exponentially decaying amplitudes. The four

multipath taps are then grouped into two AOA spatial lobes, as shown in Fig. 2.6.
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Figure 2.5: Example of an omnidirectional PDP with four multipath taps [52].

Figure 2.6: Example of an AOA power spectrum with four multipath taps [52].
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2.5 Review of Channel Estimation Based on Com-

pressed Sensing

Channel modeling is an important and fundamental step towards wireless system

design, after which communication infrastructures will be built and various signal

transmission and reception techniques will be utilized at both communication link

ends, in which the knowledge of actual channels plays a key role in the design

of signal processing strategies. Channel state information (CSI) is needed to

design precoding and combining procedures at transmitters and receivers, and

it can be obtained through channel estimation. Conventional MIMO channel

estimation methods may not be applicable in mmWave systems because of the

substantially greater number of antennas, hence new channel estimation methods

are required [118]. Due to the sparsity feature of mmWave channels observed

in [2, 52], which means majority of the resolvable delay/angular bins do not contain

MPCs with su�cient electromagnetic energy caused by a small number of spatial

lobes [52, 119], compressed sensing (CS) techniques [120] can be leveraged to

e↵ectively estimate mmWave channels [121, 122, 123]. Adaptive CS, as a branch of

CS, yields better performance at low signal-to-noise ratios (SNRs) compared to

standard CS techniques, and low SNRs are typical for mmWave systems before

implementing beamforming gain [119]. Adaptive CS algorithms for mmWave

antenna arrays were derived in [119] to estimate channel parameters for both

single-path and multipath scenarios, and it was shown that the proposed channel

estimation approaches could achieve comparable precoding gains compared with

exhaustive training algorithms. Additionally, Destino et al. proposed an adaptive-

least absolute shrinkage and selection operator (A-LASSO) algorithm to estimate
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sparse massive MIMO channels [124]. In [125], reweighted l1 minimization was

employed to realize sparsity enhancement based on basis pursuit denoising. The

authors of [126] demonstrated a CS-based channel estimation algorithm for mmWave

massive MIMO channels in ultra-dense networks, in conjunction with non-orthogonal

pilots transmitted by small-cell base stations.

A channel estimation algorithm was proposed in [127] for a frequency-division

duplexing (FDD) multi-user (MU) massive MIMO system using the structured

compressed sensing theory, which took advantage of the common sparsity and

private sparsity architecture of the channel matrix in an MU massive MIMO system.

A structured joint subspace matching pursuit (SJSMP) algorithm was proposed to

estimate channels jointly with limited pilot at the base station [127]. The authors

of [128] employed the subspace pursuit, orthogonal matching pursuit (OMP), and

compressed sampling matching pursuit (CoSaMP) techniques in conjunction with

minimum mean square error (MMSE) and least mean square (LMS) approaches to

estimate the channel coe�cients for a MIMO-OFDM (orthogonal frequency-division

multiplexing) system. Simulation results showed that the proposed method was

able to reduce the normalized mean square error versus SNR significantly when

compared with the existing subspace pursuit, OMP, and CoSaMP combined with

the least square method, and that CoSaMP combined with LMS provided better

performance than the subspace pursuit and OMP with LMS with less computational

complexity [128].

Marzi et al. investigated a compressive structure to estimate and track sparse

spatial channels in the downlink in mmWave picocellular networks at 60 GHz [129],

where compressive beacons were sent with pseudo-random phase settings at the base

station antenna array, and compressively processed using pseudo-random phase



50

settings at the mobile array, which is compatible with coarse phase-only control

and RF beamforming, and allows scaling to a large number of antenna elements

independent of channel reciprocity [129].

In [130], a CS-based adaptive channel estimation and feedback scheme was

proposed for FDD-based massive MIMO systems, which adapts non-orthogonal

pilot design to reliably estimate and feed back the downlink CSI with reduced

overhead using the spatially channel sparsity. Moreover, a distributed sparsity

adaptive matching pursuit was proposed for jointly estimating the channels for

multiple sub-carriers [130], which was able to acquire the high-dimensional CSI

from a small number of non-orthogonal pilots.

Invoking the CS techniques, the authors of [131] devised a novel channel co-

variance estimation scheme for analog/digital hybrid architecture for time-division

duplexing (TDD) mmWave single-user (SU) MIMO systems, where the mobile

station has a single antenna, and the covariance was directly estimated via a

one-step approach without the need to estimate the channel explicitly. Both the

sparsity of mmWave channels and the Hermitian property of covariance matrices

were utilized, and a time-varying analog combining matrix at the receiver was

employed to e↵ectively extend the number of measurements [131].

Low-resolution ADCs can significantly reduce the power consumption in mmWave

systems, thus they are of special interest in mmWave MIMO research [132, 133, 134].

In [132], channel estimation algorithms were developed for mmWave MIMO systems

with one-bit ADCs and all digital combining utilized at the receiver, in which the

estimation problem was formulated as a one-bit CS problem. A modified expectation-

maximization scheme was proposed which exploits the sparsity and exhibits better

performance compared with the conventional expectation-maximization approach.
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Furthermore, a second algorithm named generalized approximate message passing

(GAMP) was applied to solve the optimization problem [132], which is computa-

tionally e�cient and can reduce the mean squared error in the low and moderate

SNR ranges that are typical in mmWave systems before carrying out beamforming.

One limitation of the algorithm in [132] is the assumption that each element in the

virtual channel obeys i.i.d. Bernoulii Gaussian distribution, otherwise there will be

”leakage” such that each path is not associated with a single entry in the virtual

channel. Besides, each path has an angular spread hence probably correspond to

several adjacent elements [132]. The above issues may be solved by making the

virtual channel sparse through a windowing scheme [132, 135].

In order to reduce power consumption in mmWave MIMO systems, hybrid

beamforming architectures have been widely considered that will be detailed in

Section 2.6, as well as low-resolution ADCs. To this end, a channel estimation

method was proposed in [133] for such type of structures, where hybrid beamforming

architectures were used at both the transmitter and receiver, and low-resolution

ADCs that coarsely quantize the in-phase and quadrature components with q (q  3)

quantization bits were adopted at the receiver, which was called the mix hybrid-

low resolution MIMO architecture [133]. In such a system, the received signal

su↵ers from two compression stages: (i) the analog processing and the reduced

number of RF chains, and (ii) signal quantization by the low-resolution ADCs.

Accordingly, the authors of [133] proposed a compressive channel estimator which

exploits the sparsity of mmWave channels to compensate for the information loss

intrinsic to the aforementioned structure. A modified expectation-maximization

algorithm was proposed that combines both MMSE estimation of the receieved

signal before quantization and the OMP to recover the sparse channel vector
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iteratively. Simulation results show that utilizing no more than three quantization

bits does not reduce the mean square error substantially [133].

Huang et al. proposed a joint channel estimation and beamforming strategy

for broadband mmWave cellular systems in [136], in which the sparse mmWave

channel was estimated utilizing a low-complexity CS-based estimation algorithm.

The computational complexity of the proposed algorithm was reduced by avoiding

matrix inverse and singular value decomposition but using multiplication opera-

tions. Considering practical hardware constraints for mmWave structures, finite

phase control with limited quantization bits for analog beamforming was applied.

Simulation results show that the proposed strategy leads to only 2 dB to 3 dB loss

compared to the perfect CSI case [136].

A low-rank spatial channel estimation scheme was proposed in [137] for mmWave

MIMO systems, where the long-term receive-side spatial channel covariance ma-

trix was estimated from a series of power measurements conducted in di↵erent

angular directions. The maximum likelihood estimation scheme was employed to

estimate the covariance matrix, which reduces to a non-negative matrix comple-

tion problem [137]. Thanks to the sparse/low-rank nature of mmWave channels

with respect to the number of antenna elements, the non-negative feature of the

covariance matrix significantly reduces the number of measurements. Specifically,

a simple iterative soft thresholding algorithm (ISTA) approach was adopted to

estimate the covariance matrix, following which a second algorithm that provides

further improvements by exploiting the directional nature of the covariance using a

component-wise gradient descent was proposed [137]. Simulation results unravel

that the proposed algorithms converge relatively fast and can provide good channel

estimates with significantly less number of measurements than unknowns. The
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authors of [137] presented channel estimation methods for analog beamforming and

hybrid beamforming, yet there is an increasing interest in fully digital architectures,

especially using low-resolution ADCs. Covariance estimation in low-resolution digi-

tal channels would require di↵erent strategies in [137] and would be an interesting

research topic for future work.

In [138], an asymmetric channel estimation method combining an exhaustive

beam training at the receiver for AoAs and a CS-based scheme for the transmit

beam training for AoDs was proposed for MU-MIMO mmWave systems, which

makes use of the asymmetric number of antenna elements at the base station and

mobile stations. In the proposed channel estimation strategy, the best receive beam

was first found using an exhaustive search since the overhead for exhaustive receive

beam search is a↵ordable due to a small number of antenna elements at the user in

general [138]. Then a CS-based scheme was employed to train the base station beam

while the receive beam was fixed as selected in the first stage. Simulation results

show that by performing beamforming at the receiver side while CS is applied at

the transmitter side, the proposed algorithm yields better estimation performance

compared to the conventional CS-based approach in the low SNR regime [138].

As a modified algorithm to the single-path estimation technique presented

in [119], an enhanced version of the single-path estimation algorithm was proposed

in [139], which utilized the property of the diagonally dominant matrix, rather

than the received signal strength as in [119], as the criterion to detect the single

path. The disadvantage of the received signal strength-based algorithm in [119]

is that the received signal is usually submerged in the noise before conducting

the beamforming, which indicates that the selected maximum power is not always

associated with the desired signal [139]. Simulation results show that the proposed
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modification enhances the single-path channel estimation performance in terms

of the spectral e�ciency [139]. However, the achievable spectral e�ciency yielded

by the proposed algorithm still has a large gap compared to the perfect channel

knowledge case. One major limitation of the introduced method is that it only

applies to single-path channels, not multipath channels.

In [140], a pilot design was proposed to facilitate fast LASSO-based sparse

channel estimation that exploits the inherent delay- and angle-domain sparsity of

mmWave channels, where aperture shaping was used to ensure a sparse virtual-

domain MIMO channel representation [141]. It was shown by the numerical

results that the proposed pilot-aided designs can approximate the spectral e�ciency

rendered by the perfect-CSI capacity-optimal system [140]. The strategy presented

in [140] can be extended to continuous aperture phased (CAP) MIMO systems and

digital beamforming using one-bit ADCs.

Based on the Least Square Estimation (LSE) and Sparse Message Passing

(SMP) algorithm, the authors of [142] proposed a channel estimation strategy

that leverages the intrinsic sparse feature of mmWave channels. The SMP was

employed to detect the exact location of non-zero entries of the channel vector,

and the LSE was utilized to estimate its value at each iteration. Furthermore,

the authors analyzed the Cramer-Rao Lower Bound (CRLB) of the proposed

algorithm. An intermediate virtual channel representation was used in [142] due

to its ability to capture the essence of physical modeling and to render simple

geometric interpretation of the scattering environment [141, 142]. Numerical

simulations reveal that the proposed algorithm yields better performance compared

to the traditional LSE estimator and existing sparse estimators such as the LASSO

approach. Moreover, only four iterations were needed to achieve its CRLB [142].
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Nevertheless, the presented algorithm has a high computational complexity owning

to matrix inversion operations in coarse and fine estimation stages. Another aspect

to improve is to relax the assumption that the number of non-zero entries in the

virtual channel vector is exactly equal to the number of paths [142].

2.6 Review of Beamforming for mmWave MIMO

Systems

The use of mmWave bands opens up the possibility of using large-scale antenna

arrays where hundreds of (if not more) antennas are used. The antenna elements

can be arranged in a linear array or a full-dimensional (i.e., with both elevation and

azimuth angle resolution capabilities) array. These multi-element antenna arrays

will provide spatial multiplexing gain but it is not necessary that an array type in

one morphology is best for another. For example, some areas may require elevation

beamforming (narrow beams in the elevation) and may need more antennas along

the zenith axis as compared to other areas where beamforming in the azimuth may

require more antennas in the azimuth. Antenna architectures are also influenced

by the horizontal and vertical angle spreads in a multipath channel. The antennas

likely to be used are active antennas i.e. the power amplifiers, and bulk of the

signal processing hardware are at the backplane of the antennas. Therefore, the

number of antenna elements (dependent upon channel model) will also have an

impact on power consumption, energy e�ciency, hardware complexity, etc [143].

Beamforming is a signal processing technique that focuses the signal onto desired

directions by adjusting the phases and/or amplitudes for each antenna element [144].

It is necessary to conduct beamforming, especially in mmWave channels that gen-
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erally experience high free space path loss in the first meter, so as to provide

beamforming gain which can improve coverage and support multiple users. Three

types of beamforming have been proposed and studied in the literature: analog

beamforming [145], digital beamforming, and analog/digital hybrid beamform-

ing [117, 118, 119, 146, 147, 148, 149, 150, 151, 152], as depicted in Fig. 2.7. For

analog beamforming, a single RF chain is connected to all antenna elements. The

main drawback of analog beamforming is the huge power consumption of analog

phase shifters. For digital beamforming, multiple data streams are transmitted, and

the number of data streams cannot exceed the smaller of the number of TX and

RX antenna elements. Stream separation is done via precoding techniques such as

zero-forcing (ZF) and regularized ZF (RZF) [153]. The spectral e�ciency achieved

by digital beamforming is the highest among the three beamforming structures,

where the optimal precoder and decoder consist of the first NS columns of V and U,

respectively, with NS denoting the number of data streams, V and U representing

unitary matrices derived from the channel’s singular value decomposition (SVD),

i.e., H = U⌃VH . Digital beamforming, however, requires a complete RF chain be-

hind each antenna element, which entails high complexity and cost when the antenna

number is large. HBF, as illustrated in Fig. 2.7(c), is realized via low-dimensional

digital baseband processing combined with analog RF processing usually enable by

phase shifters. In HBF, the number of RF chains is often much less than the number

of TX/RX antenna elements, which is especially reasonable for mmWave channels

as the channel is sparse hence a small number of RF chains can already exploit

the limited number of spatial lobes, so that HBF spectrum e�ciency approaches

digital spectrum e�ciency [117]. Fig. 2.8 illustrates the beam patterns generated

by a 256-element uniform rectangular array in an example channel realization with
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(a) Analog beamforming (b) Digital beamforming

(c) Hybrid beamforming

Figure 2.7: Block diagrams of beamforming architectures at a BS for a downlink
transmission, where structures (a), (b), and (c) represent the analog beamforming,
digital beamforming, and hybrid beamforming structures, respectively. NBS, NS,
and NRF,BS denote the numebr of BS antenna elements, the number of data streams,
and the number of BS RF chains, respectively.

the NYUSIM channel model [51] using the (a) analog beam steering vector in

the channel’s dominant physical direction, (b) optimal digital precoding vector,

and (c) hybrid precoding vector with four RF chains produced using Algorithms

1 in [117]. The hybrid precoding results in beam patterns that closely resemble the

patterns generated by optimal digital precoding, and this beam pattern similarity

will ultimately lead to similar spectral e�ciency [117].
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(a) Analog Precoding (b) Digital Precoding

(c) Hybrid Precoding

Figure 2.8: Beam pattern generated by a 256-element uniform rectangular array
in an example channel realization with the NYUSIM channel model [51] using
the (a) analog beam steering vector in the channel’s dominant physical direction,
(b) optimal digital precoding vector, and (c) hybrid precoding vector with four
RF chains produced using Algorithms 1 in [117]. The hybrid precoding results
in beam patterns that closely resemble the patterns generated by optimal digital
precoding, and this beam pattern similarity will ultimately lead to similar spectral
e�ciency [117].
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2.6.1 Multi-User Digital Beamforming

The optimal downlink digital precoding method that achieves the capacity in MIMO

broadcast channels is known to be dirty paper coding (DPC) [154], a multi-user

precoding scheme whose fundamental approach is to cancel out interference via

precoding at the transmitter using perfect CSI and complete knowledge of the

signals to be sent. DPC, however, is a nonlinear precoding strategy and is di�cult

to implement in practice due to high computational complexity. As an alternative,

linear precoding approaches have lower computational burden and can sometimes

yield near-optimal performance [155].

2.6.1.1 Single-Antenna Users

In this scenario, a mobile UE has only one antenna element. There are several

popular linear digital signal processing techniques used in MIMO systems: matched

filtering (MF) transmission/reception (also known as maximum ratio transmission

(MRT) transmission and/or maximum ratio combining (MRC), or conjugate beam-

forming), ZF [156], RZF [156], and signal-to-leakage-plus-noise ratio (SLNR)-based

beamforming scheme [157].

MF aims to maximize the signal power on each stream transmitted to or from

the terminals, without taking into account the e↵ects of multi-user interference.

This is realized by multiplying the transmitted/received signals by the conjugate

channel responses. MF operates poorly in interference-limited scenarios since it

neglects inter-user interference. In contrast to MF, ZF aims to null the inter-user

interference by projecting each data stream onto the orthogonal complement of the

inter-user interference. Mathematically, the ZF matrix is the pseudo-inverse of the

composite instantaneous small-scale fading channel matrix. One disadvantage of ZF
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is that it ignores the e↵ect of additive Gaussian noise, thus yields poor performance

under noise-limited conditions. As an enhanced version of ZF, RZF considers both

interference and additive Gaussian noise, which can overcome noise inflation in the

low SNR regime [156]. The precoding matrix F for three signal processing schemes

introduced above can be mathematically expressed as:

F =

8
>>>>>><

>>>>>>:

HH , for MF

HH(HHH)�1, for ZF

HH(HHH + ⇠N0I)�1, for RZF

(2.12)

where H denotes the downlink channel matrix, ⇠ is a regularization factor in RZF,

and N0 represents the noise variance. When ⇠ ! 1, RZF becomes equivalent to

MF; when ⇠ = 0, RZF reverts to ZF. Note that the baseband matrices using MF, ZF,

and RZF all have dimensionality constraints, as indicated by (2.12). Namely, if the

dimension of H is NR ⇥NT, then the dimension of F is constrained to be NT ⇥NR.

This dimensionality requirement, however, may not be satisfied in reality, especially

in HBF, due to the constraint of the number of RF chains and/or data streams.

Nevertheless, SLNR-based processing does not have the dimensionality constraint

and is hence more flexible, and more details about SLNR-based beamforming

approach is provided in Chapter 8.

2.6.1.2 Multi-Antenna Users

When each user is equipped with multiple antennas, a popular precoding method is

block diagonalization (BD) [158], which eliminates inter-user interference and can be

thought of as a generalization of channel inversion for circumstances with multiple
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antennas per user. BD also has dimensionality constraints and is only applicable

to situations where the number of transmit antennas is no smaller than the total

number of receive antennas. Furthermore, BD requires the independence of the

matrices between the transmitter and individual receivers, and user-grouping has

to be performed if two or more users have highly correlated channels [159]. SLNR-

based precoding is another processing strategy when there are multiple antennas

per user [157], and has no dimensionality or matrix independence constraints.

2.6.2 Analog Beamforming

Analog beamforming relies on the RF domain processing and is usually implemented

using phase shifters which induces constant modulus constraints on the elements

of the RF beamformer [117]. Analog beamforming can also be implemented with

analog switches [147, 160], which often requires antenna element selection.

2.6.3 Multi-Cell Signal Processing

Multi-cell networks su↵er both intra- and inter-cell interference, which can be

mitigated via proper beamforming approaches including inter-cell base station

cooperation/coordination. The 3GPP completed a study on coordinated multipoint

(CoMP) techniques for both downlink and uplink for the Long Term Evolution

(LTE)-Advanced system in 2013 [161]. Four CoMP scenarios are considered in [161]:

(1) Homogeneous network with intra-site CoMP; (2) Homogeneous network with

high transmit power remote radio heads (RRHs); (3) Heterogeneous network with

low power RRHs within the macrocell coverage where the transmission/reception

points created by the RRHs have di↵erent cell IDs as the macrocell; (4) Hetero-

geneous network with low power RRHs within the macrocell coverage where the
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transmission/reception points created by the RRHs have the same cell IDs as the

macrocell. Each CoMP scheme may be categorized into two types: joint processing

and coordinated scheduling/beamforming, where joint processing includes joint

transmission and dynamic point selection (DPS)/muting. The di↵erent CoMP

strategies in [161] entail di↵erent levels of complexity and requirements with respect

to CSI feedback and CSI sharing ,which are detailed below in increasing order of

complexity and requirements.

2.6.3.1 Coordinated Scheduling/Beamforming

In coordinated scheduling/beamforming, data for a UE is only available at and

transmitted from one transmission point (TP) using its own beamforming approach

in the CoMP cooperating set (downlink data transmission is done from that TP)

for a time-frequency resource, but user scheduling/beamforming decisions are made

with coordination among TPs. Coordinated scheduling/beamforming necessitates

CSI feedback from multiple TPs. Inter-TP phase information is not required. It is

possible to configure multiple CSI feedback instances [161].

2.6.3.2 Dynamic Point Selection/Muting

In DPS/muting, data is available simultaneously at multiple TPs but is transmitted

from only one TP in a time-frequency resource, and the transmitting/muting TP

may change from one subframe to another. DPS requires similar CSI feedback as

coordinated scheduling/beamforming in the sense that no inter-TP phase informa-

tion is required, although some additional channel quality indicator (CQI) report

targeting other TPs may be needed. Similarly to the other schemes, optimizations

to existing CSI reporting procedures are not precluded. DPS may require UE
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recommendation on selected TP(s) [161].

2.6.3.3 Joint transmission

In joint transmission, data for a UE is available at multiple TPs and is simultaneously

transmitted from multiple TPs to a single UE or multiple UEs in a time-frequency

resource. Additional information such as inter-TP amplitude information, which is

a new specification aspect, may be needed. Similar to coordinated scheduling/beam-

forming, enhancements or modifications to the existing CSI reporting procedures

are not precluded [161].

Additionally, hybrid joint processing and coordinated scheduling/beamforming

may be possible, where data for a UE may be available only in a subset of TPs in

the CoMP cooperating set for a time-frequency resource, but user scheduling/beam-

forming decisions are made with coordination among TPs corresponding to the

CoMP cooperating set [161].

2.6.4 Hybrid Beamforming

There are several possible antenna array architectures for hybrid beamforming that

can be used in both CoMP and non-CoMP systems. Based on the mapping from RF

chains to antenna elements, which determines the number of phase shifters needed,

the hybrid precoding transceiver architectures can be categorized into the fully-

connected and partially-connected architectures [117, 148], as illustrated in Fig. 2.9.

The former architecture enjoys full beamforming gain for each RF chain with a

natural combination between RF chains and antenna elements, i.e., each RF chain

is connected to all antennas. On the other hand, sacrificing some beamforming gain,

the partially-connected structure significantly reduces the hardware implementation
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Figure 2.9: Example block diagrams of hybrid beamforming structure at BS for a
downlink transmission (from [162]), where the top and bottom figures illustrate
the fully-connected and partially-connected architectures, respectively.

complexity by connecting each RF chain only with part of the antennas [148].

2.6.5 Hybrid Beamforming for mmWave SU-MIMO Sys-

tems

By exploiting the spatial structure of mmWave channels, Ayach et al. proposed a

hybrid precoding and combining approach by formulating the precoding/combining

problem as a sparse reconstruction problem [117] due to the small number of spatial

lobes in mmWave channels. According to the point that maximizing the spectral

e�ciency of mmWave systems can be approximated by minimizing the Euclidean

distance between hybrid precoders and the fully digital precoder, standard basis

pursuit (whose performance can be improved by using continuous basis pursuit [55],
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as detailed in Chapter 7) based algorithms were proposed to approximate optimal

unconstrained precoders and combiners such that they could be implemented in

low-cost RF hardware. The authors in [117] focused on a fully-connected hybrid

beamforming architecture, where each RF chain was connected to every antenna

element in the transmit or receive array, and had a set of dedicated phase shifters.

Since the RF precoding/combining matrix is implemented using analog phase

shifters, all elements in the matrix have equal norm. Antenna array response

vectors were utilized as the columns in the RF precoding/combining matrices,

since the array response vectors form a finite spanning set for the channels row

space, and they also satisfy the equal norm requirement on each element in the RF

precoding/combining matrix. Iterative algorithms were therefore devised based on

the above observations and the digital precoding/combining matrix was obtained

via the least squares method subject to a transmit power constraint (for the digital

precoding matrix). Numerical results show that the proposed spatially sparse

processing can approach the spectral e�ciency achieved by fully digital precoding

and combining.

Hybrid precoding for the partially-connected antenna array structure has been

considered in [151, 163], in which the complex capacity optimization problem is

decomposed into a series of sub-problems that are easier to deal with by considering

each antenna sub-array one by one. The successive interference cancellation (SIC)

method is adopted to optimize the achievable capacity of each sub-array, which is

implemented in an iterative manner favorable for parallelization. It is shown that

the computational complexity is comparable with conventional analog precoding

scheme, and that the proposed algorithm can provide near-optimal capacity perfor-

mance especially when the number of antenna elements in each sub-array is small
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(e.g.,4) [151, 163]. The proposed hybrid precoding scheme in [151, 163] is based on

the based on the assumption that the digital precoding matrix is diagonal, which

means that the digital precoder only allocates power to di↵erent data streams, and

the number of RF chains should be equal to that of the data streams.

The authors of [148] proposed hybrid beamforming algorithms for both fully-

connected and partially-connected antenna array architectures, based on the alter-

nating minimization concept. The hybrid precoder design is treated as a matrix

factorization problem. for the fully-connected antenna array structure, an alternat-

ing minimization (AltMin) algorithm based on manifold optimization is proposed

to approach the performance of the fully digital precoder. To reduce the complexity

of the aforementioned algorithm, another approach is proposed by enforcing an

orthogonal constraint on the digital precoder. Moreover, for the partially-connected

antenna array structure, an AltMin algorithm is also developed with the help of

semidefinite relaxation. For practical implementation, the proposed AltMin algo-

rithms are further extended to the broadband setting with OFDM modulation [148].

Simulation results demonstrate that the hybrid precoders with the fully-connected

architecture can approach the performance of the fully digital precoder when the

number of RF chains is slightly larger than the number of data streams, and that

the hybrid precoders for the partially-connected structure provide considerable

gains over analog beamforming, and it is recommendable to utilize a relatively large

number of RF chains, in order to enhance both spectral and energy e�ciency [148].

A near-optimal closed-form solution for fully-connected and partially-connected

OFDM-based hybrid precoding is developed in [164] for frequency-selective wide-

band mmWave MIMO systems. Fully digital receivers are assumed. The developed

solution yields the same spectral e�ciency as the unconstrained fully-digital method
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when the number of channel paths is smaller than the number of RF chains. Further-

more, a criterion is proposed for constructing the optimal sub-arrays that maximize

a proxy of the system spectral e�ciency, namely, the best partitioning/grouping

of the antenna elements over the RF chains [164]. Based on the above criterion,

the authors proposed a dynamic structure and a greedy algorithm which adapt the

sub-array architecture per the long-term channel statistics. Simulation results show

that the designed hybrid precoding method approximates the spectral e�ciencies

of the fully-digital scheme for both fully-connected and fixed sub-array structures.

In addition, the dynamic sub-array approach is shown to be superior to any fix

sub-array architecture [164].

In [165], a hybrid architecture was proposed for multi-stream for large-scale SU-

MIMO beamforming systems operating at mmWave bands, where Hadamard RF

codebook with low-bit (e.g., 1-bit or 2-bit) resolution phase shifters were employed,

in contrast to conventional RF codebook designs available in the literature that

require over 7-bit resolution to obtain identical performance with the proposed

approach. Simulation results reveal that the spectral e�ciency performance of

the proposed hybrid structure with low-resolution phase shifters approaches the

unconstrained singular-value-decomposition (SVD)-based precoding method [165].

A low-complexity frequency selective hybrid precoding scheme was presented

in [87] based on GramSchmidt orthogonalization for a SU-MIMO wideband mmWave

system with a limited feedback channel between the transmitter and receiver. As

a first step, the RF precoders were taken from a quantized codebook, then the

optimal hybrid precoder design was derived which maximizes the achievable mutual

information under total power and unitary power constraints. Second, a limited

feedback frequency selective hybrid precoding system was explored where both
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the baseband and RF precoders are taken from quantized codebooks, for which

e�cient hybrid analog and digital precoding codebooks were developed. At last, a

greedy hybrid precoding algorithm based on Gram-Schmidt orthogonalization for

limited feedback frequency selective mmWave systems was proposed, which was

shown to achieve a similar performance with a low complexity compared with the

optimal hybrid precoding design that requires an exhaustive search over the RF and

baseband codebooks. For future work, it would be interesting to investigate e�cient

hybrid precoding codebooks for wideband multi-user millimeter wave systems [87].

2.6.6 Hybrid Beamforming for mmWave MU-MIMO Sys-

tems

In [166], a joint spatial division and multiplexing (JSDM) algorithm [167] was

utilized for mmWave MU-MIMO channels operating in the FDD mode. Realistic

propagation channels were considered where there exists partial overlap of the

angular spectra from di↵erent users caused by the presence of common scatterers.

The problem of user grouping was formulated for two distinct objectives: (i)

maximizing spatial multiplexing, and (ii) maximizing total received power in a

graph-theoretic framework. Given the computational complexity of the problems,

sub-optimum greedy algorithms were proposed as e�cient solutions [166]. It is

worth noting that JSDM necessitates hybrid beamforming at the base station,

where pre-beamforming may be implemented in the analog RF domain, while the

MU-MIMO precoding stage is implemented by baseband processing [166, 167].

Pre-beamforming can null the common multipath components so as to create

linearly independent user groups, which can be served simultaneously on the same

transmission source. Baseband digital precoding can allocate the user groups on
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orthogonal transmission resources. Two algorithms were proposed for user grouping

and pre-beamforming, where the first algorithm selects users filling many angular

directions and serves fewer users with higher beamforming gain, while the second

algorithm maximizes the number of users with at least one mutually non-overlapping

set of directions hence tending to serve more users with lower beamforming gain [166].

Various numerical results using the realistic 28 GHz measurement data [2, 54, 168]

demonstrate that JSDM with proper user selection is a promising strategy for

downlink mmWave MU-MIMO channels, especially considering the fact that the

JSDM approach achieves remarkable spatial multiplexing while requiring only the

knowledge of the channels second-order statistics (covariance), such that feedback

of instantaneous CSI at the transmitter is not required [166].

Alkhateeb et al. [122] developed a low-complexity hybrid precoding for downlink

MU-MIMO mmWave systems, leveraging the sparse nature of the channel and

the large number of deployed antennas. In particular, hybrid precoders at the

transmitter and analog combiners at multiple receivers which induce a small training

and feedback overhead are considered in [122], where the base station communicates

with each mobile station through only one stream, and the number of base station

RF chains is no smaller than the number of mobile stations. The hybrid precoding

and analog combining scheme consists of two stages: (i) the base station and each

user design the RF beamforming and combining vectors to maximize the desired

signal power for the user with the other users interference neglected; (ii) the base

station designs its zero-forcing digital precoder based on the quantized channels.

The proposed algorithm was analyzed in two special cases: when the channels are

single-path, and when the number of transmit and receive antennas are very large,

which are relevant for mmWave systems. Simulation results show that the hybrid
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precoding gain is not very sensitive to RF angles quantization, but it is vital to

have a good quantization for the digital precoding layer to maintain a reasonable

precoding gain over analog only approaches.

The authors in [169] proposed a novel hybrid precoding structure for multi-

user OFDM mmWave systems, where two groups of phase shifters were combined

to map the signals from RF chains to antennas and an e↵ective AltMin hybrid

precoding algorithm was devised. A major algorithmic innovation in [169] is a

LASSO formulation for the analog precoder, which yields computationally e�cient

algorithms. It was revealed that implementing twice the number of phase shifters

in the analog precoder is advantageous from the respects of both performance

and complexity, and that inter-user interference is a major problem to tackle with

besides the fully digital precoder approximation. Therefore, it is beneficial to

cascade a digital baseband precoder that specializes in canceling the inter-user

interference [169].

ZF-based hybrid beamforming methods for MU-MIMO mmWave systems were

analyzed in [170], where the base station equipped with a large antenna array

communicated with several single-antenna users. At the base station, the columns

of the RF beamforming matrix was chosen from the antenna array response vectors,

which was similar to the approach in [117], and the baseband digital precoding

matrix was obtained via the zero-forcing scheme. Furthermore, to mitigate the noise

enhancement e↵ect induced by the zero-forcing technique, another type of baseband

digital precoding matrix was calculated through the RZF approach. In addition,

the authors of [170] also proposed a limited feedback protocol for mmWave channels

and a robust RZF-based hybrid beamforming scheme for the MU-MIMO system.

The limitation of the method proposed in [170] is that no beamforming/combining
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processing can be performed at the receiver side and only one data stream per user

can be transmitted since only a single antenna is available therein.

In [171], a coordinated hybrid beamforming approach that supports multi-stream

transmission for each user was proposed for downlink MU massive MIMO mmWave

systems. First, an RF beamforming technique based on the Generalized Low Rank

Approximation of Matrices (GLRAM) approach was proposed, then an e�cient

modified GLRAM algorithm was developed. The proposed scheme only requires

the information of the composite channel, instead of the complete physical channel

matrix which is assumed to be known in the existing literature. It makes use of

the coordination between the base station and users to achieve a maximal array

gain and has no dimensionality constraint. The multiplexing gain is then exploited

by applying the BD technique. Simulation results show that the proposed scheme

approaches the fully digital BD solution [171].

Kwon et al. proposed a joint scheduling and hybrid beamforming downlink

system with partial side information for mmWave broadcast channels [172]. The

achievable sum rate upper bound and the scaling law of the asymptotic sum rate

were derived, where the sum rate upper bound demonstrates the trade-o↵ between

the multiplexing gain and the MU diversity gain dependent on the number of

RF chains. The base station is equipped with several RF chains and schedules a

subset of users and corresponding beams for each transmission according to the

signal-to-interference-plus-noise ratio (SINR) feedback. It is worth noting that the

proposed hybrid system is even superior to the digital zero-forcing beamforming

system in the low SNR realm typical in mmWave channels, since the proposed

approach utilizes the degrees of freedom of the transmit antenna elements only for

SNR gain but not for interference cancellation in sparse mmWave channels [172].
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It has been demonstrated in [173] that the hybrid beamforming structure can

realize any fully digital beamformer exactly regardless of the number of antenna

elements, on the condition that the number of RF chains is twice the total number of

data streams. For cases where fewer number of RF chains are available, the authors

investigated the hybrid beamforming design problem for both the transmission

scenario of a point-to-point MIMO system and a downlink multi-user multiple-input

single-output (MU-MISO) system where the base station has a large-scale antenna

array but each user is equipped with only one antenna. For each scenario, a heuristic

hybrid beamforming design was proposed that achieves a performance close to

the performance of the fully digital beamforming baseline. Finally, the proposed

algorithms are modified for the more practical setting in which only finite resolution

phase shifters are available. Numerical simulations show that hybrid beamforming

can achieve spectral e�ciency close to that of the fully digital solution with the

number of RF chains approximately equal to the number of data streams, and

that the proposed schemes are e↵ective even using phase shifters with very low

resolution. One key assumption in [173] is the availability of prefect CSI at the base

station, which rarely occurs practically. For imperfect CSI scenario, one approach

to the design of the hybrid beamformers is to first design the RF beamformers

assuming perfect CSI, and then to design the digital beamformers employing robust

beamforming schemes to deal with imperfect CSI [173, 174].

In [175], an adaptive single-cell MU-MIMO hybrid precoding algorithm was

proposed, which iteratively designs the precoders/combiners leveraging the reci-

procity of TDD mmWave systems. The combiners were designed based on the

MMSE criterion and dependent on second-order statistics of the channel. Com-

pressed measurements taking advantage of the sparsity of mmWave channels were
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utilized to estimate the covariance of the received signal at the antenna array in

an online manner, mitigating the training overhead and complexity. The proposed

scheme avoids the explicit estimation of the channel matrix corresponding to each

user, which is hard to acquire caused by the dimensionality reduction owning to

the hybrid beamforming structure and the short coherence time of the mmWave

channel [175]. Simulation results show that the proposed method can approach the

sum spectral e�ciencies of that achieved by block diagonalization One disadvantage

of the proposed algorithm in [175] is that the convergence is not theoretically

guaranteed.

The authors of [95] investigated optimal designs of hybrid beamforming archi-

tectures, with a focus on an N (the number of transceivers) by M (the number of

active antennas per transceiver) hybrid beamforming structure. Moreover, they also

studied the energy e�ciency and spectrum e�ciency of the N ⇥M beamforming

architecture, including their relationship at the green point (i.e., the point with the

highest energy e�ciency) on the energy e�ciency-spectrum e�ciency curve, the

impact of the number of transceivers N on the energy e�ciency performance for a

given spectrum e�ciency, and the e↵ect of N on the green point energy e�ciency.

In addition, a reference signal design for the hybrid beamforming architecture is

presented, which achieves better channel estimation performance than the method

purely based on analog beamforming. The main feature of the design based on

hybrid beamforming in [95] is the same analog beamforming on each transceiver,

on top of which digital beamforming is designed to maximize the gain in a certain

direction around the main beam direction of the analog beamforming.

Lin et al. presented low-complexity energy-e�cient hybrid precoding and low-

resolution ADCs for downlink MU-MIMO mmWave systems [176], and proposed
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a transmission strategy comprising beamspace MIMO communications and beam

selection. In the hybrid precoding structure, analog beamforming was based upon

Butler matrix that multiplexes data onto orthogonal spatial beams, while digital

precoding was designed using MMSE to cancel inter-user interference. Then a

beam selection algorithm was created to determine a subset of beams to optimize

system energy e�ciency based on the limited feedback information from users.

Low-resolution ADCs were employed at the user side. Power consumption per

transmission data bit was minimized by adaptively selecting the best RF chain

configuration [176]. Simulation results show that the proposed beam selection

strategy outperforms the conventional approach based upon received signal strength,

and that one-bit ADCs result in moderate degradation in the BER performance

and severe degradation in the sum rate when utilizing the quadrature phase-shift

keying (QPSK) signaling [176].

2.7 Beamforming in Multi-Cell MIMO Systems

For multi-cell wireless systems, a crucial aspect is to combat inter-cell interference

(ICI), especially for dense networks which are envisioned attractive for mmWave

frequency bands. Multi-cell cooperation is an e�cient technique to mitigate ICI [177].

In the most aggressive form of multi-cell cooperation, the CSI and the data of

users are fully shared among base stations via high-speed backhaul links. These

base stations then act as a single distributed multi-antenna transmitter that

serves multiple users through beamforming, commonly referred to as cooperative

beamforming or network MIMO. Although network MIMO can completely eliminate

the ICI within the base stations coverage area and even exploit the ICI link, it
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requires substantial signaling overhead, synchronization, and backhaul capacity for

CSI and data sharing and joint transmission [178]. In practice, however, backhaul

will be bandwidth-limited due to the prohibitive costs involved in establishing

high-capacity links. This restricts the amount of information that can be exchanged

among base stations, which in turn determines the level of cooperation and the

performance gains obtained.

In a less complex form of multi-cell cooperation, commonly referred to as

coordinated beamforming in 3GPP LTE Advanced, only the CSI of users, but not

user data, is shared among the base stations to enable joint beamforming design,

whereas the data of each user is transmitted by a single BS. Without the need

for data sharing, coordinated beamforming has considerably reduced signaling

requirements compared to network MIMO. Fig. 2.10 illustrates an example scenario

of multi-cell MU-MIMO systems, where there are three adjacent cells each with one

base station and three users. Also depicted in the figure is an example of how both

intended signal and interference arrive at a user, where the green solid line denotes

the intended signal, and the red dash lines represent the inter-cell interference

caused by base stations in adjacent cells. Coordinated beamforming algorithms

can be implemented to null or mitigate the inter-cell interference.

In [179], distributed MU-MIMO was considered where several access points

are connected to a central server and operate as a large distributed multi-antenna

access point. This ensures that all transmitted signal power serves the purpose

of data transmission, rather than creating interference. The authors proposed a

strategy called AirSync which o↵ers timing and phase synchronization to enable

distributed MU-MIMO, and implemented AirSync as a digital circuit in the field

programmable gate array (FPGA) of the Wireless Open-Access Research Platform



76

Figure 2.10: An example scenario of multi-cell MU-MIMO systems, where there
are three adjacent cells each with one base station and three users. Also illustrated
in the figure is an example of how both intended signal and interference arrive at a
user, where the green solid line denotes the intended signal, and the red dash lines
represent the inter-cell interference caused by base stations in adjacent cells.

(WARP) radio platform [179]. It was demonstrated that AirSync was able to realize

the full distributed MU-MIMO multiplexing gain.

Michaloliakos et al. investigated joint user-beam selection for hybrid beam-

forming in asynchronously coordinated multi-cell networks [180], which is similar

to user selection schemes in the context of MU-MIMO and aims to maximize a

utility function of the users’ rates. Two additional novel algorithms for establishing

formal performance bounds were proposed. The first algorithm was a greedy solu-

tion of an associated maximum weight independent set problem with cardinality

constraints, while the second was a greedy solution of an associated maximum

cardinality problem over a set of feasible links. Numerical results revealed that the

hybrid beamforming architecture coupled with the proposed user-beam selection

algorithms achieved users rates which are up to 10 times higher than those achieved

by current uncoordinated deployments [180].

An adaptive multi-cell 3D beamforming strategy was demonstrated in [178],

where the setting is a cellular network with multiple multi-antenna base stations
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and single-antenna users, imperfect CSI, and directional antennas each with a

vertically adjustable beam. The e↵ect of the elevation angle of the base station

antenna pattern on the performance of the considered network was explored, when

employing either a conventional single-cell transmission or a fully cooperative multi-

cell transmission [178]. The major innovation is to divide the coverage area into two

disjoint vertical regions and adapt the multi-cell cooperation approach at the base

stations when serving each region. A fair scheduler is used to share the time slots

between the vertical regions. Simulation results show that the proposed technique

can achieve performance comparable with that of a fully cooperative transmission

but with significantly lower complexity and signaling requirements [178].

In [181], a SLNR-based cascaded precoding algorithm was proposed to suppress

interference in downlink CoMP transmission system. In a CoMP system, cells are

divided into some cooperation clusters, and base stations in the same cluster can

serve the original cell edge UEs cooperatively to enhance the cell edge spectral

e�ciency and system throughput. It is worth noting that co-channel interference

denotes the interference at a desired user that is caused by all other users, while

leakage refers to the interference caused by the signal intended for a desired user on

the remaining users [157], namely, leakage measures how much signal power leaks

into the other users. The proposed precoding scheme possesses two stages and

deals with the inter-cell and inner-cell interference step by step. In the first stage,

interferences from di↵erent cells are aligned to the orthogonal space of receiving

matrix of the expected cell to mitigate interference to the expected cell. In the

second stage, SLNR precoding is employed to suppress the interferences among

users within the same cell [181]. Numerical results show that the proposed strategy

can improve the system capacity while reducing the BER.
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Chapter 3

Synthesizing Omnidirectional

Received Power and Path Loss

from Directional Measurements

3.1 Introduction

At mmWave frequencies, the increase in free space path loss resulting from the

order of magnitude increase in carrier frequency is conveniently overcome by using

high-gain directional antennas at the base station and/or mobile handset [182],

providing su�cient gain to complete mmWave links over 200 m or so, as shown

in [2] and [183]. MmWave propagation measurements are vital for accurately

characterizing channels and creating statistical channel models, necessary for proper

design of wireless radio-systems and realistic protocols. While electrically-steerable

adaptive antennas will be used in 5G mmWave transceivers [2, 23, 40, 184, 185],

technologies with such antennas are not yet commercially available at most mmWave
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frequencies. In the mean-time, many researchers are using mechanically rotatable

horn antennas to capture channel characteristics at a wide range of mmWave

frequencies [2, 183, 186, 187]. NYU WIRELESS measurements used rotatable horns,

and a method was needed to take the directional measurements in order to synthesize

omnidirectional models for use in comparing results in various standard bodies,

which historically have only used omnidirectional models since omnidirectional

antennas were used at both TX and RX in the conventional UHF/microwave bands

in 4G and prior systems.

To generate omnidirectional path loss models where arbitrary antenna patterns

can be implemented for specific applications, a valid procedure is required to recover

omnidirectional path loss models from directional measurements, where the TX

and RX antennas are typically rotated over many azimuth and elevation angle

combinations to emulate omnidirectional antennas. Omnidirectional path loss

models at 28 GHz and 73 GHz were extracted from directional measurements [188]

by summing up the received powers (in milli-Watts (mW)) at each and every

measured non-overlapping TX and RX antenna pointing angle combination. The

omnidirectional path loss was calculated by subtracting the summed received power

from the transmit power, with the TX and RX antenna gains removed [49, 168]:

PLi,j[dB] = Pt
i,j
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X

n

X

m

X

l

X

k

Pr
i,j

(�k, ✓l,'m,#n)[mW]) (3.1)

where PLi,j , Pt
i,j

, Pr
i,j

denote the omnidirectional path loss, omnidirectional trans-

mit power, and received power for an AoD and AoA combination (with the antenna

gains removed) from the ith TX to the jth RX, respectively. �, ✓,',# are the

azimuth AoA, elevation AoA, azimuth AoD, and elevation AoD, respectively. This
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chapter validates the method used in [188] for recovering omnidirectional received

power and path loss.

3.2 Measurement Procedure

In the summers of 2012 and 2013, two outdoor propagation measurement campaigns

were conducted at 28 GHz and 73 GHz, respectively, in downtown Manhattan,

New York, using similar 400 Megachips-per-second (Mcps) spread spectrum slid-

ing correlator channel sounders and directional steerable horn antennas at both

the TX and RX to investigate mmWave channel characteristics in a dense UMi

environment [2, 183, 189]. In the 28 GHz measurements, three TX locations and

27 RX locations were selected to conduct the measurements. Two types of horn

antennas were employed: a 24.5 dBi-gain narrowbeam horn antenna with 10.9�

and 8.6� half-power beamwidths (HPBWs) in the azimuth and elevation planes,

respectively, and a 15 dBi-gain widebeam horn antenna with 28.8� and 30� HPBWs

in the azimuth and elevation planes, respectively. The narrowbeam antenna was

always utilized at the TX locations, and five of the RX locations used both the

narrowbeam and widebeam antennas, including two LOS and three NLOS locations.

For each TX-RX location combination (except the two LOS RX locations), the

RX antenna was swept over the entire azimuth plane sequentially in increments of

one HPBW at elevation angles of 0� and ±20� about the horizon, so as to measure

contiguous angular snapshots of the channel impulse response over the entire 360�

azimuth plane, while the TX antenna remained at a fixed azimuth and elevation

angle.

In the 73 GHz measurements, there were five TX locations and 27 RX locations
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with antenna heights of 2 m (mobile scenario) and 4.06 m (backhaul scenario),

yielding a total of 36 TX-RX location combinations for the mobile (access) scenario

and 38 combinations for the backhaul scenario. A pair of 27 dBi-gain rotatable

directional horn antennas with a HPBW of 7� in both azimuth and elevation planes

was employed at the TX and RX. For each TX-RX location combination, TX

and RX antenna azimuth sweeps were performed in steps of 8� or 10� at various

elevation angles. Additional measurement procedures and hardware specifications

can be found in [2, 183, 189].

3.3 Power Synthesizing Theory

The method for synthesizing omnidirectional received power introduced in Section

I is now theoretically validated step-by-step. First, assuming omnidirectional

antennas are used at both the TX and RX, if N MPCs arrive at the RX, then the

received signal r(t) can be expressed as [67]:

r(t) =
NX

n=1

ane
j�

n�(t� ⌧n) (3.2)

where an, �n, and ⌧n are the amplitude, phase, and propagation time delay of the

nth MPC, respectively. The received power is:
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The time delay ⌧ di↵ers for each MPC, hence the double sum in (3.3) is zero for
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k 6= i. Thus, the received power can be simplified to:

Ptot =

⌧
maxZ

0

(
NX

i=1
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2�2(t� ⌧i)

)
dt =

NX

i=1

ai
2 (3.4)

Next, suppose directional antennas are used at the same TX and RX locations

with antenna gains GT and GR in linear units, respectively. For one AoD and AoA

combination, a subset of MPCs shown in (3.2) will arrive at the RX. Assuming M

MPCs reach the RX for an AoD and AoA combination, where the value of M is

dependent on the AoD and AoA combination, then the received signal (rD) for the

specific AoD and AoA combination is:

rD(t) = GT

MX

m=1

GR · amej�m�(t� ⌧m) (3.5)

Note that each MPC in (3.5) corresponds to an MPC in (3.2). Using the same

approach derived in (3.4) from (3.2), the received power for an AoD and AoA

combination is:

PD = GTGR

MX

l=1

al
2 (3.6)

By performing an exhausive antenna sweep over all possible AoD and AoA combi-

nations without spatial overlap, i.e., individual measurements are separated by one

HPBW in both the azimuth and elevation planes, the sum of received power over

all unique AoD and AoA combinations yields:

X
PD = GTGR

NX

l=1

al
2 (3.7)

which is equivalent to the omnidirectional received power in (3.4) after removing
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the antenna gains. Therefore, the sum of received powers from non-overlapping

angles in the azimuth and elevation planes from directional antenna measurements

results in the omnidirectional received power, after removing antenna gains.

The method for synthesizing omnidirectional received power can also be validated

by considering antenna radiation patterns. The far-field radiation pattern of a horn

antenna can be approximated by [190]:

f(�, ✓) = G
⇥
sinc2 (a · sin(�)) cos2(�)

⇤
·
⇥
sinc2 (b · sin(✓)) cos2(✓)

⇤
(3.8)

where � and ✓ represent the azimuth and elevation angles with respect to (w.r.t.)

the antenna boresight, respectively, f(�, ✓) denotes the radiation power density

at the azimuth angle � and elevation angle ✓, G represents the boresight gain of

the antenna, and a and b are functions of the azimuth (AZ) and elevation (EL)

HPBWs of the horn antenna, respectively, i.e.,
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For instance, if the azimuth HPBW of a horn antenna is 10� (i.e., 0.17 radians),

then a = 5.06. Fig. 3.1 displays the normalized antenna azimuth radiation pattern

for a horn antenna with an azimuth HPBW of 10� at an elevation angle of 0� and at

azimuth angles of 0�, 10�, and -10� w.r.t. the boresight angle, and the normalized

equivalent widebeam antenna pattern by overlapping the narrowbeam antenna

patterns at the three adjacent azimuth angles. It is clear from Fig. 3.1 that the

HPBW in the equivalent antenna pattern is 30�, i.e., three times the 10� HPBW.
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Further, the maximum gain in the normalized equivalent pattern is about 0 dB and

remains constant over the range of -10� to 10�, indicating that if aggregating the

radiation patterns at antenna pointing angles over the entire azimuth plane, i.e.,

from 0� to 360�, the resultant antenna gain will become constant and equal to the

boresight gain of the directional horn antenna over the entire azimuth plane, with

the same outcome true for the elevation plane. The normalized three-dimensional

(3D) patterns of a single antenna and the aggregated nine antennas are illustrated

in Fig. 3.2, where the antenna is assumed to have an azimuth HPBW of 10� and

an elevation HPBW of 8�, with the normalized equivalent pattern obtained by

overlapping the patterns at all the angle combinations of 0�, 10�, and -10� in

the azimuth plane and 0�, 8�, and -8� in the elevation plane. It is evident that

in the single antenna pattern, the maximum gain is concentrated only on the

boresight angle, while in the synthesized pattern the maximum gain remains almost

constant over the entire 20�⇥16� angular region. Although the antenna patterns

in the simulations are canonical, they are nearly identical to the actual measured

patterns of the antennas used during the measurements. Therefore, the synthesized

directional antenna pattern over the entire 4⇡ steradian sphere after removing the

antenna gain will approximate the pattern of an omnidirectional antenna, indicating

that it is appropriate to acquire the omnidirectional received power by summing

up the powers from directional antennas in all possible non-overlapping directions,

with antenna gains removed.
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Figure 3.1: Normalized antenna pattern in the azimuth plane for a horn antenna
with an azimuth HPBW of 10� at azimuth pointing angles of 0�, 10�, and -10� with
respect to the boresight angle, and the normalized equivalent radiation pattern by
overlapping the patterns at these three adjacent angles [49].

Figure 3.2: Normalized antenna pattern in both the azimuth and elevation planes
for a horn antenna with an azimuth HPBW of 10� and an elevation HPBW of
8�, pointing at the boresight angle, and the normalized equivalent pattern by
overlapping the patterns at all the angle combinations of 0�, 10�, and -10� in the
azimuth plane and 0�, 8�, and -8� in the elevation plane [49].
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3.4 Power Synthesizing Procedure and Empiri-

cal Results

3.4.1 28 GHz Measurement Data

This subsection is aimed to validate the method for synthesizing the omnidirectional

received power by comparing the measured power obtained from two di↵erent

directional horn antennas using the 28 GHz measurements [2] and showing that

the corresponding synthesized omnidirectional powers are independent of antenna

beamwidth. A pointing angle measured with a 30� HPBW widebeam antenna was

selected, and then discretized the measured angle into nine smaller 10� angles. The

power measured with the widebeam antenna is then compared to the sum of the

powers obtained at the nine smaller angles using the narrowbeam antenna. Note

that the 28 GHz measurements considered fixed elevation angles of 0�, and ±20�,

as opposed to ±10�. The unavailable ±10� elevation angles is therefore substituted

with the available ±20� elevation angles.

Three NLOS RX locations, i.e., RX 14, RX 16, and RX 19 from measurements

in New York City [2] were selected to compare the received powers obtained from

widebeam and narrowbeam antennas. The measured data sets were chosen such

that the TX antennas were pointed in the same azimuth and elevation pointing

directions for both narrowbeam and widebeam antenna azimuth sweeps. The RX

elevation angle for the azimuth sweep using the widebeam antenna was 0�, and

the elevations for the narrowbeam antenna sweeps were 0�, -20�, and 20�. Ideally,

adjacent azimuth planes should be separated by one elevation HPBW, but due to

lack of measured data in the ±10� elevation angles, the ±20� elevation angles were
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examined instead. Table I details the parameters of the selected measurements,

where the azimuth angles are w.r.t. the true north bearing direction, and the

elevation angles are w.r.t. the horizon where positive angles denote angles above

the horizon.

For fair comparison, 9.5 dB was added to the received power found using the

widebeam antenna as shown in Table 3.1, which is the di↵erence in the boresight gain

of the narrowbeam and widebeam antennas, to compensate for the smaller antenna

gain of the widebeam antenna, so that the only di↵erence between the two types

of antennas is the antenna beamwidth. Note that three consecutive 10.9� HPBW

antennas are equivalent to a single 10.9�⇥3 = 32.7� HPBW antenna in the azimuth

plane, but since a 32.7� azimuth HPBW antenna was not available, an antenna with

28.8� (close to 32.7�) HPBW in the azimuth plane was used. Also, the elevation

angle increment is not perfectly one HPBW as explained before. Therefore, a slight

di↵erence would be expected in the powers using nine aggregated narrowbeam

antennas as compared to a single widebeam antenna. By using Eq. (3.8) and

integrating over the corresponding HPBWs, it is expected that the received power

using a single widebeam (28.8�/30� azimuth/elevation HPBW) antenna would be

around 3.8 times (i.e., 5.8 dB greater than) that of a single narrowbeam (10.9�/8.6�

azimuth/elevation HPBW) antenna given the same boresight gain.

As shown in Table 3.1, the e↵ective received power by summing up the received

powers from nine narrowbeam antennas agrees well with the power obtained by

one widebeam antenna. For example, when the widebeam antenna is pointed at an

azimuth angle of 242� at RX 19, the e↵ective received power using the widebeam

antenna was -68.7 dBm, while the e↵ective synthesized received power from the

three narrowbeam angles was -67.0 dBm, only 1.7 dB higher. Furthermore, the
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e↵ective received powers over the entire azimuth plane(s) using the widebeam and

narrowbeam antennas match relatively well at each of the three RX locations, with

a maximum di↵erence of 2.9 dB.

Fig. 3.3 is a scatter plot of the 28 GHz e↵ective directional path loss using the

widebeam and narrowbeam antennas at the three RX locations, using the 1 m

close-in free space reference distance path loss model [188]. The discrete widebeam

path loss is obtained using a single widebeam antenna, and the discrete narrowbeam

path loss is synthesized from nine narrowbeam antennas. The “all” widebeam path

loss corresponds to the e↵ective path loss over the entire azimuth plane at a 0�

elevation angle, while the “all” narrowbeam path loss is synthesized from three

azimuth planes at elevation angles of 0� and ±20�. The plot clearly shows that the

path loss exponents (PLEs) are both 3.9 for the discrete angle case, and 3.7 for the

entire azimuth plane(s) using widebeam and narrowbeam antennas, i.e., the PLEs

corresponding to di↵erent antenna beamwidths in each comparison pair agree very

well with each other.

3.4.2 73 GHz Measurement Data

In the 28 GHz measurements, the measured elevation angles were fixed to 0� and

±20� about the horizon, and the ±10� elevation angles were not considered. In the

measurements at 73 GHz [183], however, power delay profiles (PDPs) were acquired

at elevation angles separated by 5� or 8� (close to the 7� HPBW). Therefore, some

insight can be gained in the distribution of received power over elevation angles

separated by about one HPBW using the 73 GHz measurement data.

Table 3.2 lists the percentage of the received power corresponding to the strongest

azimuth plane, as compared to that corresponding to the strongest azimuth plane
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Figure 3.3: Comparison of 28 GHz NLOS e↵ective directional path loss using
the widebeam (28.8�/30� azimuth/elevation HPBW) and narrowbeam (10.9�/8.6�

azimuth/elevation HPBW) antennas at three RX locations. The discrete widebeam
path loss is obtained using a single widebeam antenna, and the discrete narrowbeam
path loss is synthesized from nine narrowbeam antennas. The “all” path loss
corresponds to the e↵ective path loss over the entire azimuth plane(s) [49].
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plus the two azimuth planes adjacent to it. The adjacent azimuth planes at the

RX were separated by 5� or 8�, close to one HPBW of the antenna. It can be

observed from Table 3.2 that the received power over the strongest azimuth plane

accounts for the majority (over 70%) of the total received power at the strongest

plus adjacent azimuth planes, with a highest ratio of 95%. Note that the adjacent

azimuth planes are mostly separated by only 5� (less than one HPBW of the

antenna), if the elevation angle increment increases to one HPBW, namely 7�,

even higher contribution is expected from the strongest azimuth plane, i.e., the

percentage of the received power over the strongest azimuth plane will be even

larger. Therefore, it is su�cient to consider the power at the strongest azimuth

plane alone when comparing the received powers using widebeam and narrowbeam

antennas.

3.5 Concluding Remarks

This chapter presented the validation for synthesizing the omnidirectional received

power and path loss from measured data using directional horn antennas by

summing the received powers from each and every measured antenna pointing

angle, including both theoretical analyses and measured results. It was shown that

the received power using nine narrowbeam antennas agrees relatively well with that

using a single widebeam antenna (where the azimuth and elevation HPBWs of the

widebeam antenna are about three times those of the narrowbeam antenna), and

using directional antennas with di↵erent beamwidths yields almost identical received

power and path loss synthesized over the whole azimuth plane(s). Besides, the 73

GHz measurement data showed that when considering the total received power
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Table 3.2: Ratio of the received power over the strongest azimuth plane to that
corresponding to the strongest azimuth plane plus the two adjacent azimuth planes
in the 73 GHz measurements in New York City [49, 183].

TX
Height
(m)

RX
Height
(m)

T-R
Separation

(m)

Elevation
Step (�)

Received
Power Ratio

7 2 128 5 72.9%

7 2 139 5 76.0%

7 2 182 5 71.9%

7 2 190 5 74.5%

7 4.06 27 5 72.0%

7 4.06 40 8 73.9%

7 4.06 74 5 72.1%

7 4.06 107 5 83.1%

7 4.06 128 5 75.3%

7 4.06 145 5 73.8%

7 4.06 182 5 73.2%

17 2 129 5 91.7%

17 2 129 5 76.7%

17 2 168 5 81.0%

17 4.06 118 5 73.9%

17 4.06 118 5 74.4%

17 4.06 127 5 91.2%

17 4.06 129 5 95.0%

17 4.06 129 5 72.8%

17 4.06 181 5 79.6%



93

over the strongest azimuth plane and the two adjacent azimuth planes, 72% to 95%

of the received power came from the strongest azimuth plane, thus it is reasonable

to consider the power at the strongest azimuth plane alone when comparing the

received powers with di↵erent antenna beamwidths [49].
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Chapter 4

Prediction Accuracy, Sensitivity,

and Parameter Stability of Path

Loss Models

This chapter investigates three large-scale path loss models that may be used

over the microwave and mmWave frequency bands: the ABG model, the CI

model, and the CIF model. The ABG model is shown to be a simple extension

of the AB model currently used in 3GPP, where a frequency-dependent floating

optimization parameter is added to the AB model. The CI and CIF models are

simpler in form (require fewer parameters) and o↵er better parameter stability

and accuracy through the use of a physically based close-in reference distance

that replaces the floating model parameters of the ABG model. In this chapter,

systematic comparisons between the parameters, shadow fading standard deviations,

and prediction performance of these three models in the UMa, UMi street canyon

(SC), indoor hotspot (InH) o�ce, and InH shopping mall scenarios are provided,
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using eight sets of measurement data from NYU, two sets from The University of

Texas at Austin (UT Austin), eight sets from Nokia/AalborgUniversity (AAU),

and 12 sets from Qualcomm [2, 50, 54].

4.1 Large-Scale Propagation Path Loss Models

The ABG, CI, and CIF path loss models are multi-frequency statistical (i.e.,

stochastic) models that describe large-scale propagation path loss over distance at

all relevant frequencies in a certain scenario [61, 79]. It will be noted that the CI

and CIF models have a very similar form compared to the existing 3GPP path

loss model (i.e., the floating-intercept, or alpha-beta (AB) model) [191], where one

merely needs to substitute the floating constant (which has been shown to vary

substantially across di↵erent measurements, frequencies and scenarios [82, 192])

with a free-space constant that is a function of frequency based on a 1 m standard

free space reference distance. As shown subsequently, this subtle change provides a

frequency-dependent term while yielding greater prediction accuracy and better

parameter stability when using the models outside of the range of the measured

data set from which the models are developed.

Testing the e�cacy of a path loss model outside of the range for which measure-

ments are originally collected and used to solve for model parameters is a critical,

but often ignored, test. Testing model accuracy and parameter stability is needed

since engineers will inevitably require propagation models for new applications,

distances, or scenarios not originally contemplated in the original experiments used

to build the path loss model. For future 5G wireless system level and link layer

analysis and simulation in new spectrum bands, where new types of directional
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antennas, umbrella cells, repeater architectures, and new regulations and network

topologies are used [168], it is critical to know that a chosen model can be used in

new scenarios while still exhibiting parameter stability, accuracy, and usefulness

beyond the limited original number of field measurements. This chapter o↵ers such

sensitivity and analysis when comparing the three candidate 5G stochastic path

loss models.

The equation for the ABG model is given by [193]:

PLABG(f, d)[dB] =10↵log10

✓
d

1 m

◆
+ � + 10�log10

✓
f

1 GHz

◆
+ �ABG

� ,

where d � 1 m (4.1)

where PLABG(f, d) denotes the path loss in dB over frequency and distance, ↵ and

� are coe�cients showing the dependence of path loss on distance and frequency,

respectively, � is an optimized o↵set value for path loss in dB, d is the 3D TX-RX

(T-R) separation distance in meters, f is the carrier frequency in GHz, and �ABG
� is a

zero-mean Gaussian random variable with a standard deviation � in dB describing

large-scale signal fluctuations (i.e., shadowing) about the mean path loss over

distance and frequency. Note that the ABG model has three model parameters for

determining mean path loss over distance and frequency, as well as the shadowing

standard deviation (a total of four parameters). When used at a single frequency,

the ABG model reverts to the existing 3GPP floating-intercept/AB model with

three parameters with � set to 0 or 2 [54, 114, 194]. The ABG model parameters

↵, �, �, and � are obtained from measured data using the closed-form solutions

that minimize the shadow fading (SF) standard deviation.
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The equation for the CI model is given by (4.2) [67]:

PLCI(f, d)[dB] =FSPL(f, d0)[dB] + 10nlog10 (d/d0) + �CI
� , where d � d0 (4.2)

where f is also in GHz (for both the CI and CIF models), d0 is the close-in free

space reference distance, n denotes the PLE, and �CI
� is a zero-mean Gaussian

random variable with a standard deviation � in dB. Whereas the ABG model

requires four parameters, the CI model only requires one parameter, the PLE, to

determine the mean path loss with distance and frequency, and uses a total of two

parameters (the PLE n and �CI
� ). A useful property of (4.2) is that 10n describes

path loss in dB in terms of decades of distances beginning at d0 (making it very easy

to compute power over distance in one’s mind when d0 is set to 1 m [54, 79, 192]).

In (4.2), d is the 3D T-R separation distance, and FSPL(f, d0) denotes the free

space path loss (FSPL) in dB at a T-R separation distance of d0 = 1 m at the

carrier frequency f :

FSPL(f, 1 m)[dB] = 20log10

✓
4⇡f ⇥ 109

c

◆
= 32.4 + 20log10

✓
f

1 GHz

◆
(4.3)

where c is the speed of light. Note that the CI model inherently has an intrinsic

frequency dependency of path loss already embedded within the FSPL term. The

PLE model parameter in (4.2) is obtained by first removing the FSPL given by (4.3)

from the path loss on the left side of (4.2) for all measured data points across all

frequencies, and then calculating the single PLE jointly for multiple frequencies, as

detailed in the Appendix and [54]. The CI model in (4.2) can be written in the



98

3GPP form as [193]:

PLCI(f, d)[dB] =FSPL(f, 1 m)[dB] + 10nlog10 (d/1 m) + �CI
�

=10nlog10

✓
d

1 m

◆
+ 32.4 + 20log10

✓
f

1 GHz

◆
+ �CI

� , where d � 1 m

The choice of d0 = 1 m as the close-in free space reference distance is shown

here to provide excellent parameter stability and model accuracy for outdoor UMi

and UMa, and indoor channels across a vast range of microwave and mmWave

frequencies, and creates a standardized modeling approach. While the choice of a

close-in reference distance of 1 m may be in the near-field of large antenna arrays,

the error caused by this in practical wireless system design is negligible, and is

more realistic than the ABG model, as shown subsequently and in [54].

A recent path loss model also suitable for multi-frequency modeling follows as a

more general form of the CI model, and is called the CIF model, given by Eq. (4.4)

when d0 = 1 m [50, 61]:

PLCIF(f, d)[dB] =FSPL(f, 1 m)[dB] + 10n

✓
1 + b

⇣f � f0
f0

⌘◆
log10 (d) + �CIF

� ,

=10n

✓
1 + b

⇣f � f0
f0

⌘◆
log10 (d) + 32.4 + 20log10

✓
f

1 GHz

◆
+ �CIF

� ,

where d � 1 m

(4.4)

where n denotes the distance dependence of path loss (similar to the PLE in the CI

model), and b is a model parameter that captures the amount of linear frequency

dependence of path loss about the weighted average of all frequencies considered in

the model. The parameter f0 is the average frequency calculated by (4.5) that is
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an input parameter computed from the measurement set used to form the model,

and serves as the balancing point for the linear frequency dependence of the PLE:

f0 =

PK
k=1 fkNkPK
k=1 Nk

(4.5)

where K is the number of unique frequencies, Nk is the number of path loss data

points corresponding to the kth frequency fk, and �CIF
� in (4.4) is a zero-mean

Gaussian random variable with a standard deviation � in dB that describes large-

scale shadowing. Note that the calculated f0 is rounded to the nearest integer

in GHz in this work. The CIF model reverts to the CI model for the single

frequency case (when f0 is equal to the single frequency f) or when b = 0 (i.e.,

when there is no frequency dependence on path loss, besides that which occurs in

the first meter of free space propagation). As shown subsequently, UMa channels

modeled by CIF have a value of b very close to zero, indicating that almost all of

the frequency-dependent e↵ects are incorporated in the first meter of free space

propagation [54, 61].

The CI and CIF models provide a close-in free space anchor point which assures

that the path loss model (regardless of transmit power) always has a physical tie

and continuous relationship to the transmitted power over distance, whereas the

AB and ABG models use a floating constant based on a fit to the data, without

consideration for the close-in free space propagation that always occurs in practice

near an antenna out in the open (this implies that particular measured path

loss values could greatly impact and skew the ABG path loss model parameters,

since there is not a physical anchor to assure that close-in free space transmission

occurs in the first meter of propagation from the TX antenna). The CI and CIF



100

models are therefore based on fundamental principles of wireless propagation, dating

back to Friis and Bullington, where the PLE parameter o↵ers insight into path

loss based on the environment, having a PLE value of 2 in free space (as shown

by Friis) and a value of 4 for the asymptotic two-ray ground bounce propagation

model (as shown by Bullington) [67]. Previous UHF (Ultra-High Frequency) and

microwave models used a close-in reference distance of 1 km or 100 m since BS

towers were tall without any nearby obstructions, and inter-site distances were

on the order of many kilometers for those frequency bands [67, 195]. d0 = 1 m

is used in 5G path loss models since coverage distances will be shorter at higher

frequencies. Furthermore, with future small cells, BSs are likely to be mounted

closer to obstructions [2, 54]. The CI and CIF d0 =1 m reference distance is a

suggested standard that ties the true transmitted power or path loss to a convenient

close-in distance, as suggested in [54]. Standardizing to a reference distance of 1 m

makes comparisons of measurements and models simple, and provides a standard

definition for the PLE, while enabling intuition and rapid computation of path loss.

Now this chapter shows with measured data that the 1 m reference is very e↵ective

for large-scale path loss modeling across a vast range of frequencies.

As discussed in [54], emerging mmWave mobile systems will have very few users

within a few meters of the BS antenna (in fact, no users are likely to be in the near

field, since transmitters will be mounted on a lamppost or ceiling), and users in the

near field will have strong signals or will be power-controlled compared to typical

users much farther from the transmitter such that any path loss error in the near

field (between 1 m and the Fraunhofer distance) will be very minor, and so much

smaller than the dynamic range of signals experienced by users in a commercial

system.
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Table 4.1: Parameters in the CI and CI-opt path loss models in UMa and UMi
scenarios. Freq. Range denotes frequency range. # of Data Points represents the
number of data points after distance binning and path loss thresholding. Dist.
Range denotes distance range, CI-opt represents the CI model with an optimized
free space reference distance d0. �� denotes the di↵erence in the SF standard
deviation between the CI and CI-opt models [50].

Sce. Env.

Freq.

Range

(GHz)

# of

Data

Points

Dist.

Range

(m)

Model PLE d0(m)
�

(dB)

��

(dB)

UMa

LOS

2 253 60-564
CI-opt 2.1 6.2 1.7

0.0
CI 2.0 1 1.7

10 253 60-564
CI-opt 2.0 0.1 3.1

0.0
CI 2.0 1 3.1

18 253 60-564
CI-opt 2.1 14.7 2.0

0.0
CI 2.0 1 2.0

28 253 60-564
CI-opt 2.0 50.0 2.3

0.0
CI 2.0 1 2.3

38 20 70-930
CI-opt 1.7 32.9 3.4

0.1
CI 1.9 1 3.5

2-38 1032 60-930
CI-opt 2.0 0.1 2.4

0.0
CI 2.0 1 2.4

NLOS

2 583 74-1238
CI-opt 3.3 10.0 3.2

0.3
CI 2.8 1 3.5

10 581 74-1238
CI-opt 3.4 4.3 4.0

0.1
CI 3.1 1 4.1
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Table 4.1: Parameters in the CI and CI-opt path loss models in UMa and UMi
scenarios. Freq. Range denotes frequency range. # of Data Points represents the
number of data points after distance binning and path loss thresholding. Dist.
Range denotes distance range, CI-opt represents the CI model with an optimized
free space reference distance d0. �� denotes the di↵erence in the SF standard
deviation between the CI and CI-opt models [50].

Sce. Env.

Freq.

Range

(GHz)

# of

Data

Points

Dist.

Range

(m)

Model PLE d0(m)
�

(dB)

��

(dB)

UMa NLOS

18 468 78-1032
CI-opt 3.2 2.2 4.4

0.1
CI 3.0 1 4.5

28 225 78-634
CI-opt 2.6 0.5 4.9

0.0
CI 2.7 1 4.9

38 12 60-376
CI-opt 2.5 0.1 10.3

0.2
CI 2.7 1 10.5

2-38 1869 60-1238
CI-opt 3.4 8.1 5.6

0.1
CI 2.9 1 5.7

UMi SC

LOS

28 4 31-54
CI-opt 3.8 34.2 2.4

0.8
CI 2.1 1 3.2

73 6 27-54
CI-opt -0.7 46.6 3.9

1.2
CI 2.1 1 5.1

28, 73 10 27-54
CI-opt 0.8 50.0 4.3

0.1
CI 2.1 1 4.4

NLOS 2.9 18 109-235
CI-opt 3.5 8.2 2.9

0.0
CI 2.9 1 2.9
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Table 4.1: Parameters in the CI and CI-opt path loss models in UMa and UMi
scenarios. Freq. Range denotes frequency range. # of Data Points represents the
number of data points after distance binning and path loss thresholding. Dist.
Range denotes distance range, CI-opt represents the CI model with an optimized
free space reference distance d0. �� denotes the di↵erence in the SF standard
deviation between the CI and CI-opt models [50].

Sce. Env.

Freq.

Range

(GHz)

# of

Data

Points

Dist.

Range

(m)

Model PLE d0(m)
�

(dB)

��

(dB)

UMi SC NLOS

28 18 61-186
CI-opt 3.3 0.7 8.6

0.0
CI 3.4 1 8.6

29 16 109-235
CI-opt 3.6 5.0 4.9

0.0
CI 3.1 1 4.9

73 30 48-190
CI-opt 2.9 0.1 7.4

0.0
CI 3.4 1 7.4

2.9-73 82 48-235
CI-opt 2.8 0.1 7.8

0.2
CI 3.2 1 8.0
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Table 4.2: Parameters in the CI and CI-opt path loss models in the InH scenario.
Freq. Range denotes frequency range. # of Data Points represents the number
of data points after distance binning and path loss thresholding. Dist. Range
denotes distance range, CI-opt represents the CI model with an optimized free
space reference distance d0. �� denotes the di↵erence in the SF standard deviation
between the CI and CI-opt models [50].

Sce. Env.

Freq.

Range

(GHz)

# of

Data

Points

Dist.

Range

(m)

Model PLE d0(m)
�

(dB)

��

(dB)

InH O�ce

LOS

2.9 12 5-49
CI-opt 1.8 0.1 5.0

0.2
CI 1.6 1 5.2

28 6 4-21
CI-opt 1.1 1.1 1.2

0.0
CI 1.1 1 1.2

29 12 5-49
CI-opt 1.5 0.9 4.5

0.0
CI 1.5 1 4.5

73 6 4-21
CI-opt 0.4 3.7 1.2

1.8
CI 1.3 1 3.0

2.9-73 36 4-49
CI-opt 1.7 0.1 4.6

0.0
CI 1.5 1 4.6

NLOS

2.9 30 5-67
CI-opt 3.9 4.6 5.9

0.6
CI 3.1 1 6.5

28 17 4-46
CI-opt 3.3 4.4 8.8

0.3
CI 2.7 1 9.1

29 29 5-67
CI-opt 4.4 4.7 6.4

0.8
CI 3.3 1 7.2
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Table 4.2: Parameters in the CI and CI-opt path loss models in the InH scenario.
Freq. Range denotes frequency range. # of Data Points represents the number
of data points after distance binning and path loss thresholding. Dist. Range
denotes distance range, CI-opt represents the CI model with an optimized free
space reference distance d0. �� denotes the di↵erence in the SF standard deviation
between the CI and CI-opt models [50].

Sce. Env.

Freq.

Range

(GHz)

# of

Data

Points

Dist.

Range

(m)

Model PLE d0(m)
�

(dB)

��

(dB)

InH O�ce NLOS

73 15 4-42
CI-opt 2.8 0.5 9.1

0.1
CI 3.0 1 9.2

2.9-73 91 4-67
CI-opt 3.9 3.9 7.9

0.4
CI 3.1 1 8.3

InH SM

LOS

2.9 14 19-149
CI-opt 1.9 0.1 3.2

0.0
CI 1.9 1 3.2

29 14 19-149
CI-opt 1.8 7.6 3.1

0.0
CI 1.9 1 3.1

61 14 19-149
CI-opt 1.6 50 3.4

0.0
CI 2.0 1 3.4

2.9-61 42 19-149
CI-opt 1.9 7.0 3.4

0.0
CI 1.9 1 3.4

NLOS

2.9 26 24-229
CI-opt 2.1 0.1 4.8

0.0
CI 2.2 1 4.8

29 26 24-229
CI-opt 2.2 0.1 4.2

0.0
CI 2.3 1 4.2
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Table 4.2: Parameters in the CI and CI-opt path loss models in the InH scenario.
Freq. Range denotes frequency range. # of Data Points represents the number
of data points after distance binning and path loss thresholding. Dist. Range
denotes distance range, CI-opt represents the CI model with an optimized free
space reference distance d0. �� denotes the di↵erence in the SF standard deviation
between the CI and CI-opt models [50].

Sce. Env.

Freq.

Range

(GHz)

# of

Data

Points

Dist.

Range

(m)

Model PLE d0(m)
�

(dB)

��

(dB)

InH SM NLOS

61 26 24-229
CI-opt 2.3 0.1 4.5

0.0
CI 2.5 1 4.5

2.9-61 78 24-229
CI-opt 2.2 0.1 4.8

0.0
CI 2.3 1 4.8

One may argue that a close-in reference distance other than 1 m may be a better

approach to maximize model accuracy of the CI model [196, 197]. The research

group which the author of this technical report belong to, in fact, originally used

d0 values greater than 1 m in past research in order to ensure the model would

only be used in the far field of directional antennas [2, 198, 199], but they later

found a 1 m reference was more suitable for use as a standard, due to the fact that

there was very little di↵erence in standard deviation when using a 1 m reference

distance (i.e., model error was not significantly di↵erent when using a di↵erent

value of d0 [54]), and given the fact that very few or any users will be within the

first few meters of the transmitter antenna.

To compare the performance of the CI model between using a 1 m free space

reference distance and an optimized or empirically determined free space refer-

ence distance d0, as proposed in [196, 197], the 30 measurement data sets from
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Nokia/AAU, UT, NYU, and Qualcomm were used to compare model parameters

and standard deviations. Tables 4.1 and 4.2 list the model parameters in the

1 m CI model as compared to the CI model with an optimized d0 (CI-opt) at

various frequencies ranging from 2 GHz to 73 GHz for the UMa, UMi, and InH

scenarios in both LOS and NLOS environments, where the PLE and d0 for CI-opt

were jointly optimized via the MMSE method demonstrated in the Appendix (to

preclude unreasonable d0 values caused by the sparsity of some data sets, the range

of d0 was set to between 0.1 m and 50 m). All of the scattered path loss data

samples were locally averaged over 2 m distance bins (other binning values can

also be explored, and little di↵erence was found in results using 2, 5, or 10 m local

average bins), in order to remove the small-scale fading e↵ects and to reduce the

di↵erence in the number of data points across measurement campaigns. In addition,

all path loss values weaker than FSPL at 1 m plus 100 dB were not considered for

analysis, based on the reasonable assumption that there would be fewer weaker

measurements at higher frequencies due to the greater path loss in the first meter,

so a frequency-dependent signal threshold was implemented to ensure that the

measured data sets would slightly emphasize more measurements at the higher

frequencies, resulting in a relatively comparable number of points for the di↵erent

frequencies from various measurement campaigns. The results of this chapter

were not heavily influenced by the binning or frequency-dependent thresholding,

but these approaches were found to yield comparable coverage distances over the

multiple frequencies based on the particular antennas and transmit powers used.

As shown in Tables 4.1 and 4.2, for both outdoor and indoor scenarios, the SF

between using d0 = 1 m and an optimized d0 di↵ers by no more than 0.3 dB in

most cases (more than an order of magnitude smaller than the standard deviation).
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Figure 4.1: ABG path loss model in the UMa scenario across di↵erent frequencies
and distances in the NLOS environment. Model parameters using all of the displayed
data are given at the top of the graph [50].

Figure 4.2: CIF path loss model in the UMa scenario across di↵erent frequencies and
distances in the NLOS environment. Model parameters using all of the displayed
data are given at the top of the graph [50].
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Figure 4.3: CI path loss model in the UMa scenario across di↵erent frequencies and
distances in the NLOS environment. Model parameters using all of the displayed
data are given at the top of the graph [50].

Note that the only significant di↵erences in error between the d0 = 1 m and the

optimized d0 value occur when there are very few measurement points, and the PLE

in CI-opt generally has a physically unreasonable value in these rare cases (e.g., the

PLE is less than 1, indicating much less loss than a metal waveguide; or the PLE is

negative, indicating decrease of path loss with distance; or the PLE is unreasonably

high). The majority of the measurement sets, the 1 m free space reference distance

model �� is always within 0.1 dB of the optimized d0 model, illustrating virtually

no di↵erence in standard deviation between the two approaches. Therefore, the 1 m

CI model provides su�ciently accurate fitting results compared to the CI-opt model,

and requires only one model parameter (PLE) to be optimized by the adoption

of a 1 m standard close-in free space reference distance, while the CI-opt model

requires two model parameters (PLE and d0) for modeling the mean path loss over

distance, and sometimes yields unrealistic PLEs and reference distances. For the

remainder of this technical report, the CI model (4.2) is assumed to use d0 = 1 m,
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as suggested in [54].

The ABG (4.1), CI (4.2) and CIF (4.4) models with d0 = 1 m are a function

of both distance and frequency, where the CI and CIF models have frequency

dependence expressed primarily by the frequency-dependent FSPL term (4.3) in the

first meter of free space propagation. While the ABG model o↵ers some physical

basis in the ↵ term, being based on a 1 m reference distance similar to the n

term in (4.2) and (4.4), it departs from physics when introducing both an o↵set �

(which is an optimization parameter that is not physically based), and a frequency

weighting term � that has no proven physical basis, although recent measurements

show that the path loss increases with frequency across the mmWave band in the

indoor o�ce scenario [200] (both the � and � parameters are used for curve fitting,

as was done in the WINNER floating-intercept (AB) model) [54, 114, 194]. It is

noteworthy that the ABG model is identical to the CI model if equating ↵ in the

ABG model in (4.1) with the PLE n in the CI model in (4.2), � in (4.1) with the

free space PLE of 2, and � in (4.1) with 20log10(4⇡ ⇥ 109/c) in (4.3).

Using the three path loss models described above, and the 30 measurement data

sets over a wide range of microwave and mmWave frequencies (2 to 73 GHz) and

distances (4 to 1238 m), the path loss model parameters were computed for the

three models. The PLE in the CI model, the n and b in the CIF model, and the ↵,

�, and � parameters in the ABG model were all calculated via the MMSE fit on

all of the path loss data from all measured frequencies and distances for a given

scenario (UMa, UMi, or InH), using closed-form solutions that minimize the SF

standard deviation, as detailed in the Appendix. In order to focus solely on the

comparison of propagation models, LOS and NLOS measurements were separated,

and the probabilities of LOS or NLOS were not included, although such probability
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models as described in [54, 71, 191, 201, 202, 203] may exploit the results of this

work.

Figs. 4.1 - 4.3 show scatter plots of all the data sets optimized for the ABG,

CIF, and CI models in the UMa scenario in the NLOS environment, respectively.

Table 4.3 summarizes the path loss parameters in the ABG, CI, and CIF models

for the UMa, UMi, and InH scenarios in both LOS and NLOS environments. As

shown in Table 4.3, the CI and CIF models each provide a PLE of 2.0, 2.1, 1.5, and

1.9 in the LOS environment for the UMa, UMi SC, InH o�ce and InH shopping

mall (SM) scenarios, respectively, which agrees well with a free space PLE of 2 in

UMa, UMi SC, and InH SM settings, or models the waveguiding e↵ects in the InH

o�ce scenario, respectively. Although the CI and CIF models yield slightly higher

SF standard deviation than the ABG model in most cases, this increased standard

deviation is usually a fraction of a dB and is within standard measurement error

arising from frequency and temperature drift, connector and cable flex variations,

and calibration errors in an actual measurement campaign. Notably, these errors

are often an order of magnitude less than the corresponding actual SF standard

deviations in all three models. It is noteworthy that the CIF model even renders

lower SF standard deviations than the ABG model for the LOS InH o�ce and

NLOS InH SM scenarios, indicating the greater accuracy of CIF compared to ABG

in these settings, even though the CIF model has fewer optimization parameters.

Furthermore, for the UMa and LOS UMi SC scenarios, the CI and CIF models

always yield identical PLEs and standard deviations for the same data set, and

the b parameter in the CIF model is virtually zero. For the NLOS UMi SC, and

InH SM scenarios, b in the CIF model is slightly positive, implying that path loss

increases with frequency beyond the first meter of free space propagation.
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Table 4.4 lists the model parameters in the ABG and CI models at di↵erent

frequencies in the NLOS environment for the UMa and UMi scenarios, with the

last line for each scenario showing the parameters for the multi-frequency model.

Note that for single frequencies, � in the ABG model is set to 2, thus reverting to

the AB model used in 3GPP and WINNER II channel models [114, 191, 202], and

the CIF model reverts to the CI model. Fig. 4.4 illustrates a useful example of

the CI and ABG models as compared to ideal free space path loss at 28 GHz for

the UMa NLOS environment, using the parameters for 2 - 38 GHz in Table 4.4.

Fig. 4.4 is useful since it shows how any one of the three path loss models might

be used at a particular single frequency in wireless system design, after the multi-

frequency model had been developed using a wide range of data over a vast range

of frequencies (in this case, the four measurement data sets for the UMa scenario

listed in Table 4.4).

A few key observations can be obtained from these figures and Table 4.4. First,

the ↵ and � parameters in the AB model can vary as widely as 2.3 and 49.7 dB

across frequencies, respectively, as shown in Table 4.4. The large variation of ↵

and � in the AB model was also observed in [54]. Second, the PLE n in the CI

model varies only marginally for the single frequency case, with a largest variation

of merely 0.5 for all the scenarios. The SF standard deviations for the CI and

ABG models di↵er by only a fraction of a dB over all frequencies and distances

in most cases, and the di↵erence is less than an order of magnitude of the SF for

either model, making the models virtually identical in accuracy over frequency

and distance. There is a case for UMi where the ABG model has 1.2 dB lower SF

standard deviation than the CI model, but there are only 82 data points in this

case, and recent working using a much larger data set showed only 0.4 dB di↵erence
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(8.2 dB for CI and 7.8 dB for ABG) for the UMi SC NLOS scenario [204], and

this di↵erence is more than an order of magnitude smaller than either standard

deviation.

As shown in Fig. 4.4, the parameters derived from 2 to 38 GHz for the UMa

NLOS environment, when applied at 28 GHz, indicate that the ABG NLOS model

underestimates path loss to be much less than free space when very close to the

transmitter (a nonsensical result!) and predicts much less path loss than CI NLOS

out to ⇠ 30 m. Perhaps more importantly, the floating-intercept ABG model

overestimates path loss (i.e., underestimates interference) at greater distances

compared with the CI model at far distances [54]. These results are clearly seen

by comparing the path loss vs. distance end-points in Figs. 4.1, 4.3 and 4.4. The

CI model is thus more conservative when analyzing interference-limited systems

at larger distances and more realistic when modeling NLOS signal strengths at

close-in distances.

From the above analysis, the CI model provides more stability and intrinsic

accuracy at distance end-points using fewer parameters (i.e., PLE and �CI
� ) across

wide ranges of frequencies with only a fraction of a decibel higher SF standard

deviation in most cases when compared to the four-parameter ABG model. The CI

model is anchored to FSPL in the first meter, and gives intuitive meaning through

the PLE parameter, since 10n mathematically describes the path loss in dB with

respect to a decade increase of distance beginning at 1 m, making it very easy to

compute power or path loss over distance [50]. Only a very subtle change of a single

constant is needed to the AB/ABG model to implement the simpler CI/CIF model,

i.e., replacing the floating intercept parameter with a FSPL term that is physically

based and is inherently a function of frequency. While Tables 4.3 and 4.4 show
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Figure 4.4: Example comparison of free space, CI and ABG path loss models
at 28 GHz for the UMa NLOS environment using the parameters derived with
measurements from 2 - 38 GHz in Table 4.3. Note how the ABG model estimates
5 dB less signal power (i.e., 5 dB less out-of-cell interference) at 1 km and more
signal power when close to the transmitter as compared to CI [50], as highlighted
by the orange circles.
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how the ABG, CI, and CIF models all provide comparable curve fitting standard

deviations over a wide frequency range, the CI and CIF models o↵er superior

accuracy and reliability when subject to extensive sensitivity analyses.

4.2 Prediction and Sensitivity Performance

This section investigates the prediction accuracy and sensitivity of the three path

loss models, i.e., ABG, CI and CIF. Because of the vast number of experimental

data points provided by the authors, it was possible to test the e�cacy of the path

loss models in situations where they are used outside of the particular frequencies,

locations, or distances. Prediction performance and model sensitivity were tested

by creating path loss models using a subset of the measurements (to obtain the

optimized model parameters) and then testing those resulting models against the

other subset of measurements (which were outside of the data sets used to generate

the original model parameters). This test is needed to establish whether engineers

could use the models with confidence in new scenarios or distances or frequencies

di↵erent than what were used to form the original models. If future systems use

more transmit power or have greater range than the measurement systems used to

derive the model parameters, or are to be used at di↵erent frequencies than what

were measured to produce the models, a sensitivity analysis such as this is critical

for comparing and selecting path loss models.

The measured data from all experiments for the UMa, UMi SC, and InH o�ce

scenarios shown in Table 4.3 are split into two sets [50]: a measurement set and a

prediction set, where the term measurement set refers to the set of measured data

used to compute the optimum (i.e., minimum SF standard deviation) parameters
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of the path loss model, and the term prediction set refers to a di↵erent set of

measured data that is scattered about the distance-dependent mean path loss

model constructed from the measurement set. For a specific path loss model (e.g.,

ABG, CI, or CIF), the SF standard deviation is calculated using the measured data

in the prediction set as distributed about the distance-dependent mean path loss

model constructed from the measurement set. As the measurement set varies with

distance, frequency, or city, as explained below, the optimized model parameters

computed from the measurement set, as well as the SF standard deviation for

the prediction set (i.e., the prediction error), also change. Therefore, two types

of comparisons are simultaneously performed as the measurement set varies: first,

the SF standard deviation for the prediction set about the model formed from the

measurement set is computed and compared for each of the three path loss models

in order to compare the accuracy for each model under identical measurement set

conditions; second, the optimized model parameters from the measurement set are

determined and compared between the three path loss models, to determine the

sensitivity and stability of the model parameters over di↵erent sets of measurement

data. Only the NLOS data are used in this prediction performance and sensitivity

study, since NLOS environments o↵er greater variability, higher SF standard

deviation, and are most likely to produce errors in 5G analysis and simulation.

4.2.1 Prediction in Distance

In this subsection, the total data set of each of the UMa, UMi SC, and InH

o�ce NLOS data of Table 4.3 is used and broken up into a measurement set

and a prediction set based on distance. The prediction set was kept fixed in

this investigation and the measurement sets were varied over distance, where the
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Figure 4.5: Shadow fading standard deviation of the ABG, CI, and CIF path loss
models for prediction in distance when the prediction set is close to the transmitter
in the UMa scenario [50].

optimum model parameters (corresponding to the minimum SF standard deviation)

were computed for each specific measurement set. The measurement sets included

measured data at distances which kept getting further away from the prediction

set.

The first investigation of this experiment is for the case when the prediction

set contains measurement points that are closer to the TX (base station) than the

measurement set. In this case, the prediction set is all the measured data with

distances smaller than or equal to dmax = 200 m, and the measurement sets varied

to include all distances greater than dmax + �d (�d > 0). Fig. 4.5 and Fig. 4.6

show the prediction errors and parameter variations of the ABG, CI, and CIF

models for prediction in distance in the UMa scenario. As can be seen in Fig. 4.5,

the prediction error of the CIF model generally increases with the increase of the

distance between the two data sets. However, remarkably, the CI path loss model



120

has a constant SF standard deviation for the prediction set, regardless of how far

away the measurement set gets [50]. On the other hand, the SF standard deviation

of the ABG model over the prediction set varies substantially as �d increases. For

the CI model, the largest di↵erence in the standard deviation of the scattered data

in the prediction set, around the optimized model derived from the measurement

set, is only 0.4 dB across the entire range of �d (from 0 to 600 m), and about 2

dB for the CIF model, while the standard deviation of the ABG model reaches as

high as 10.5 dB when �d = 150 m, and varies by 4.5 dB across the entire range of

�d. This shows how erratic and sensitive the ABG model is to the particular data

used to create the model parameters, and illustrates the heightened sensitivity for

certain situations when using the ABG model — no such problems exist for the

CI or CIF model [50]. The parameter stability of the PLE in the CI model and

the n and b values in the CIF model is much better than the parameters of the

ABG model when varying the distance between the two sets, as seen in Fig. 4.6.

In particular, the ↵ of the ABG model can vary a lot (3.2 to 4.6), which could

have significant e↵ects in system-level simulations, as the level of signal strength or

interference greatly depends on the value of ↵ (i.e., the distance-related parameter).

In addition, the � of the ABG model can vary by 39.5 dB [50].

For the UMi scenario, the prediction set uses T-R separation distances smaller

than or equal to 50 m, and the distance is larger than 50 m for the measurement

set; for the InH o�ce scenario, the prediction set corresponds to T-R separation

distances smaller than or equal to 15 m, and the measurement set contains data

with distances larger than 15 m, considering the generally shorter T-R separations

compared to outdoor cases. The prediction results for the UMi SC scenario are

illustrated in Figs. 4.7 and 4.8, while Figs. 4.9 and 4.10 display the prediction
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Figure 4.6: Parameters of the ABG, CI, and CIF path loss models for prediction in
distance when the prediction set is close to the transmitter in the UMa scenario.
Note that the scale for � (dB) in the ABG model is to the right [50].

performance for the InH o�ce scenario [50]. As shown by Figs. 4.7 to 4.10, the

prediction error of the ABG model fluctuates significantly and rises dramatically

as the measurement set gets further away from the prediction set, and may become

incredibly high, e.g., over 20 dB. On the other hand, the CI and CIF models yield

low (at most 8.2 dB) and very stable prediction errors across the entire range of

�d for both UMi and InH scenarios, which implies that the CI and CIF models

are both more accurate than the ABG model under varying data sets, and are not

sensitive to the data set used to generate the model parameters. Similar to the

UMa case, the model parameters in the CI and CIF models exhibit little variation,

while the ↵ and � in the ABG model vary significantly over the investigated range

of �d [50].

The second investigation of this experiment is for the case that the measurement
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Figure 4.7: Shadow fading standard deviation of the ABG, CI, and CIF path loss
models for prediction in distance when the prediction set is close to the transmitter
in the UMi SC scenario [50].

Figure 4.8: Parameters of the ABG, CI, and CIF path loss models for prediction in
distance when the prediction set is close to the transmitter in the UMi SC scenario.
Note that the scale for � (dB) in the ABG model is to the right [50].
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Figure 4.9: Shadow fading standard deviation of the ABG, CI, and CIF path loss
models for prediction in distance when the prediction set is close to the transmitter
in the InH o�ce scenario [50].

Figure 4.10: Parameters of the ABG, CI, and CIF path loss models for prediction
in distance when the prediction set is close to the transmitter in the InH o�ce
scenario. Note that the scale for � (dB) in the ABG model is to the right [50].
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set contains measured data closer to the TX (base station) than the prediction

set [50]. In this case, the prediction set contains all UMa measurements with

distances larger than or equal to dmin = 600 m, and the measurement set varies

with all distances smaller than dmin � �d (�d > 0). The results for this case in the

UMa scenario are shown in Fig. 4.11 and Fig. 4.12 for the SF standard deviation

on the prediction set and the parameters of the path loss models, respectively, both

as a function of �d. As shown by Fig. 4.11, the prediction errors of both the CI and

CIF path loss models vary very little as the distance between the measurement

set and prediction set increases, while the prediction error of the ABG model on

the prediction set exhibits significant variation as �d increases. Notice that the

prediction errors of both the CI and CIF models vary by up to only 1.4 dB across

the entire range of �d (from 0 to 400 m); in contrast, the prediction error of the

ABG model can be as large as 16.1 dB and the maximum di↵erence in prediction

error reaches 12.5 dB across the entire range of �d. Moreover, the stabilities of

the modeling parameters in the CI and CIF models are much better compared

to those of the ABG model when varying the distance between the two sets, as

illustrated by Fig. 4.12, where the ↵ and � of the ABG model vary by 2.2 and

46.6 dB, respectively. This, again, shows the great sensitivity and inaccuracy

(gross errors) of the ABG model to the particular data used to create the model

parameters and the remarkable accuracy and robustness of the CI/CIF models to

various measurement sets [50].

4.2.2 Prediction in Frequency

In this section, the prediction set contains the data for a given frequency and

the measurement set corresponds to all the other frequencies. For example, the
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Figure 4.11: Shadow fading standard deviation of the ABG, CI, and CIF path
loss models for prediction in distance when the measurement set is close to the
transmitter in the UMa scenario [50].

Figure 4.12: Parameters of the ABG, CI, and CIF path loss models for prediction in
distance when the measurement set is close to the transmitter in the UMa scenario.
Note that the scale for � (dB) in the ABG model is to the right [50].
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Figure 4.13: Shadow fading standard deviation for the ABG, CI, and CIF path
loss models for prediction in frequency in the UMa scenario. The measurement
set is for all frequencies except the excluded one shown on the x axis which is the
prediction set [50].

prediction set could be all data at 2 GHz and the measurement set the data for all

the other frequencies (10, 18, 28, and 38 GHz) for the UMa scenario.

Fig. 4.13 depicts the RMS error for the three path loss models on the prediction

and measurement sets for the frequency shown on the x axis (where the frequency on

the x axis comprises all data in the prediction set). It can be observed from Fig. 4.13

that although all the three models yield varying prediction errors across the entire

frequency range, the variation is the largest for the ABG model. The prediction error

of the ABG model is much greater (about 19 dB) at lower frequencies where legacy

4G systems will work, showing the liability of the ABG model for simultaneous use

in lower frequency and mmWave systems. The CI model shows the most robust

and accurate prediction over all frequencies. The parameters of the three path

loss models for prediction in frequency are shown in Fig. 4.14. It is obvious from
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Figure 4.14: Parameters of the ABG, CI, and CIF path loss models for prediction
in frequency in the UMa scenario. The measurement set is for all frequencies except
the excluded one shown on the x axis which is the prediction set. Note that the
scale for � (dB) in the ABG model is to the right [50].

Fig. 4.14 that the parameters in the CI and CIF models vary much less across

frequencies as compared to the parameters in the ABG model, demonstrating the

liability of the ABG model in terms of the sensitivity analysis of specific frequencies

and measurements used in the data sets [50].

4.2.3 Prediction Across Environments

Fig. 4.13 and Fig. 4.14 also show the prediction performance of the three path

loss models across environments, when considering an arbitrary single frequency,

e.g., focusing on the results associated with 38 GHz. The 2, 10, 18, and 28 GHz

data were measured in the Aalborg UMa environment, while the 38 GHz data were

obtained from the Austin UMa environment, hence prediction results at 38 GHz

actually show how the three path loss models behave when using the Aalborg data
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to predict the Austin data. As seen in Fig. 4.13, the prediction errors for the CI

and CIF models at 38 GHz are slightly smaller than the ABG model, indicating

that all three models yield comparable prediction performance when applied in

di↵erent cities [50].

These results, as well as those in [82], show superior prediction ability and robust

sensitivity of the CI path loss model for outdoor scenarios, and the virtue of the CIF

model for indoor settings in the large majority of cases. This advantage is especially

useful for 5G mmWave standardization where an accurate, trustworthy model must

be developed without the benefit of a complete set of measurements across all

frequencies and all environments, especially given the fact that future spectrum

may be allocated in bands di↵erent from what was originally measured [50].

4.3 Concluding Remarks

This chapter has provided a comparison of three large-scale propagation path loss

models, i.e., the ABG (four parameters), CI (two parameters), and CIF (three

parameters) models, over the microwave and mmWave frequency bands using 30 sets

of measurement data from 2 GHz to 73 GHz for UMa, UMi, and InH scenarios [50].

First, comparisons were made between the 1-m CI model and the CI model with

an optimized reference distance d0 (CI-opt). Results show that the two-parameter

1-m CI model provides virtually identical accuracy as compared to the three-

parameter CI-opt model, and the CI-opt model can sometimes yield unrealistic

PLEs. The data prove that a 1-m free-space reference distance, rather than an

optimized d0, is justified for the CI model [50].

Work here showed that the ABG, CI and CIF models are all very comparable
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in prediction accuracy when large data sets exist, even though the ABG model

requires more model parameters and lacks a physical basis for its floating intercept

value. By contrast, the CI and CIF models are physically tied to the transmitter

power via the utilization of a 1-m close-in free-space reference distance that has

inherent frequency dependency over the entire microwave and mmWave bands.

This allows for comparable accuracy but greater parameter stability using fewer

model parameters, and for easy “in your head” computation of mean path loss at

all distances, by virtue of just a single model parameter (PLE or n) for the CI

model (where 10n is the path loss in dB per decade of distance beyond 1 m) and

two model parameters (n and b) for the CIF model. No change in mathematical

form, and the change of just a single constant is all that is needed to change the

existing 3GPP floating-intercept (AB/ABG) path loss model to the simpler and

more stable CI/CIF models which provide virtually identical accuracy compared to

the four-parameter ABG model over a vast range of frequencies — from today’s

cellular to future mmWave bands. This chapter showed that the AB and ABG

models have parameter values that vary greatly across di↵erent frequency and

distance ranges, while reducing the SF standard deviation by only a fraction of a

dB in most cases compared to the physically-based CI and CIF models that use

fewer model parameters. The single greatest di↵erence between standard deviations

for all three models over all scenarios was found to be 1.2 dB for the UMi scenario,

where only 82 data points were available. However, a recent study with a much

richer data set [204] showed only 0.4 dB di↵erence between the ABG and CI models

in UMi [50].

This chapter showed, by way of example at 28 GHz, that the ABG NLOS

model has inherent inaccuracy at both small (< 30 m) and large (several hundred
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meters) distances, and predicts less than free space loss when close to the TX

while underestimating interference at large distances when used at an arbitrary

frequency as compared to CI. Hence, the ABG model will lead to overly optimistic

capacity simulations. Especially for future small cell deployments, where dozens of

neighboring BSs could produce interference, the simulation results would be vastly

di↵erent between the ABG and CI/CIF models [50].

A key contribution of this chapter was a sensitivity analysis that showed the CI

and CIF models are superior to the ABG model in both stability performance and

prediction accuracy (i.e., SF standard deviation) over a vast frequency range, when

using the model to predict path loss at di↵erent distances and frequencies relative

to the set of data from which the parameters of the path loss models were originally

determined. Thus, for unexpected scenarios or for situations where a path loss

model may be used at di↵erent distances or frequencies than the measurements

used to create the original model, the sensitivity analysis in this chapter shows the

CI and CIF models are more robust, accurate, and reliable as compared to the

ABG model [50].

Finally, the CI model was shown to be most suitable for outdoor environments

because of its accuracy, simplicity, and superior sensitivity performance due to

its physical close-in free space reference point, given the fact that measured path

loss exhibits little dependence on frequency in outdoor environments beyond the

first meter of free space propagation (captured in the FSPL term). On the other

hand, the CIF model is well suited for indoor environments, since it provides a

smaller standard deviation than the ABG model in many cases even with fewer

model parameters, and has superior accuracy when scrutinized with the sensitivity

analysis [50].
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Chapter 5

5G Channel Simulator —

NYUSIM

5.1 NYUSIM Overview

NYU WIRELESS conducted mmWave measurements from 2012 through 2017,

having acquired a total of over 1 Terabytes of data, at frequencies from 28 to 73

GHz in various outdoor environments in UMi, UMa, and RMa environments. The

measurements and analysis done in [2, 48, 49, 50, 51, 52, 54, 59, 61, 205, 206, 207,

208] led to this NYUSIM channel simulator.

NYUSIM performs drop-based Monte Carlo simulation to generate a CIR at

each drop (i.e., user location) assuming no user mobility. Channels for di↵erent user

locations are assumed to be independent, justified by small correlation distances

(up to about 10 centimeters) found in measurements [62]. NYUSIM provides an

accurate rendering of actual CIRs in both time and space, as well as realistic signal

levels that were measured, and may be utilized to support realistic physical layer
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and link layer simulations such as those conducted in [48, 106, 209, 210]. The

models and simulation approach in NYUSIM involves the research of more than

a dozen graduate and undergraduate students, and as of late 2017, over 10,000

downloads of NYUSIM have been recorded. NYUSIM is applicable for a wide

range of carrier frequencies from 500 MHz to 100 GHz, and RF bandwidths from 0

(continuous wave (CW)) to 800 MHz.

It is worth noting that in the 3GPP TR 38.901 Release 14 channel model for

frequencies above 6 GHz [66], the number of clusters is unrealistically large. For

example, in the UMi street canyon scenario, the number of clusters in the LOS

environment is as high as 12, and 19 in the NLOS environment, which is not

supported by the real-world measurements at mmWave bands [2, 52, 54, 205]. In

contrast, in the SSCM implemented in NYUSIM [52], the number of time clusters

ranges from 1 to 6, and the mean number of spatial lobes is about 2 and is upper-

bounded by 5, which are obtained from field observations and are much smaller than

those in the 3GPP channel model [48, 51, 66, 208]. The impractical number of

clusters in the 3GPP channel model is likely to result in a higher rank of mmWave

channels, unrealistic eigen-channel distributions, and thereby inaccurate spectral

e�ciency prediction for 5G mmWave channels [48, 208].

5.2 Channel Model Implemented in NYUSIM

The broadband SSCM [52] developed by NYU WIRELESS is used in NYUSIM

with some important extensions such as including MIMO antenna arrays, adding

atmospheric attenuation into path loss, adding more propagation scenarios, gener-

ating directional PDPs using accurate directional antenna patterns, etc., to extend
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the SSCM to the NYUSIM channel model and a standalone channel simulation

software [51]. The SSCM is introduced in [52] and Section 2.4.10 of this technical

report and key extensions are detailed below.

5.3 Extensions of SSCM to NYUSIM

5.3.1 Path Loss Model and Additional Propagation Scenar-

ios

The CI path loss model with a 1 m anchor point, with an extra attenuation term

due to various atmospheric attenuation factors [211], is employed in NYUSIM,

which is expressed as [50, 54, 168]:

PLCI(f, d)[dB] =FSPL(f, d0)[dB] + 10nlog10

✓
d

d0

◆
+AT[dB] + �CI

� ,

where d � d0 m (5.1)

where d0 denotes the free space reference distance in meters, which is set to 1 m in

the NYUSIM channel model [50]. Users can change d0 to some value other than 1

m in NYUSIM MainCode.m, but d0 should not exceed 5 m to guarantee free space

propagation within d0. AT is the attenuation term induced by the atmosphere,

which is characterized by:

AT[dB] = ↵[dB/m]⇥ d[m] (5.2)

where ↵ is the attenuation factor in dB/m for the frequency range of 1 GHz to 100

GHz, which includes the collective attenuation e↵ects of dry air (including oxygen),
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Figure 5.1: Propagation attenuation due to dry air, vapor, haze, and rain at
mmWave frequencies, with a barometric pressure of 1013.25 mbar, a relative
humidity of 80%, a temperature of 20�C, and a rain rate of 5 mm/hr [211].

water vapor, rain, and haze [211]. d is the 3D T-R separation distance as in (5.1).

Fig. 5.1 illustrates example propagation attenuation values due to dry air,

vapor, haze, and rain at mmWave frequencies from 1 GHz to 100 GHz, with a

barometric pressure of 1013.25 mbar, a relative humidity of 80%, a temperature

of 20�C, and a rain rate of 5 mm/hr, while the collective attenuation e↵ects of

these four main natural absorbers are displayed in Fig. 5.2. These results were

obtained and reproduced from five reported controlled experiments on atmospheric

attenuation [211].

The SSCM is applicable to the UMi scenario, while in NYUSIM, the scenario is

extended to UMa and RMa with di↵erent PLEs and/or TCSL statistics as compared

to the UMi scenario. In the latest version (Version 1.6) of NYUSIM, the PLE and

shadow fading standard deviations for UMi, UMa, and RMa scenarios are displayed
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Figure 5.2: Collective attenuation e↵ects of dry air, vapor, haze, and rain at
mmWave frequencies, with a barometric pressure of 1013.25 mbar, a relative
humidity of 80%, a temperature of 20�C, and a rain rate of 5 mm/hr [211].

in Table 5.1. The CI path loss model is employed for UMi and UMa scenarios,

while for the RMa scenario, the CIH model (CI model with a height-dependent

PLE) is adopted, as given by Eqs. (21) and (22) in [59]. The RMa PLE values in

Table 5.1 are for a base station height of 35 m. Note that although the channel

parameters for the UMi scenario are also used for the UMa and RMa (except for

the path loss model parameters) scenarios in NYUSIM, users can adjust the UMa

and RMa channel parameters in the source code according to their own needs.

Furthermore, for the RMa scenario, the number of TCs and the number of SLs are

both set to one, and the maximum number of MPCs is set to two, based on our

RMa mmWave field measurements [59]. The BS height is only used for RMa in the

CIH path loss model but not other scenarios.

5.3.2 MIMO Antenna Arrays at Both TX and RX

In NYUSIM, antenna arrays, such as uniform linear arrays (ULAs) and uniform

rectangular arrays (URAs), are allowed to be equipped at both the BS and UE.
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The entries in the MIMO channel matrix H are obtained by extending the om-

nidirectional CIR over the antenna array manifold at the TX and/or RX using

Eqs. (2.8)- (2.11). Assuming the RX is equipped with a ULA with eight antenna

elements with half-wavelength spacing at a carrier frequency of 28 GHz, Fig. 5.3

illustrates the downlink received PDPs at each RX antenna element (i.e., small-scale

PDPs) for various RF bandwidths, i.e., 800 MHz, 100 MHz, and 0 MHz (CW),

generated using NYUSIM. Due to the high temporal resolution at an 800 MHz RF

bandwidth, the magnitude of small-scale MPCs remain almost constant over several

wavelengths (see Fig. 5.3(a)). When the RF bandwidth decreases, however, a delay

bin may contain a number of unresolvable MPCs whose phases and magnitudes

add up in a vectorial manner, thus the overall magnitude of a delay bin usually

vary over a small-scale local area, as shown in Figs. 5.3(b) and 5.3(c).

5.3.3 Directional PDPs with Accurate Directional Antenna

Patterns

5G mmWave systems are expected to use antenna arrays with directional radiation

patterns, thus directional PDPs are of great importance and research interest. To

generate directional PDPs at arbitrary TX-RX pointing angle combination for

Table 5.1: PLEs and shadow fading standard deviations for di↵erent scenarios in
NYUSIM [50]. The RMa PLEs are for a base station height of 35 m [59].

Scenario PLE Shadow Fading Standard Deviation (dB)

UMi
LOS 2 4.0

NLOS 3.2 7.0

UMa
LOS 2 4.0

NLOS 2.9 7.0

RMa
LOS 2.31 1.7

NLOS 3.07 6.7
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(a) 800 MHz RF Bandwidth

(b) 100 MHz RF Bandwidth (c) Continuous Wave

Figure 5.3: Small-scale PDPs at each RX antenna element with half-wavelength
spacing for (a) 800 MHz, (b) 100 MHz, and (c) 0 MHz RF bandwidth.
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(a) (b)

Figure 5.4: Example antenna radiation patterns based on (5.3).

user-defined azimuth and elevation antenna HPBWs based on the omnidirectional

PDPs produced by NYUSIM, the MPC power levels are weighted by a desired

antenna pattern, such that the MPCs closest to a desired direction are amplified,

while those farthest away are set to 30 dB down relative to the strongest MPC [66].

In NYUSIM, an antenna pattern emulating the horn antenna pattern used in the

mmWave field measurements [2, 54] is used and is approximated as follows:
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where the term G0
1000 is set according to the side-lobe level defined in the 3GPP

channel model [66]. The corresponding example radiation patterns are illustrated

in Fig. 5.4, which match the gains and patterns of the horn antennas used in field

measurements [2].
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5.3.4 Range Extension

Extensive mmWave propagation measurements conducted by NYU WIRELESS

have shown that in dense urban environments, mmWave signals can cover around

200 m cell radius even under NLOS conditions [2, 54, 168], and is likely to reach

500 m in lightly populated urban and suburban areas. Furthermore, recent RMa

propagation measurements at 73 GHz demonstrated over 10 km coverage range in

clear weather [59]. To make NYUSIM cater for more users and wider applications,

the maximum allowable T-R separation distance is extended from 500 m to 1 km

in NYUSIM v1.6, by removing all the lower bounds on received power (including

cluster power, subpath power, and lobe power), or equivalently, upper bounds on

path loss, assuming there exits such a virtual receiver that can detect very low

received power.

For LOS environments, calculated path loss beyond 500 m is still accurate using

the NYUSIM path loss models (e.g., CI and CIH [50, 59]) since they are applicable

to over 10 km distances. For NLOS environments, however, the NLOS path loss

models employed in NYUSIM may not be accurate for distances larger than 500

m since they were developed for ranges within 500 m [50], thus caution should be

given when setting the distance beyond 500 m for UMi or UMa NLOS scenarios.

The dynamic range for multipath components in the extended range is extended to

220 dB from the default value of 190 dB used for distances no larger than 500 m.
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Figure 5.5: GUI of NYUSIM.

5.4 Graphical User Interface and Simulator Ba-

sics

Fig. 5.5 shows the graphical user interface (GUI) of NYUSIM. The simulator

performs Monte Carlo simulations, generating certain numbers of samples of CIRs

at specific T-R separation distances, where the number of samples and the range of

T-R separation distances are to be specified by users, as explained in the following

subsection. It takes about 22 minutes to generate and save 100 CIRs and all the

output files (five .png files, seven sets of .txt files and seven .mat files for each CIR

simulation run as detailed in Section 2.2) on a PC server with two processors (2.40

GHz and 2.39 GHz) and 96.0 GB RAM.
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5.4.1 Input Parameters

There are 30 input parameters to the channel simulator, which are grouped into

two main categories: Channel Parameters and Antenna Properties, as shown on

the GUI in Fig. 5.5. The panel Channel Parameters contains 18 fundamental input

parameters about the propagation channel, as listed and explained below:

1. Distance Range Option: a selectable parameter denoting the distance range.

Two options, ”Standard (10-500 m)”, and ”Extended (10-10,000 m)”, are

applicable. The default setting is ”Standard (10-500 m)”. For the distance

range no larger than 500 m, the dynamic range (i.e., largest possible path loss)

is set to 190 dB in NYUSIM based on field measurement results [2, 50, 54],

while for the distance range beyond 500 m, the dynamic range is set to 220

dB.

2. Frequency (GHz): an editable parameter denoting the carrier frequency in

GHz. The default value is 28 (GHz), and it can be varied from 0.5 to 100

(GHz) with at most one decimal point.

3. RF Bandwidth (MHz): an editable parameter denoting the RF bandwidth of

the transmitted signal in MHz. The default value is 800 MHz, and it can be

varied from 0 to 800 MHz. As the simulator was developed from real-world

measurements obtained with an RF bandwidth of 800 MHz, it can only scale

down from 800 MHz.

4. Scenario: a selectable parameter denoting the scenario. Three options, “UMi”,

“UMa”, and “RMa”, are applicable. The channel parameters for the UMi

scenario are also used for the UMa and RMa scenarios in this simulator,
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except that the RMa scenario has its own path loss model parameters. The

default option is “UMi”.

5. Environment: a selectable parameter denoting the environment, either LOS

or NLOS. The default setting is LOS.

6. Lower Bound of T-R Separation Distance (m): an editable parameter denoting

the smallest distance between the TX and RX in meters with at most one

decimal place. The default value is 10 m, and it can be varied from 10 m to

500 m for the standard range (verified by extensive measurements by NYU),

and 10 m to 10 km for the extended range, but no more than the upper

bound of the T-R separation distance.

7. Upper Bound of T-R Separation Distance (m): an editable parameter denoting

the largest distance between the TX and RX in meters with at most one

decimal place. The default value is 500 m, and it can be varied from 10 m to

500 m for the standard range (verified by extensive measurements by NYU),

and 10 m to 10 km for the extended range, but no less than the lower bound

of the T-R separation distance.

8. TX Power (dBm): an editable parameter denoting the transmit power in

dBm. The default value is 30 (dBm), and can be set to any value ranging

from 0 to 50 (dBm).

9. Base Station Height (m): an editable parameter denoting the base station

height in m. The default value is 35 (m) [66], and can be set to any value

ranging from 10 to 150 (m) [59]. This base station height is only applicable

to RMa modeling and is ignored for other scenarios.
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10. Barometric Pressure: an editable parameter denoting the barometric pressure

in mbar used in evaluating propagation path loss induced by dry air. The

default and typical value is 1013.25 mbar (millibar) (i.e., nominal for sea

level), and may range from 10�5 to 1013.25 (mbar) [211].

11. Humidity: an editable parameter denoting the relative humidity in percentage

used in evaluating propagation path loss induced by vapor. The default value

is 50 (%), and can be set to any number between 0 and 100 (%).

12. Temperature: an editable parameter denoting the temperature in degrees

Celsius used in evaluating propagation path loss induced by haze/fog. The

default and typical value is 20 (�C), and may range from -100 to 50 (�C) [211].

13. Rain Rate: an editable parameter denoting the rain rate in mm/hr used in

evaluating propagation path loss induced by rain. The default value is 0

(mm/hr), and the typical range is 0 to 150 (mm/hr) [2].

14. Polarization: a selectable parameter denoting the polarization relation be-

tween the TX and RX antennas or antenna arrays. The default setting is

Co-Pol (co-polarization), and can be changed to X-Pol (cross-polarization).

The cross-polarization discrimination (XPD) can vary from 5 dB to 27

dB [212, 213, 214], depending on the frequency and environment. In this

simulator, for Co-Pol, no extra loss will be added to the path loss, while an

extra 25 dB loss will be added to the path loss for X-Pol due to polarization

mismatch based on the measurement results in [214]. For more detailed

background, please refer to [214].

15. Foliage Loss: a selectable parameter indicating whether or not foliage loss
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will be considered in the simulation. The default setting is No (which implies

foliage loss will not be considered), and can be changed to Yes (which means

foliage loss will be considered).

16. Distance Within Foliage: an editable parameter representing the distance in

meters that the transmitted signal travels within foliage. The default value is

0, and can be set to any non-negative number no larger than the lower bound

of the T-R separation distance.

17. Foliage Attenuation: an editable parameter denoting the propagation loss

induced by foliage in dB/m. The default value is 0.4 (dB/m) based on the

measurement results in [214], and can be set to any value between 0 and 10

(dB/m). For more detailed background, please refer to [214].

18. Number of RX Locations: an editable parameter denoting the number of RX

locations. It can be any positive integer number. The default value is 1, and

can be set to any integer from 1 to 10,000.

The panel Antenna Properties contains 12 input parameters related to the TX

and RX antenna arrays, as listed and explained below:

1. TX Array Type: a selectable parameter denoting the TX antenna array type.

The default setting is ULA, and can be changed to URA.

2. RX Array Type: a selectable parameter denoting the RX antenna array type.

The default setting is ULA, and can be changed to URA.

3. Number of TX Antenna Elements Nt: an editable parameter denoting the

total number of TX antenna elements in the array. The default value is 1,

and can be set to any integer from 1 to 128.
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4. Number of RX Antenna Elements Nr: an editable parameter denoting the

total number of RX antenna elements in the array. The default value is 1,

and can be set to any integer from 1 to 64.

5. TX Antenna Spacing (in wavelength): an editable parameter denoting the

spacing between adjacent TX antennas in the array in terms of the carrier

wavelength. The default value is 0.5, and can be set to any positive number

with up to one decimal place from 0.1 to 100. Note that larger antenna spacing

leads to lower spatial correlation hence higher achievable rate [210]. Also, no

antenna mutual coupling considered for simplicity, likely to result in more

optimistic achievable rate for closely-spaced (e.g., less than 0.5 wavelength

spacing) antennas [14].

6. RX Antenna Spacing (in wavelength): an editable parameter denoting the

spacing between adjacent RX antennas in the array in terms of the carrier

wavelength. The default value is 0.5, and can be set to any positive number

with up to one decimal place from 0.1 to 100.

7. Number of TX Antenna Elements Per Row Wt: an editable parameter

denoting the number of TX antennas in one dimension when the TX Array

Type is ULA or URA, which should divide the number of TX antenna elements.

The default value is 1.

8. Number of RX Antenna Elements Per Row Wr: an editable parameter

denoting the number of RX antennas in one dimension when the RX Array

Type is ULA or URA, which should divide the number of RX antenna elements.

The default value is 1.
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9. TX Antenna Azimuth HPBW (degrees): an editable parameter denoting the

azimuth HPBW of the TX antenna (array) in degrees. The default value is

10�, and can be set to any value from 7� to 360� (since the smallest azimuth

HPBW of the antennas used in the measurements for the simulator was 7�).

10. TX Antenna Elevation HPBW (degrees): an editable parameter denoting the

elevation HPBW of the TX antenna (array) in degrees. The default value is

10�, and can be set to any value from 7� to 45� (since the smallest elevation

HPBW of the antennas used in the measurements for the simulator was 7�).

11. RX Antenna Azimuth HPBW (degrees): an editable parameter denoting the

azimuth HPBW of the RX antenna (array) in degrees. The default value is

10�, and can be set to any value from 7� to 360�.

12. RX Antenna Elevation HPBW (degrees): an editable parameter denoting the

elevation HPBW of the RX antenna (array) in degrees. The default value is

10�, and can be set to any value from 7� to 45�.

It is worth noting that the HPBWs are only used for generating directional

PDPs per users’ requests. The HPBW in the input parameters is for the entire

antenna array, instead of for each antenna element, when the number of antenna

elements is more than one at the TX and/or RX. Conventionally, the HPBW of an

antenna array is a function of the number of antenna elements and the antenna

spacing, but in this simulator these three parameters (i.e., the HPBW, number

of antenna elements, and antenna spacing) can be independently specified by the

user, since there may be a wide range of beamforming approaches (e.g., digital,

analog, hybrid), in all of which di↵erent individual antenna element types (e.g.,

patch antennas, vertical antennas, horns) may be used. To make the simulator as
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general as possible, the number of individual antenna elements is specified (without

specifying the gain or combining losses thereof) and the total array HPBW. Note

that the antenna pattern and implementation details are only very loosely defined

to specify the gain in the particular pointing (maximum gain) direction.

Since some antenna elements may have more gain or loss depending on the

specific array type (e.g., ULA); that is, someone may choose to fabricate their

individual array with more individual antenna element gain than another person

will, and losses vary with fabrication process (e.g., on chip antenna elements have

more loss when a lens is not used than if a lens is used ). Instead of dealing with the

myriad antenna fab and connection details needed to make an array — there are

numerous variables — the total HPBW and the number of elements are allowed to

be specified, without specifying the individual antenna element gain. For example,

assuming there are four elements in an antenna array, where each element has 6 dB

gain because they are patch or Yagi/directional or horn antennas for each element,

then this array can have the same overall HPBW as a 16 element array with unity

gain dipole or vertical elements.

Without specifying the specific antenna elements and their interconnected

characteristics, only the HPBW is specified while the beam pattern is left undefined.

Consequently, one has the freedom to implement an antenna pattern of their choice

for system simulations, which may include interference from signals outside of

the main gain direction. Besides the antenna pattern in (5.3), below are some

other heuristic approaches of constructing one’s own antenna pattern based on the

specified HPBW, where the antenna gains in the following equations are all relative

to an isotropic antenna.
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• The antenna pattern employed in [52] has the following form:

G(�, ✓) = max(G0e
�↵�2��✓2 ,

G0

100
), where ↵ =

4ln(2)

�2
3dB

, � =
4ln(2)

✓23dB
, G0 =

41253⌘

�3dB✓3dB

(5.4)

where (�, ✓) denote the azimuth and elevation angle o↵sets from the boresight

direction in degrees, G0 is the maximum directive gain (boresight gain) in

linear units, (�3dB, ✓3dB) represent the azimuth and elevation HPBWs in

degrees, (↵, �) are parameters that depend on the HPBW values, and ⌘ =

0.7 is a typical average antenna e�ciency.

• The radiation pattern of a sectored cell site antenna was employed in [215],

where the azimuthal radiation pattern is modeled as a cardioid given by [215]

r(✓) = ↵[1 + sin(✓ +
⇡

2
)] (5.5)

where r is the gain of the antenna at azimuth angle ✓ from its maximum lobe

and is a scaling factor. The elevation radiation pattern is an ellipse with the

base station at a focus point [215]:

x2

a2
+

y2

b2
= 1 (5.6)

• A sectored antenna pattern model was introduced in [216], where constant

directivity gains are assumed for the main lobe and the side lobe.
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5.4.2 Output Folder Selection

To the right of the above two category panels (channel parameters and antenna

properties) on the GUI, there is an option named “Select a Folder to Save Files”.

This option allows users to select a folder to save the output files (e.g., figures, data

files) from the simulator. The default path is the disk that contains the current

running folder. Users can select a folder inside the default path by clicking on the

desired paths/folders.

5.4.3 Output File Type Selection

To the right of the folder selection option on the GUI, there is an option named

“Output File Type”. This option allows users to select a file type for the output

data files from the simulator. The default type is Text File, and can be switched to

MAT File, and Both Text and MAT File.

5.4.4 Operation of the GUI

Five basic steps, as shown on the top left panel on the GUI, need to be executed

to run the channel simulator:

1. To begin (reset) the simulator, click Start (Reset)

2. Set your input parameters below

3. Select a folder to save files

4. Click Run

5. To run another simulation, click Reset, and repeat Steps 2-4
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The meanings of these steps are detailed as follows. When opening the GUI for

the first time, users shall click on the yellow button “Start” to initiate the simulator

and enable the input of the GUI. Next, users can set and/or select the 30 input

parameters according to their own needs; the simulator will execute the default

values for each parameter if there is no input from the user. Then, users shall

select a folder to save all the output files by clicking on the desired paths/folders

under the option “Select a Folder to Save Files”. Finally, users shall click on the

light green button “Run” to run the simulations. While the simulator is running, a

progress bar will pop up at the bottom left of the GUI, which informs users of the

progress of the simulations. After the simulation is complete, the progress bar will

disappear automatically, and the five figures generated from the first simulation

run will pop up on the screen. To initiate another set of simulation runs (e.g.,

with di↵erent input parameter values), users shall click on the dark green button

“Reset”, after which all the input parameters from the previous simulation run will

be set as the default input values. The simulator can be closed at any time by

clicking the red button “Exit” on the bottom right of the GUI.

If the input parameter exceeds the predefined range shown on the NYUSIM

GUI or is not reasonable/logical, an error message will pop up to let the user either

reset the parameter on GUI or modify the NYUSIM source code without using the

GUI to meet users’ own needs. For example, if the input number of TX antenna

elements per row Wt is larger than the input number of TX antenna elements Nt, a

corresponding error message will pop up. Users shall click ”OK” on the error bar,

then click the dark green button ”Reset” on the GUI to reset the input parameter,

and the following steps are identical to those described above.
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5.5 Output Files

5.5.1 Output Figures

For each simulation run, five figures will be generated and stored that are based on

the particular results of the simulation that is being run, and an additional figure

of path loss scatter plot will be generated and stored after N (N � 1) continuous

simulation runs with the same input parameters are complete. Note that the T-R

separation distance is not an input parameter, but, instead, the lower bound and

upper bound of the T-R separation distance are input parameters, such that the

actual T-R separation distance will vary automatically among di↵erent simulation

runs. Regardless of the number of simulation runs (RX locations), the five figures

generated from the first simulation run, as well as the last figure generated for

N (N � 1) continuous simulation runs with the same input parameters, will pop

up on the screen for visual purposes. The contents of those figures are as follows:

• 3D AoD power spectrum, as illustrated in Fig. 5.6.

• 3D AoA power spectrum, as shown in Fig. 5.7.

• A sample omnidirectional PDP, as displayed in Fig. 5.8. Some fundamental

information such as the frequency, environment, T-R separation distance,

RMS delay spread, omnidirectional received power, omnidirectional path

loss, and PLE [2, 54] is displayed on the PDP plot. The red solid line on

the PDP denotes the noise threshold (i.e., the minimum received power of

each resolvable multipath component) determined by the transmit power,

dynamic range of the measurement system (180 dB), and a 10 dB SNR, i.e.,

the threshold equals the transmit power in logarithmic scale minus 170 dB.
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• A sample directional PDP with strongest power, where directional antenna

gain patterns are implemented at the TX and/or RX, as depicted in Fig. 5.9.

This figure is generated by allowing users to implement arbitrary directional

antenna patterns (gains and HPBWs) in an omnidirectional PDP, since

directional antennas/antenna arrays will be utilized at the TX and/or the RX

in a realistic mmWave communication system to provide gains to compensate

for the higher free space path loss at mmWave frequencies. To obtain the

directional PDP with the strongest received power, NYUSIM searches for

the best pointing angle out of all possible pointing angles, using the specified

antenna details (i.e., azimuth and elevation HPBWs of TX and RX antennas)

after first generating the omnidirectional PDP, such that the pointing angle of

the TX and RX are found that gives the strongest received power. The TX/RX

antenna gain pattern is calculated by NYUSIM using Eq. (5.4) by employing

the azimuth and elevation HPBWs of TX and RX antennas specified by the

user on the GUI. This feature makes the channel simulator more valuable as it

shows how a PDP will look like in a channel with directional antennas/antenna

arrays used at the communication link end. On the directional PDP figure,

relevant channel and antenna parameters, such as the frequency, environment,

T-R separation distance, directional RMS delay spread, directional received

power, directional path loss, directional PLE, and TX and RX antenna

HPBWs and gains, are also displayed, where the directional path loss equals

the transmit power plus TX and RX antenna gains, minus the directional

received power [49, 54, 61].

• A series of PDPs over each receive antenna element obtained using Eq. (3)

of [87], as shown in Fig. 5.10, where the antenna array type, number of
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antenna elements, and antenna element spacing are specified on the GUI by

the user.

• A path loss scatter plot entitled ”PathLossPlot” generated after N (N � 1)

continuous simulation runs with the same input parameters, as illustrated in

Fig. 5.11. This figure shows omnidirectional path loss and directional path

loss values for over the entire distance range generated from the N (N � 1)

continuous simulation runs, along with the fitted PLE and shadow fading

standard deviation using the MMSE method [50, 61]. In the legend of the

figure ”PathLossPlot”, n denotes the PLE, � is the shadow fading standard

deviation, ”omni” denotes omnidirectional, ”dir” represents directional, and

”dir-best” means the direction with the strongest received power. For produc-

ing the directional path loss at each RX location, NYUSIM searches for all

possible pointing angles in increments of the azimuth and elevation HPBWs

of the TX/RX antenna specified by the user on the GUI after first generating

the omnidirectional PDP. The TX/RX antenna gain pattern is calculated by

NYUSIM using Eq. (5.4) based on the azimuth and elevation HPBWs of TX

and RX antennas specified by the user on the GUI. The directional path loss

is equal to the transmit power plus the TX and RX antenna gains, minus

the directional received power [2, 54, 217, 218]. For generating Fig. 5.11, the

antenna azimuth and elevation HPBWs are set to 10.9� and 8.6�, respectively,

at both the TX and the RX, to match the antenna HPBWs used in the 28

GHz measurements [2, 54]. The simulated PLE and shadow fading standard

deviation values agree well with the measured results presented in Table V

and Table VIII of [54]. Directional path loss and directional PLE will always

be larger (i.e., a directional channel is more lossy) than the omnidirectional
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Figure 5.6: Example of a 3D AOD power spectrum generated from NYUSIM. Top
view of azimuth plane.

case, because the directional antenna will spatially filter out many multipath

components due to its directional pattern, such that the RX receives fewer

multipath components hence less energy, thereby the directional path loss is

higher after removing the antenna gain e↵ect from the received power [54, 61].

If the generated path loss in a simulation run exceeds the corresponding dynamic

range, i.e., if there are no detectable multipath components, then it will be shown on

the output figures that ”No Detectable Multipath Components above the Threshold

of XXX dBm”, where the threshold value equals the transmit power in dBm minus

the dynamic range in dB for that simulation run, such as -190 dBm. Note that no

path loss data points will be shown on the path loss scatter plot as long as there

are no detectable multipath components in the omnidirectional PDP, regardless of

the directional PDP. Users may modify this in ”NYUSIM MainCode.m” per their

own needs.
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Figure 5.7: Example of a 3D AOA power spectrum generated from NYUSIM. Top
view of azimuth plane.

Figure 5.8: Example of an omnidirectional PDP generated from NYUSIM.
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Figure 5.9: Example of an directional PDP with the strongest received power
generated from NYUSIM. ”Ant.” denotes antenna.

Figure 5.10: Example of the PDPs over di↵erent receive antenna elements generated
from NYUSIM.
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Figure 5.11: Example of a scatter plot showing the omnidirectional and directional
path loss values generated from NYUSIM with 100 simulation runs for the 28 GHz
UMi LOS scenario.n denotes the pass loss exponent (PLE), � is the shadow fading
standard deviation, ”omni” denotes omnidirectional, ”dir” represents directional,
”dir-best” means the direction with the strongest received power, ”Ant.” denotes
antenna, ”AZ” and ”EL” stand for azimuth and elevation, respectively.
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5.5.2 Output Data Files

For each simulation run, five sets of .txt files and five corresponding .mat files are

generated, namely, “AODLobePowerSpectrumn Lobex.txt”,

“AODLobePowerSpectrumn.mat”, “AOALobePowerSpectrumn Lobex.txt”,

“AOALobePowerSpectrumn.mat”, “OmniPDPn.txt”, “OmniPDPn.mat”,

“DirectionalPDPn.txt”, “DirectionalPDPn.mat”, “SmallScalePDPn.txt”,

and “SmallScalePDPn.mat”, where n denotes the nth RX location (i.e., nth sim-

ulation run), and x represents the xth spatial lobe. After N (N � 1) continuous

simulation runs with the same input parameters are complete, another three .txt files

and three corresponding .mat files are produced, i.e., ”BasicParameters.txt”, ”Basic-

Parameters.mat”, ”OmniPDPInfo.txt”, ”OmniPDPInfo.mat”, ”DirPDPInfo.txt”,

and ”DirPDPInfo.mat”.

Each text file “AODLobePowerSpectrumn Lobex” is associated with the output

figure of 3D AoD power spectrum, and contains five parameters (columns) of

each resolvable multipath component in an AoD spatial lobe, which are listed and

explained below.

1. pathDelay (ns): an array containing the absolute propagation time delays of

all resolvable multipath components in nanoseconds (ns).

2. pathPower (mWatts): an array containing the received powers of all resolvable

multipath components in mWatts.

3. pathPhase (rad): an array containing the phases of all resolvable multipath

components in radians.

4. AOD (degree): an array containing the azimuth AoDs of all resolvable

multipath components in degrees.
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5. ZOD (degree): an array containing the zenith angles of departure (ZoDs) of

all resolvable multipath components in degrees.

Note that inside the corresponding .mat file “AODLobePowerSpectrumn” is a

structure containing the lobe matrices, each of which is composed of five columns as

described above. Each text file “AOALobePowerSpectrumn Lobex” is associated

with the output figure of 3D AoA power spectrum, and contains five parameters

(columns) of each resolvable multipath component in an AoA spatial lobe, which

are listed and explained below.

1. pathDelay (ns): an array containing the absolute propagation time delays of

all resolvable multipath components in nanoseconds (ns).

2. pathPower (mWatts): an array containing the received powers of all resolvable

multipath components in mWatts.

3. pathPhase (rad): an array containing the phases of all resolvable multipath

components in radians.

4. AOA (degree): an array containing the azimuth AoAs of all resolvable multi-

path components in degrees.

5. ZOA (degree): an array containing the zenith angles of arrival (ZoAs) of all

resolvable multipath components in degrees.

Note that inside the corresponding .mat file “AOALobePowerSpectrumn” is a

structure containing the lobe matrices, each of which is composed of five columns

as described above. Each .txt and .mat file “OmniPDPn” is associated with

the output figure of omnidirectional PDP, and contains two columns: the first

column denotes the propagation time delay in nanoseconds, and the second column
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represents the received power in dBm. Each .txt and .mat file “DirectionalPDPn” is

associated with the output figure of omnidirectional PDP with directional antenna

gain patterns implemented, and contains two columns: the first column denotes

the propagation time delay in nanoseconds, and the second column represents the

received power in dBm. Each .txt and .mat file “SmallScalePDPn” is associated

with the output figure of the series of omnidirectional PDPs over RX antenna

elements, and contains three columns: the first column denotes the receiver antenna

separation in terms of number of wavelengths, the second column is the propagation

time delay in nanoseconds, and the third column represents the received power in

dBm. Note that the noise power is set to -150 dBm for visual purpose. The text

file ”BasicParameters.txt” and the .mat file ”BasicParameters.mat” subsume all

the input parameter values as shown on the GUI when running the simulation.

The text file ”OmniPDPInfo.txt” and the .mat file ”OmniPDPInfo.mat” contain

five columns where each column represents a key parameter for each of the N

omnidirectional PDPs from N continuous simulation runs. The parameters are

listed and explained below.

1. T-R Separation Distance (m)

2. Received Power (dBm): omnidirectional received power in dBm

3. Path Loss (dB): omnidirectional path loss in dB

4. RMS Delay Spread (ns): omnidirectional RMS delay spread in nanosecond

(ns)

5. Ricean K-factor (dB): ratio of the strongest power of the multipath component

(the first arriving multipath component in LOS) to the sum of powers of the
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other multipath components [205], converted from linear to the dB scale.

The text file ”DirPDPInfo.txt” and the .mat file ”DirPDPInfo.mat” contain 11

columns where each column represents a key parameter for each of the directional

PDPs from N continuous simulation runs, where the same kind of parameters from

each simulation run are cascaded in the same column. The parameters are listed

and explained below.

1. Simulation run number

2. T-R Separation Distance (m)

3. Time Delay (ns): absolute propagation time delay of each resolvable multipath

component in ns

4. Received Power (dBm): received power of each resolvable multipath compo-

nent in dBm without antenna gains

5. Phase (rad): phase of each resolvable multipath component in radians

6. Azimuth AoD (degree): azimuth AoD of each resolvable multipath component

in degrees

7. Elevation AoD (degree): elevation AoD of each resolvable multipath compo-

nent in degrees

8. Azimuth AoA (degree): azimuth AoA of each resolvable multipath component

in degrees

9. Elevation AoA (degree): elevation AoA of each resolvable multipath compo-

nent in degrees
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10. Path Loss (dB): directional path loss obtained by aligning the TX/RX antenna

boresight on the AoD/AoA of each resolvable multipath component. The

directional path loss equal the transmit power plus the TX/RX antenna

boresight gains, minus directional received power.

11. RMS Delay Spread (ns): directional RMS delay spread in ns for each direc-

tional PDP

5.6 Applications of NYUSIM

The output figure and data files generated from NYUSIM can be used in various

ways based on users’ needs, e.g., to simulate channel impulse responses for mmWave

systems, to investigate MIMO performance, etc.

5.6.1 MIMO Channel Condition Number

First, an example of how to obtain the condition number of a MIMO channel by

making use of the output data files ”BasicParameters.mat” and ”DirPDPInfo.mat”

is shown, assuming OFDM modulation is utilized.

The condition number is defined as the ratio of the largest to smallest singular

value in the singular value decomposition of a matrix, and is a metric to characterize

the quality of MIMO channels in the context of wireless communications [16, 168,

219, 220]. The condition number will be high (e.g., over 20 dB) if the minimum

singular value is close to zero, and will be 0 dB if singular values are equal. Physically,

a small condition number value (e.g., below 20 dB) indicates good orthogonality

of di↵erent sub-channels (a sub-channel usually has a distinct spatial direction),

and the channel gains are comparable in di↵erent spatial directions. The rank of a



163

matrix is the dimension of the vector space generated (or spanned) by its columns

(or rows) [221], and it determines how many data streams can be multiplexed

over the channel in the context of MIMO communications [24, 219, 222]. The

condition number is related to the rank of a matrix: a low condition number usually

corresponds to a high rank and vice versa; the matrix has full rank (the highest

rank) when the condition number is equal or close to 0 dB (the lowest theoretical

condition number).

Let’s look at the condition number of a MIMO channel matrix for a single

narrowband sub-carrier in an OFDM system. The output data files ”BasicParame-

ters.mat” and ”DirPDPInfo.mat” contain paramount parameters of each resolvable

multipath component, which will be useful in generating the MIMO channel coe�-

cient for an OFDM sub-carrier. Take ULAs at both the transmitter and receiver for

example, the equation for generating such a channel coe�cient is provided below,

which is adapted from Eq.(2) in [166]:

hm,k(f) =
X

p

↵m,k,pe
j�

m,k,pe�j2⇡f⌧
m,k,pe�j2⇡d

T

m sin(�
m,k,p

)e�j2⇡d
R

k sin('
m,k,p

) (5.7)

where hm,k(f) denotes the MIMO channel coe�cient between the mth transmit

antenna and the kth receive antenna for the sub-carrier f , p represents the pth

resolvable multipath component, ↵ is the amplitude of the channel gain, � denotes

the phase of the multipath component, ⌧ represents the time delay, dT and dR are

the antenna element spacing at the transmitter and receiver, respectively, while �

and ' denote the azimuth angle of departure and angle of arrival, respectively. All

of the above parameters can be extracted from the files ”BasicParameters.mat” and

”DirPDPInfo.mat”. For each sub-carrier f in a MIMO-OFDM system, there exists
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an Nt ⇥Nr channel matrix H whose elements are hm,k(f), where m = 1, ..., Nt and

k = 1, ..., Nr. The condition number of H can be obtained consequently.

Using the above mentioned approach, and the input parameters on the NYUSIM

GUI with the following values:

• Frequency: 28 GHz

• RF bandwidth: 800 MHz

• Scenario: UMi

• Environment: LOS

• Lower Bound of T-R Separation Distance: 100 m

• Upper Bound of T-R Separation Distance: 100 m

• TX Power: 30 dBm

• Base Station Height: 35 m

• Barometric Pressure: 1013.25 mbar

• Humidity: 50%

• Temperature: 20�C

• Rain Rate: 0 mm/hr

• Polarization: Co-Pol

• Foliage Loss: No

• Number of RX Locations: 100
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• TX Array Type: ULA

• RX Array Type: ULA

• Number of TX Antenna Elements Nt: 2

• Number of RX Antenna Elements Nr: 2

• TX Antenna Spacing: 0.5 wavelength

• RX Antenna Spacing: 0.5 wavelength

• Number of TX Antenna Elements Per Row Wt: 2

• Number of RX Antenna Elements Per Row Wr: 2

• TX Antenna Azimuth HPBW: 10�

• TX Antenna Elevation HPBW: 10�

• RX Antenna Azimuth HPBW: 10�

• RX Antenna Elevation HPBW: 10�

and assuming the frequency interval between adjacent sub-carriers is 500 kHz,

which corresponds to 800 MHz/500 kHz = 1600 sub-carriers, 100 simulation runs

(i.e., set the number of RX locations to 100) are performed to emulate 100 random

MIMO channel realizations with the input parameters described above. Then the

following changes are made to the four input parameters below with all the other

input parameter values remaining the same:

• Number of TX Antenna Elements Nt: 3

• Number of RX Antenna Elements Nr: 3
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• Number of TX Antenna Elements Per Row Wt: 3

• Number of RX Antenna Elements Per Row Wr: 3

Fig. 5.12 illustrates the empirical CDF of the condition number of channel

matrices for OFDM sub-carriers with the above two sets of input parameters in

one of the 100 simulation runs. The empirical CDF of the corresponding rank of

the channel matrices are plotted in Fig. 5.13, where the rank here is defined as

the number of singular values of the channel matrix that are larger than �m/1000,

where �m is the maximum singular value of the channel matrix. By this definition

of rank, the singular values that are 30 dB smaller than the maximum singular

value are essentially ignored, which is physically reasonable since the singular value

is a measure of the channel gain along its corresponding singular vector and it

makes little sense to consider the direction with an extremely small channel gain.

It is apparent from Fig. 5.12 that the condition numbers of the individual OFDM

sub-carriers for a 3⇥ 3 MIMO channel is about 18 dB larger compared to the 2⇥ 2

case on average, and the relatively large condition number of the 3 ⇥ 3 channel

matrix may stem from the fact that the matrix is rank deficient, as evident from

Fig. 5.13, in which about 96% of the channel matrices have a rank of 2 instead of 3

(full rank).

Based on the results from the 100 random simulation runs, it is found that

the average median value of the condition numbers of the channel matrices for

individual sub-carriers over the 100 simulation runs is around 13 dB (i.e., the

di↵erence in dB between the largest and smallest singular value of the channel

matrix is 13 dB), and the average matrix rank is 2. When the numbers of TX

and RX antenna elements are both changed to 3, the average median value of the
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condition number increase to 31 dB, with a mean rank of roughly 2, indicating

that two spatial streams can be sent simultaneously using the spatial multiplexing

technique in this case.

The MATLAB code for extracting channel coe�cients based on Eq. (5.7),

generating the channel matrix for each sub-carrier frequency, and calculating the

condition number and rank in the example above is contained in the package named

“Application Example Code” available on the NYUSIM downloading website.

5.6.2 MIMO Channel Spectral E�ciency

Chapters 6 and 8 will demonstrate MIMO channel spectral e�ciencies obtained

using NYUSIM, and will compare with the results obtained using the 3GPP channel

model.

5.7 Concluding Remarks

This chapter presented the development of an open-source channel software simu-

lator, NYUSIM, developed from extensive broadband propagation measurements

at mmWave frequencies. NYUSIM recreates wideband PDPs/CIRs and channel

statistics for a variety of carrier frequencies, RF bandwidths, antenna beamwidths,

environment scenarios, and atmospheric conditions, and is equipped with a GUI

that makes the simulator more user-friendly. Over 10,000 downloads have already

been logged by major corporations and universities worldwide. Simulated results

from NYUSIM match well with the measured data. NYUSIM can be employed to

perform various other types of analysis and is useful for 5G communication system

development and deployment.
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Chapter 6

Investigation and Comparison of

3GPP and NYUSIM Channel

Models for Impact on System

Performance

As shown in Chapters 2 and 5, the extensive measurements in NYC showed there

are major di↵erence in the temporal and spatial statistics used by 3GPP and those

found in the field by NYU WIRELESS. Hence, it is important to quantify how

di↵erent channel models would impact the analysis or simulation of wireless systems

for 5G networks. This chapter provides a summary of the key parameters of the

3GPP TR 38.901 Release 14 [66] and NYUSIM [51] channel models, examples of

methodologies/simulations/calculations on how to apply the channel models to

evaluate 5G mmWave channel performance, and demonstration of the wide-ranging

results produced. The most remarking results are as follows:
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• In the case of cell range prediction, the di↵erent large-scale path loss models

and shadow fading values in the 3GPP and NYUSIM channel models lead to

a noticeable di↵erence on the cell range evaluation given a certain cell-edge

SNR.

• In terms of the eigenvalue properties of the channel, one model predicts

significantly more dominant eigen modes than the other. This implies that

the spatial degrees of freedom predicted by both channel models are quite

di↵erent, hence resulting in di↵erent numbers of available spatial streams to

be multiplexed.

• In terms of spectrum e�ciency, the performance of a single-cell single-user is

a base case. Which channel model predicts higher spectral e�ciency depends

on the number of transmitted data streams, and NYUSIM predicts a much

higher occurrence of peak rates than the 3GPP model when the number of

data streams is small (e.g., no more than four).

• Extending the single-cell case to a multi-cell multi-user case, a new HBF

algorithm is proposed. It will be shown that the median values of per-

user spectrum e�ciency is roughly half for the 3GPP model relative to the

NYUSIM model when there are a relatively small number of RF chains at

each BS.
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6.1 Recommended Parameter Values

6.1.1 LOS Probability Model

LOS probability denotes the probability that a given user terminal (UT) or UE is

in a LOS condition with respect to the BS. LOS probability models in 3GPP [66]

and NYUSIM [51, 223] channel models for UMi and UMa scenarios are summarized

in Tables 6.1 and 6.2, respectively. More information is detailed below.

6.1.1.1 LOS Probability Model in the 3GPP Channel Model

The LOS probability models for various scenarios in 3GPP are provided in Table

7.4.2-1 in [66]. The LOS probability model is a function of the two-dimensional

(2D) T-R separation distance, and sometimes a function of the TX and RX heights.

It is inherited and modified from the previous LOS probability model derived for

sub-6 GHz bands by 3GPP [225].

6.1.1.2 LOS Probability Model in NYUSIM

The NYUSIM LOS probability model has a similar form to the one in the 3GPP

channel model, but with the entire formula (i.e., the second equation in Table 7.4.2-1

in [66]) squared and the parameter values updated based statistical modeling from

a high resolution ray-tracing approach now described. For a given TX location in

Manhattan, a circle was discretized in 100 evenly-spaced points on the circumference

around the TX location and overlaid on an aerial building map. For each position

along the circle external to a building or obstruction, ray-tracing was used to

draw a line from the RX to the TX. If that line to the TX penetrated through at

least one building, the corresponding initial position at radius R on the circle was
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denoted as an NLOS position, otherwise it was denoted as a LOS position. This

was repeated for all positions along the circle circumference, and the ratio of the

number of LOS positions to the total number of positions along the circle provided

the LOS probability. This was performed over radii ranging from 10 m to 200 m,

in increments of 1 m [52], and for four TX locations.

Fig. 6.1 illustrates the LOS probability models in the 3GPP and NYUSIM

channel models in UMi and UMa scenarios for a UE height of 1.5 m. As shown

by Fig. 6.1, the 3GPP LOS probability model has clearly a non-zero tail at

large distances (several hundred meters), which is not likely to be true in urban

environments where numerous tall buildings exist, while NYUSIM shows essentially

zero probability at large distances in urban areas which is di↵erent from the 3GPP

model. On the other hand, for T-R separation distances smaller than about 120

m (for UMi) or 160 m (for UMa), NYUSIM predicts a larger LOS probability

compared to 3GPP. Through 1000 random channel simulation runs for the UMi

street canyon scenario over distances from 10 m to about 300 m (where cell size

was based on the condition that 95% of the area within a cell has an SNR � 5 dB,

detailed in Section V-B), the simulated LOS probability is 9.1% and 17.2% using

3GPP and NYUSIM models, respectively. The di↵erence in the LOS probability

impacts spectral e�ciency, since LOS facilitates stronger mmWave propagation

(i.e., larger SNR) compared to the NLOS condition due to more severe di↵raction

loss at mmWave frequencies than at sub-6 GHz.

6.1.2 Large-Scale Path Loss Model

For a communication link with TX power PT, the received power PR [dBm] =

PT [dBm] + GT [dB] + GR [dB] - PL [dB] [168], where GT and GR are the TX
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Figure 6.1: Comparison of LOS probability models in the 3GPP channel model [66]
and NYUSIM [51] in UMi and UMa scenarios for a UE height of 1.5 m.

and RX antenna gain corresponding to Ftx and Frx in Eq. (2.6) at a specific angle,

respectively, and PL denotes the large-scale path loss. Large-scale path loss models

in 3GPP and NYUSIM are listed and compared in Table 6.3 and Table 6.4. for the

UMi and UMa scenarios, respectively.

6.1.2.1 Large-Scale Path Loss Model in the 3GPP Channel Model

It is clear from Table 6.3 that in the UMi street canyon LOS scenario, the CI path

loss model is utilized for d3D smaller than the breakpoint distance dBP . After the

breakpoint distance, a new term involving the BS and UE heights is added to the

CI model, where the BS height is set to 10 m, and the UE height ranges from 1.5

m to 22.5 m. In the UMi street canyon NLOS scenario, the ABG path loss model

is adopted with a term accounting for the UE height added to it, while the CI

model is listed as an optional path loss model. Similar situations exist in the UMa

scenario, except that the BS height is changed to 25 m.
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Figure 6.2: Path loss models in the 3GPP channel model and NYUSIM in UMi
LOS and NLOS scenarios for a BS height of 10 m and a UE height of 1.5 m. ”Opt”
denotes the optional NLOS CI path loss model in the 3GPP channel model.

6.1.2.2 Large-Scale Path Loss Model in NYUSIM

In both UMi and UMa scenarios, the single-slope CI model is employed in NYUSIM,

since breakpoints were never observed in outdoor measurements in Manhattan or

Austin.

Fig. 6.2 illustrates the path loss models in the 3GPP channel model and NYUSIM

in UMi LOS and NLOS scenarios for a BS height of 10 m and a UE height of

1.5 m. Fig. 6.2 shows that for the UMi LOS scenario, the 3GPP ABG model

predicts larger path loss as compared to the NYUSIM CI model, and there exists an

extremely large breakpoint distance of 1.68 km which well exceeds typical UMi cell

sizes hence reverting the double-slope model to a single-slope model. For the NLOS

environment, the 3GPP ABG model predicts less mean path loss for T-R separation

distances smaller than 296 m when compared with the NYUSIM CI model. On the

other hand, the 3GPP optional NLOS CI model matches the NYUSIM NLOS CI

model very well.
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6.1.3 Outdoor-to-Indoor (O2I) Penetration Loss Model

6.1.3.1 O2I Penetration Loss Model in the 3GPP Channel Model

In the 3GPP channel model, the overall path loss (especially for indoor users)

mainly consists of three parts: outdoor path loss, O2I penetration loss, and indoor

path loss, which can be modeled as [66]:

PL [dB] = PLb + PLtw + PLin +N(0, �2
P ) (6.1)

where PLb is the basic outdoor path loss, PLtw is the building penetration loss

through the external wall, PLin is the indoor loss which depends on the depth

into the building, and �P is the standard deviation for the penetration loss. The

building penetration loss PLtw has the following form:

PLtw [dB] = PLnpi � 10log10

NX

i=1

✓
pi ⇥ 10�

Lmaterial
i

10

◆
(6.2)

where PLnpi is an additional loss added to the external wall loss to account for

non-perpendicular incidence, which is 5 dB in the 3GPP channel model. Lmaterial
i

=

amaterial
i

+ bmaterial
i

· fc is the penetration loss of material i, fc is the frequency in

GHz, pi is the proportion of the i-th material, where
P

pi = 1, and N is the number

of materials. Penetration loss of several materials and the O2I penetration loss

models are given in Tables 6.5 and 6.6, respectively.

Two variants of the O2I penetration model are provided: a low-loss and a

high-loss model. The composition of low and high loss is a simulation parameter to

be determined by channel model users, and is dependent on the use of metal-coated

glass in buildings and the deployment scenarios [66]. Both low-loss and high-loss
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Table 6.5: O2I penetration loss of di↵erent materials [66]

Material Penetration loss [dB]

Standard multi-pane glass Lglass = 2 + 0.2fc
IRR glass LIRRglass = 23 + 0.3fc
Concrete Lconcrete = 5 + 4fc
Wood Lwood = 4.85 + 0.12fc

Table 6.6: O2I penetration loss parameters [47, 66, 226]

Path loss through external wall:
PLtw [dB]

Standard
deviation
�P [dB]

3GPP
Low-loss
model

5� 10log10(0.3 · 10�L
glass

/10 + 0.7 · 10�L
concrete

/10) 4.4

High-loss
model

5� 10log10(0.7 · 10�L
IRRglass

/10 + 0.3 · 10�L
concrete

/10) 6.5

NYUSIM
parabolic
model

Low-loss
model

10log10(5 + 0.03f2
c ) 4.0

High-loss
model

10log10(10 + 5f2
c ) 6.0

models in the 3GPP channel model in Table 6.6 are applicable to UMa and UMi

street canyon scenarios, whereas only the low-loss model is applicable to RMa [66].

6.1.3.2 O2I Penetration Loss Model in NYUSIM

In NYUSIM, a very succinct parabolic model with a good fit for predicting building

penetration loss (BPL) of either high loss or low loss buildings was provided in

[226] as:

BPL [dB] = 10log10(A+B · f 2
c ) (6.3)

where fc is in GHz, A = 5, and B = 0.03 for low loss buildings, and A = 10 and

B = 5 for high loss buildings, as shown in Table 6.6.
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6.1.4 Cluster Definition

The cluster definition and clustering algorithm may vary in di↵erent channel

models [227]. This subsection introduces the cluster definition and clustering

algorithm in the 3GPP and NYUSIM channel models.

6.1.4.1 Cluster Definition in the 3GPP Channel Model

In the 3GPP channel model [66], clusters are characterized by a joint delay-

angle probability density function, such that a group of traveling MPCs must

depart and arrive from a unique AoD-AoA combination centered around a mean

propagation delay [52, 66]. High-resolution parameter extraction algorithms, e.g.,

SAGE (space-alternating generalized expectation-maximization) and KPowerMeans

algorithms [228, 229] that have high computational complexity, are often employed

to obtain cluster characteristics.

6.1.4.2 Cluster Definition in NYUSIM

NYUSIM uses TCSL concepts to describe multipath behavior for omnidirectional

and directional CIRs [51, 52, 223], as presented in Section 2.4.10.

6.1.5 Large-Scale Parameters

6.1.5.1 Large-Scale Parameters in the 3GPP Channel Model

In the 3GPP channel model [66], LSPs mainly include DS, angular spreads (ASA,

ASD, ZSA, ZSD), Ricean K-factor (K) and SF taking into account cross corre-

lation [66]. These LSPs act as fundamental channel modeling parameters and

play a key role in generating other relevant channel modeling parameters such as
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small-scale parameters (SSPs). The most important LSPs and their statistics in

the 3GPP channel model are provided in Table 6.7 and Table 6.8 for UMi and UMa

scenarios, respectively.

6.1.5.2 Large-Scale Parameters in NYUSIM

Tables 6.7 and 6.8 show the LSPs and their statistics at various mmWave frequencies

in NYUSIM [205]. In addition to the statistics of LSPs in the log scale as given in

the 3GPP model, NYUSIM also provides the statistics in their regular units, such

as nanoseconds for delay spread, and degrees for angular spreads, which is more

intuitive [205].

6.1.6 Small-Scale Parameters

6.1.6.1 Small-Scale Parameters in the 3GPP Channel Model

SSPs in the 3GPP channel model mainly contain the following parameters: cluster

excess delays, cluster powers, and cluster arrival angles and departure angles for

both azimuth and elevation. Key channel modeling parameters for generating SSPs

in UMi street canyon and UMa scenarios are listed in Table 6.9 and Table 6.10,

respectively.

6.1.6.2 Small-Scale Parameters in NYUSIM

Since the cluster definitions in the 3GPP channel model [66] and NYUSIM [52] are

discrepant, SSPs in NYUSIM are also a little di↵erent from those in the 3GPP

channel model. In NYUSIM, SSPs include time cluster excess delays, time cluster

powers, and mean AoD and AoA azimuth and elevation angles for each spatial lobe.
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Table 6.7: Large-scale parameters in the UMi scenario for frequencies from 0.5 GHz
to 100 GHz [52, 66, 205]. Note: For 3GPP UMi and frequencies below 2 GHz, use
fc = 2 when determining the values of the frequency-dependent LSP values [66].

Parameter Name LOS NLOS

3GPP [66]

Delay spread (DS)
lgDS= log10(DS [s] /1s)

µlgDS
�0.24log10(1 + f

c

)�
7.14

�0.24log10(1 + f
c

)�
6.83

�lgDS 0.38 0.16log10(1+f
c

)+0.28

AoD spread (ASD)
lgASD = log10(ASD [�] /1�)

µlgASD
�0.05log10(1 + f

c

) +
1.21

�0.23log10(1 + f
c

) +
1.53

�lgASD 0.41 0.11log10(1+f
c

)+0.33

AoA spread (ASA)
lgASA = log10(ASA [�] /1�)

µlgASA
�0.08log10(1 + f

c

) +
1.73

�0.08log10(1 + f
c

) +
1.81

�lgASA 0.014log10(1+f
c

)+0.28 0.05log10(1 + f
c

) + 0.3

ZoA spread (ZSA)
lgZSA = log10(ZSA [�] /1�)

µlgZSA �0.1log10(1+f
c

)+0.73
�0.04log10(1 + f

c

) +
0.92

�lgZSA
�0.04log10(1 + f

c

) +
0.34

�0.07log10(1 + f
c

) +
0.41

Shadow fading (SF) [dB] �SF see Table 6.3 see Table 6.3

K-factor (K) [dB]
µ
K

9 N/A
�
K

5 N/A

XPR [dB]
µ 9 8
� 3 3

NYUSIM
[52, 205]

Delay spread (DS)

med
[ns]

17.5
28 GHz: 29.9
73 GHz: 44.8

µ [ns] 26.6
28 GHz: 42.1
73 GHz: 45.9

lgDS= log10(DS [s] /1s)
µ -7.71

28 GHz: -7.64
73 GHz: -7.53

� 0.34
28 GHz: 0.50
73 GHz: 0.51

AoD spread (ASD)
med [�] 18.5

28 GHz: 30.9
73 GHz: 26.0

µ [�] 32.3
28 GHz: 33.7
73 GHz: 29.0

lgASD = log10(ASD [�] /1�)
µ 1.28

28 GHz: 1.38
73 GHz: 1.34

� 0.50
28 GHz: 0.41
73 GHz: 0.39

AoA spread (ASA)
med [�] 50.9

28 GHz: 22.0
73 GHz: 37.1

µ [�] 56.9
28 GHz: 22.0
73 GHz: 37.1

lgASA = log10(ASA [�] /1�)
µ 1.69

28 GHz: 1.39
73 GHz: 1.50

� 0.27
28 GHz: 0.39
73 GHz: 0.20

ZoA spread (ZSA)
med [�] 4.0

28 GHz: 6.1
73 GHz: 3.5

µ [�] 4.0
28 GHz: 6.2
73 GHz: 3.8

lgZSA = log10(ZSA [�] /1�)
µ 0.60

28 GHz: 0.72
73 GHz: 0.55

� 0.09
28 GHz: 0.30
73 GHz: 0.15

Shadow fading (SF) [dB] �SF see Table 6.3 see Table 6.3

K-factor (K) [dB]
µ
K

2.4
28 GHz: -0.4
73 GHz: 1.5

�
K

2.0
28 GHz: 4.3
73 GHz: 6.8

XPR [dB]
µ 9 8
� 3 3
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Table 6.8: Large-scale parameters in the UMa scenario for frequencies from 0.5 GHz
to 100 GHz [52, 66, 205]. Note: For 3GPP UMa and frequencies below 6 GHz, use
fc = 6 when determining the values of the frequency-dependent LSP values [66].

Parameter Name LOS NLOS

3GPP [66]

Delay spread (DS)
lgDS= log10(DS [s] /1s)

µlgDS
�0.0963log10(fc)�

6.955
�0.204log10(fc)� 6.28

�lgDS 0.66 0.39
AoD spread (ASD)

lgASD = log10(ASD [�] /1�)
µlgASD 0.1114log10(fc) + 1.06 �0.1144log10(fc) + 1.5
�lgASD 0.28 0.28

AoA spread (ASA)
lgASA = log10(ASA [�] /1�)

µlgASA 1.81 �0.27log10(fc) + 2.08
�lgASA 0.20 0.11

ZoA spread (ZSA)
lgZSA = log10(ZSA [�] /1�)

µlgZSA 0.95
�0.3236log10(fc) +

1.512
�lgZSA 0.16 0.16

Shadow fading (SF) [dB] �SF see Table 6.4 see Table 6.4

K-factor (K) [dB]
µ
K

9 N/A
�
K

3.5 N/A

XPR [dB]
µ 8 7
� 4 3

NYUSIM
[52, 205]

Delay spread (DS)

med
[ns]

17.5
28 GHz: 29.9
73 GHz: 44.8

µ [ns] 26.6
28 GHz: 42.1
73 GHz: 45.9

lgDS= log10(DS [s] /1s)
µ -7.71

28 GHz: -7.64
73 GHz: -7.53

� 0.34
28 GHz: 0.50
73 GHz: 0.51

AoD spread (ASD)
med [�] 18.5

28 GHz: 30.9
73 GHz: 26.0

µ [�] 32.3
28 GHz: 33.7
73 GHz: 29.0

lgASD = log10(ASD [�] /1�)
µ 1.28

28 GHz: 1.38
73 GHz: 1.34

� 0.50
28 GHz: 0.41
73 GHz: 0.39

AoA spread (ASA)
med [�] 50.9

28 GHz: 22.0
73 GHz: 37.1

µ [�] 56.9
28 GHz: 22.0
73 GHz: 37.1

lgASA = log10(ASA [�] /1�)
µ 1.69

28 GHz: 1.39
73 GHz: 1.50

� 0.27
28 GHz: 0.39
73 GHz: 0.20

ZoA spread (ZSA)
med [�] 4.0

28 GHz: 6.1
73 GHz: 3.5

µ [�] 4.0
28 GHz: 6.2
73 GHz: 3.8

lgZSA = log10(ZSA [�] /1�)
µ 0.60

28 GHz: 0.72
73 GHz: 0.55

� 0.09
28 GHz: 0.30
73 GHz: 0.15

Shadow fading (SF) [dB] �SF see Table 6.4 see Table 6.4

K-factor (K) [dB]
µ
K

2.4
28 GHz: -0.4
73 GHz: 1.5

�
K

2.0
28 GHz: 4.3
73 GHz: 6.8

XPR [dB]
µ 8 7
� 4 3
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Table 6.9: Key channel modeling parameters used for generating small-scale param-
eters in the UMi scenario for frequencies from 0.5 GHz to 100 GHz [52, 66, 205].
Note: For 3GPP UMi and frequencies below 2 GHz, use fc = 2 when determining
the values of the frequency-dependent LSP values [66].

Parameter Name LOS NLOS

3GPP [66]

Number of clusters 12 19

Number of rays per cluster 20 20

Cluster DS [ns] 5 11

Cluster ASD [�] 3 10

Cluster ASA [�] 17 22

Cluster ZSA [�] 7 7

Per cluster shadowing std [dB] 3 3

NYUSIM

[52, 205]

Number of time clusters Discrete Uniform [1, 6]

Number of subpaths per time
cluster

Discrete Uniform [1, 30]

Number of spatial lobes
(departure)

Poisson(1.9) Poisson(1.5)

Number of spatial lobes
(arrival)

Poisson(1.8) Poisson(2.1)

RMS lobe azimuth spread
(departure) [�]

8.5 11.0

RMS lobe elevation spread
(departure) [�]

2.5 3.0

RMS lobe azimuth spread
(arrival) [�]

10.5 7.5

RMS lobe elevation spread
(arrival) [�]

11.5 6.0

Per cluster shadowing std [dB] 1 3
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Table 6.10: Key channel modeling parameters used for generating small-scale
parameters in the UMa scenario for frequencies from 0.5 GHz to 100 GHz [52,
66, 205]. Note: For 3GPP UMa and frequencies below 6 GHz, use fc = 6 when
determining the values of the frequency-dependent LSP values [66].

Parameter Name LOS NLOS

3GPP [66]

Number of clusters 12 20

Number of rays per cluster 20 20

Cluster DS [ns]
max(0.25, -

3.4084log10(f
c

)+6.5622)
max(0.25, -

3.4084log10(f
c

)+6.5622)

Cluster ASD [�] 5 2

Cluster ASA [�] 11 15

Cluster ZSA [�] 7 7

Per cluster shadowing std [dB] 3 3

NYUSIM

[52, 205]

Number of time clusters Discrete Uniform [1, 6]

Number of subpaths per time
cluster

Discrete Uniform [1, 30]

Number of spatial lobes
(departure)

Poisson(1.9) Poisson(1.5)

Number of spatial lobes
(arrival)

Poisson(1.8) Poisson(2.1)

RMS lobe azimuth spread
(departure) [�]

8.5 11.0

RMS lobe elevation spread
(departure) [�]

2.5 3.0

RMS lobe azimuth spread
(arrival) [�]

10.5 7.5

RMS lobe elevation spread
(arrival) [�]

11.5 6.0

Per cluster shadowing std [dB] 1 3
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Table 6.11: Cross-correlation coe�cients in the UMi scenario for frequencies from
0.5 GHz to 100 GHz [52, 66, 205]. Note: For 3GPP UMi and frequencies below
2 GHz, use fc = 2 when determining the values of the frequency-dependent LSP
values [66].

Parameter Name LOS NLOS

3GPP [66]

ASD vs DS 0.5 0
ASA vs DS 0.8 0.4
ASA vs SF -0.4 -0.4
ASD vs SF -0.5 0
DS vs SF -0.4 -0.7

ASD vs ASA 0.4 0
ASD vs K -0.2 N/A
ASA vs K -0.3 N/A
DS vs K -0.7 N/A
SF vs K 0.5 N/A

ZSD vs SF 0 0
ZSA vs SF 0 0
ZSD vs K 0 N/A
ZSA vs K 0 N/A
ZSD vs DS 0 -0.5
ZSA vs DS 0.2 0
ZSD vs ASD 0.5 0.5
ZSA vs ASD 0.3 0.5
ZSD vs ASA 0 0
ZSA vs ASA 0 0.2
ZSD vs ZSA 0 0

NYUSIM
[52, 205]

ASD vs DS 0.32
28 GHz: -0.051
73 GHz: 0.021

ASA vs DS 0.49
28 GHz: 0.153
73 GHz: 0.264

ASA vs SF 0.54
28 GHz: -0.637
73 GHz: 0.044

ASD vs SF -0.04
28 GHz: 0.051
73 GHz: 0.008

DS vs SF 0.35
28 GHz: -0.508
73 GHz: -0.187

ASD vs ASA 0.72
28 GHz: 0.405
73 GHz: -0.257

ASD vs K -0.16
28 GHz: -0.217
73 GHz: 0.162

ASA vs K 0.07
28 GHz: -0.069
73 GHz: -0.428

DS vs K -0.46
28 GHz: -0.133
73 GHz: -0.449

SF vs K -0.03
28 GHz: -0.278
73 GHz: 0.029

ZSA vs SF 0.16
28 GHz: -0.480
73 GHz: -0.327

ZSA vs K -0.37
28 GHz: -0.077
73 GHz: -0.105

ZSA vs DS 0.44
28 GHz: 0.347
73 GHz: 0.144

ZSA vs ASD 0.95
28 GHz: 0.042
73 GHz: -0.027

ZSA vs ASA 0.72
28 GHz: 0.323
73 GHz: 0.081



188
Table 6.12: Cross-correlation coe�cients in the UMa scenario for frequencies from
0.5 GHz to 100 GHz [52, 66, 205]. Note: For 3GPP UMa and frequencies below
6 GHz, use fc = 6 when determining the values of the frequency-dependent LSP
values [66].

Parameter Name LOS NLOS

3GPP [66]

ASD vs DS 0.4 0.4
ASA vs DS 0.8 0.6
ASA vs SF -0.5 0
ASD vs SF -0.5 -0.6
DS vs SF -0.4 -0.4

ASD vs ASA 0 0.4
ASD vs K 0 N/A
ASA vs K -0.2 N/A
DS vs K -0.4 N/A
SF vs K 0 N/A

ZSD vs SF 0 0
ZSA vs SF -0.8 -0.4
ZSD vs K 0 N/A
ZSA vs K 0 N/A
ZSD vs DS -0.2 -0.5
ZSA vs DS 0 0
ZSD vs ASD 0.5 0.5
ZSA vs ASD 0 -0.1
ZSD vs ASA -0.3 0
ZSA vs ASA 0.4 0
ZSD vs ZSA 0 0

NYUSIM
[52, 205]

ASD vs DS 0.32
28 GHz: -0.051
73 GHz: 0.021

ASA vs DS 0.49
28 GHz: 0.153
73 GHz: 0.264

ASA vs SF 0.54
28 GHz: -0.637
73 GHz: 0.044

ASD vs SF -0.04
28 GHz: 0.051
73 GHz: 0.008

DS vs SF 0.35
28 GHz: -0.508
73 GHz: -0.187

ASD vs ASA 0.72
28 GHz: 0.405
73 GHz: -0.257

ASD vs K -0.16
28 GHz: -0.217
73 GHz: 0.162

ASA vs K 0.07
28 GHz: -0.069
73 GHz: -0.428

DS vs K -0.46
28 GHz: -0.133
73 GHz: -0.449

SF vs K -0.03
28 GHz: -0.278
73 GHz: 0.029

ZSA vs SF 0.16
28 GHz: -0.480
73 GHz: -0.327

ZSA vs K -0.37
28 GHz: -0.077
73 GHz: -0.105

ZSA vs DS 0.44
28 GHz: 0.347
73 GHz: 0.144

ZSA vs ASD 0.95
28 GHz: 0.042
73 GHz: -0.027

ZSA vs ASA 0.72
28 GHz: 0.323
73 GHz: 0.081
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Table 6.13: Simulation settings for comparing channel eigenvalues and spectral
e�ciencies between the 3GPP channel model [66] and NYUSIM [51, 223].

Parameter Setting

Carrier Frequency 28 GHz

Transmit Power 46 dBm for all UEs in the cell

95% Cell-Edge SNR 5 dB

BS Antennas
uniform rectangular array consisting of NT

cross-polarized elements in the x-z plane

BS Antenna Spacing half wavelength

BS Antenna Element Gain 8 dBi [66]

BS Antenna Element Pattern
Model 2, Page 18 in 3GPP
TR 36.873 Release 12 [225]

MS Antennas
uniform rectangular array consisting of NR

cross-polarized elements in the x-z plane

MS Antenna Spacing half wavelength

MS Antenna Element Gain 0 dBi

MS Antenna Element Pattern omnidirectional

Receiver Noise Figure 10 dB

Key channel modeling parameters for generating SSPs in NYUSIM are also given

by Table 6.9 and Table 6.10 in comparison with those in the 3GPP channel model

for UMi and UMa scenarios, respectively.

It is worth noting from Tables 6.9 and 6.10 that the number of clusters and the

number of rays per cluster in the 3GPP channel model have fixed values, whereas the

number of time clusters, the number of subpaths per time cluster, and the number

of spatial lobes (both departure and arrival) do not hold particular values but

follow certain distributions and can vary in each channel realization. Furthermore,

the numbers of clusters in the 3GPP model are much higher as compared to the

measured numbers of time clusters (around 3 to 4 on average) and spatial lobes

(about 2 on average) in NYUSIM. Those di↵erences lead to a significant di↵erence

in channel sparsity predicted by the two channel models, and have a huge impact on

spectral e�ciency evaluation, as will be demonstrated later by simulation results.
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6.1.7 Cross-Correlations

Cross-correlation coe�cients between various channel modeling parameters in both

3GPP and NYUSIM are displayed in Table 6.11 and Table 6.12 for the UMi street

canyon scenario and the UMa scenario, respectively.

6.1.8 Eigenvalues of HHH

Eigenvalues represent power gains of uncorrelated parallel sub-channels, which

are directly related to spectral e�ciency. The downlink NR ⇥NT MIMO channel

matrix H is generated using both 3GPP [66] and NYUSIM [51, 52, 205, 223] channel

models, for a system operating at 28 GHz with 100 MHz RF bandwidth, and 256

BS antennas and 16 MS antennas, composing a URA in the x-z plane on each side.

Simulation settings are detailed in Table 6.13. OFDM-like modulation [230, 231]

is assumed. Due to the significantly large bandwidths, it is speculated that the

nature of the mmWave propagation channel will be wideband (e.g., 1 GHz RF

bandwidth), and this wide bandwidth is likely to be aggregated over RF channels

which are 100 MHz wide and which use many OFDM sub-carriers that are each

narrowband (flat-fading) in nature [48, 230]. Although the channel coe�cients in

H over the 100 MHz usually vary with carrier frequency, mean values and statistics

of the eigenvalues of HHH are generally frequency-independent over the 100 MHz

bandwidth. To justify this, mean values of the singular values obtained by SVD

of the matrix H averaged over 3000 random channel realizations are plotted in

Fig. 6.3 against the narrowband (75 kHz RF bandwidth as envisioned for initial

5G systems [6]) sub-carriers [231] from 27.95 GHz to 28.05 GHz in increments of

10 MHz assuming OFDM-like modulation (actual OFDM modulation has much
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Figure 6.3: Mean values of the largest four singular values of the channel matrix H
averaged over 3000 random channel realizations versus the narrowband (75 kHz RF
bandwidth as envisioned for initial 5G systems [6]) carrier frequency from 27.95
GHz to 28.05 GHz in increments of 10 MHz assuming OFDM-like modulation
(actual OFDM modulation has much smaller sub-carrier spacings, e.g. 15 kHz for
4G LTE and 75 kHz for 5G pre-trial [6]; here 10 MHz is used purely for plotting
purposes). si denotes the mean value of the i-th largest singular value of H.

smaller sub-carrier spacings, e.g. 15 kHz for 4G LTE and 75 kHz for 5G pre-trial [6];

here 10 MHz is used purely for plotting purposes), where the singular values of H

are the square root of the corresponding eigenvalues of HHH . It is evident from

Fig. 6.3 that the mean values (statistics) of singular values vary little with carrier

frequency over the 100 MHz RF bandwidth. In other words, the narrowband flat

fading will be identical in statistics at any sub-carrier in the 100 MHz RF channel

bandwidth, so for simplicity, the channel impulse response from the 3GPP channel

model and the NYUSIM channel model, respectively, is used and the resulting

narrowband complex channel gain/channel state at the center frequency sub-carrier

of 28.000 GHz is applied when investigating eigenvalues and spectral e�ciency.

The eigenvalues of HHH are calculated and normalized eigenvalue magnitudes
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are obtained as follows:

⌘i =
⌘0iPNR

i=1 ⌘
0
i

(6.4)

where ⌘i denotes the ith largest normalized eigenvalue of HHH , ⌘0i is the ith largest

eigenvalue of HHH , and NR denotes the number of receive antennas.

Fig. 6.4 depicts the cumulative distribution functions (CDFs) of the largest four

channel eigenvalues of HHH for both 3GPP [66] and NYUSIM [51, 52, 223] for each

individual user in a single-cell three-user MIMO system in the UMi scenario. It is

observed from Fig. 6.4 that the highest two eigenvalues in NYUSIM are larger than

those in 3GPP, while the third and fourth eigenvalues are smaller most of the time.

This indicates that NYUSIM yields only a few but strong dominant eigenmodes,

whereas the 3GPP model generates more eigenmodes with weaker powers. The

number of dominant eigen channels (i.e., the channel rank) in NYUSIM is statistical

and can vary over the range of 1 to 5, where 5 is the maximum number of spatial

lobes [52], with an average and typical value of 2 as shown by Tables 6.9 and 6.10

and over numerous simulations.

Fig. 6.5 illustrates the average normalized eigenvalue magnitude of HHH as a

function of the eigenvalue index for both 3GPP [66] and NYUSIM [51, 52, 223]

models, where the normalized eigenvalue magnitude is obtained by dividing the

eigenvalue by the sum of all the eigenvalues in linear scale of a channel matrix. As

shown by Fig. 6.5, the first two dominant eigen channels of 3GPP and NYUSIM

channel models are roughly equal in normalized magnitude. Furthermore, all the

eigenvalues of the 3GPP channel are within 25 dB of the largest eigenvalue. On the

contrary, for NYUSIM, only four normalized eigenvalues are greater than -25 dB,

and the non-dominant eigenvalue magnitudes decrease rapidly. This indicates the

sparse feature of the mmWave channel such that the number of available spatial
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Figure 6.4: CDFs of the largest four channel eigenvalues at 28 GHz in 3GPP and
NYUSIM channel models for each individual user in a single-cell three-user MIMO
system in the UMi scenario. The transmit and receive antenna arrays are uniform
rectangular array composed by 256 and 8 cross-polarized elements, respectively.
The carrier frequency is 28 GHz with an RF bandwidth of 100 MHz and narrowband
frequency-flat fading sub-carriers. Each BS antenna element has a radiation pattern
as specified in Table 7.3-1 of [66] with a maximum gain of 8 dBi, and each RX
antenna element possesses an omnidirectional pattern. The total transmit power is
46 dBm.

multiplexing streams is relatively limited. This is likely caused by the small number

of clusters and narrow angular spreads modeled in mmWave channels by NYUSIM.

6.2 Examples and Applications

6.2.1 Mobile System Coverage and Performance Studies

This is fundamental to mobile research in the ability to design and predict coverage

for di↵erent morphologies.

Let us assume a single-cell MU-MIMO system operating at 28 GHz with an

RF bandwidth of 100 MHz and narrowband frequency-flat fading sub-carriers with

OFDM modulation in the UMi street canyon scenario. The BS is equipped with
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Figure 6.5: Comparison of normalized channel eigenvalues at 28 GHz in 3GPP
and NYUSIM channel models for each individual user in a single-cell three-user
MIMO system in the UMi street canyon scenario. The normalized eigenvalue
magnitude is obtained by dividing the eigenvalue by the sum of all the eigenvalues
in linear scale of a channel matrix. The transmit and receive antenna arrays are
URAs composed by 256 and 8 cross-polarized elements, respectively. The transmit
and receive antenna arrays are uniform rectangular array composed by 256 and 8
cross-polarized elements, respectively. The carrier frequency is 28 GHz with an RF
bandwidth of 100 MHz and narrowband frequency-flat fading sub-carriers. Each BS
antenna element has a radiation pattern as specified in Table 7.3-1 of [66] with a
maximum gain of 8 dBi, and each RX antenna element possesses an omnidirectional
pattern. The total transmit power is 46 dBm.
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NT cross-polarized antenna elements comprising a URA (where NT/2 elements

are +45� slanted, and the other NT/2 are �45� slanted). There are three UEs in

the cell, and each UE has eight cross-polarized omnidirectional antenna elements

constituting a URA (where four elements are +45� slanted, and the other four are

�45� slanted). Cross-polarized antenna elements are considered herein since they

can e↵ectively reduce the physical size while making use of di↵erent polarization

components. Each BS antenna element has a radiation pattern as specified in Table

7.3-1 of [66] with a maximum gain of 8 dBi, and each RX antenna element possesses

an omnidirectional pattern. In the simulations, it is assumed that 95% of the area

in the cell has an SNR larger than or equal to 5 dB, and the upper bound of the

T-R separation distance (i.e., cell radius) is calculated based on this assumption by

using the following equation:

PL(fc, dmax)[dB] = 10log10NT + PT +GT �N0 � SNRcell-edge (6.5)

where PT represents the transmit power in dBm, GT is the gain of each TX antenna

element in dB, No denotes the noise power in dBm, and SNRcell-edge is the cell-edge

SNR in dB, which is 5 dB in the simulations. The most vital term in Eq. (6.5) is

PL(fc, dmax), which denotes the large-scale path loss in dB at the cell edge dmax,

and should correspond to an SNR no smaller than the cell-edge SNR 95% of the

time statistically. This is realized through the shadow fading term in PL(fc, dmax).

For instance, when using the CI path loss model, PL(fc, dmax) is expressed as:

PL(fc, dmax)[dB] = 32.4 + 10nlog10 (dmax) + 20log10(fc) + z ⇤ �SF (6.6)
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Figure 6.6: Maximum coverage distance of the BS as a function of the BS antenna
elements in a single-cell three-user MIMO system operating at 28 GHz with an RF
bandwidth of 100 MHz and narrowband frequency-flat fading sub-carriers in the
UMi street canyon scenario, using both 3GPP and NYUSIM channel models. The
BS is equipped with NT cross-polarized antenna elements comprising a URA, and
each UE has 0 dB antenna gain. Each BS antenna element has a radiation pattern
as specified in Table 7.3-1 of [66] with a maximum gain of 8 dBi, and each RX
antenna element possesses an omnidirectional pattern. The total transmit power is
46 dBm which is equally shared by the three users.

where �SF represents the shadow fading standard deviation in dB. Since shadow

fading is a zero-mean Gaussian random variable [67, 232] hence having a probability

density function (PDF), z is a constant that splits the area under the PDF into

two parts such that the two parts occupy 95% and 5% of the total area under the

PDF, respectively, and z is calculated to be 1.645 via the Q-function [232].

For the UMi street canyon scenario, the upper bound of the T-R separation

distance, i.e., the maximum coverage distance of the BS, is calculated based on the

above assumption for varying number of BS antenna elements using both 3GPP

and NYUSIM channel models, where the number of BS antenna elements ranges

from 16 to 1024, and the carrier frequency is 28 GHz with an RF bandwidth of

100 MHz and narrowband frequency-flat fading sub-carriers. The BS is equipped

with a URA with cross-polarized antenna elements, and each UE has 0 dB antenna
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gain. Each BS antenna element has a radiation pattern as specified in Table 7.3-1

of [66] with a maximum gain of 8 dBi, and each RX antenna element possesses

an omnidirectional pattern. The total transmit power is 46 dBm which is equally

shared by the three users in a cell. The maximum coverage distances calculated

using Eqs. (6.5) and (6.6) are illustrated in Fig. 6.6, which shows that NYUSIM

predicts 1.0%-14.1% greater cell radius compared to 3GPP. For example, when

there are 256 BS antenna elements, the maximum coverage distance is 281.4 m and

308.3 m predicted by 3GPP and NYUSIM, respectively, where the latter is 9.6%

greater than the former.

6.2.2 Simulation Results and Analysis

The HBF algorithm proposed in [117] for the fully-connected architecture is em-

ployed to investigate the spectral e�ciency in a single-cell SU-MIMO mmWave

system, using the simulation settings in Table 6.13 with 256 and 16 BS and UE

antenna elements, respectively. The CDFs of the spectral e�ciency of the single-cell

SU-MIMO system are depicted in Fig. 6.7 for di↵erent numbers of RF chains

and data streams using both 3GPP [66] and NYUSIM [51] channel models. The

number of RF chains in the legend denotes both the transmit and receive RF

chains. Fig. 6.7(a) depicts the case of one data stream, which shows that regardless

of the number of RF chains, the spectral e�ciency yielded by NYUSIM is (up to

42%) larger than that generated by the 3GPP model when only one data stream is

transmitted, due to the larger dominant channel eigenvalue produced by NYUSIM

and is consistent with the results in [208] for the one-stream case. Furthermore, the

spectral e�ciency using the HBF algorithm is closer to the digital beamforming

performance utilizing NYUSIM than using the 3GPP model. More importantly,
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for the 3GPP model, there is a noticeable increase in the spectral e�ciency as the

number of RF chains increases from 1 to 2, while the spectral e�ciency increase

is very trivial for NYUSIM. Fig. 6.7(b) illustrates the case of four data streams.

Several observations can be drawn from Fig. 6.7(b). First, the digital beamforming

spectral e�ciency using NYUSIM is larger as compared to the 3GPP channel model

in most cases, since the sum of the highest four channel eigenvalues in NYUSIM is

greater than that in the 3GPP channel model. Second, for CDF points lower than

90%, the spectral e�ciency gap between the digital beamforming and HBF is more

significant for NYUSIM than for the 3GPP model, which indicates that the product

of the analog and digital hybrid beamforming matrices can not be made su�ciently

close to the optimal digital beamforming matrix as required in [117]. This is

probably because in some channel realizations the number of MPCs produced by

NYUSIM is smaller than four, such that there are not large enough antenna array

response vector basis from which the analog steering directions can be selected [117].

Moreover, for the 3GPP channel model, the spectral e�ciency increases when the

number of RF chains increases from 4 to 8, likely due to the fact that the number of

clusters in the UMi scenario in the 3GPP channel model is 12 for LOS and 19 for

NLOS, thus increasing the RF chains from 4 to 8 can make better use of the channel

spatial dimensions. As a comparison, the spectral e�ciency yielded by NYUSIM

remains almost unchanged for 4 and 8 RF chains, since the number of spatial lobes

does not exceed 5 with an average number of 2 so that increasing the number of

RF chains from 4 to 8 is unlikely to provide extra multiplexing gain. Therefore,

the 3GPP model suggests that spectral e�ciency can be enhanced by increasing the

number of RF chains, while NYUSIM indicates that there is no need to increase

the RF chains beyond five or so as the spectral e�ciency will not be improved. The
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Figure 6.7: CDFs of the sum spectral e�ciency of the single-cell SU-MIMO system
using the HBF algorithm proposed in [117] for di↵erent numbers of RF chains using
both 3GPP [66] and NYUSIM [51] channel models. The number of RF chains
in the legend denotes both the transmit and receive RF chains. The number of
data streams between the BS and UE is one, four, and 16 in (a), (b), and (c),
respectively.

spectral e�ciency CDFs corresponding to 16 data streams and 16 RF chains are

displayed in Fig. 6.7(c), which reveals that the 3GPP model yields higher spectral

e�ciency for both HBF and digital beamforming. This is because of the increased

number of data streams hence increased multipath richness that makes the 3GPP

channel closer to a Rayleigh channel, thus resulting in larger spectral e�ciency.

Table 6.16 shows that for the three-cell MU-MIMO using the HBF algorithm

proposed in this chapter with two streams per user, NYUSIM predicts larger per-

user and sum spectral e�ciencies than the 3GPP channel model, probably because
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Figure 6.8: An example of the HBF architecture diagram with various hardware
units at the BS (the MS side can be derived similarly), with NBS antenna elements
composing a URA, NRF

BS RF chains, and NS data streams. Adding one RF chains
entails the addition of one extra DAC/ADC at the BS/MS, one extra power amplifier
(PA) and low-noise amplifier (LNA) at the BS/MS, as well as NBS/NMS extra phase
shifters at the BS/MS, which significantly increases the hardware complexity, cost,
and power consumption.
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Table 6.14: RF hardware needed for the 3GPP channel model [66] and NYUSIM [51,
223] to achieve the same or similar spectrum e�ciency in the single-cell SU-MIMO
case using the HBF algorithm proposed in [117] for the UMi scenario. The carrier
frequency is 28 GHz with an RF bandwidth of 100 MHz and narrowband frequency-
flat fading sub-carriers. The BS is equipped with 256 cross-polarized antenna
elements comprising a URA, and each UE has 16 cross-polarized omnidirectional
antenna elements constituting a URA. Each BS antenna element has a radiation
pattern as specified in Table 7.3-1 of [66] with a maximum gain of 8 dBi, and each
RX antenna element possesses an omnidirectional pattern. The total transmit
power is 46 dBm. In the simulations, it is assumed that 95% of the area in the
cell has an SNR larger than or equal to 5 dB, and the upper bound of the T-R
separation distance is calculated based on this assumption.

Beam-
forming

Approach

Channel
Model

Average
Spectral
E�ciency
(bps/Hz)

# of
Streams

# of
TX
RF

Chains

# of
RX
RF

Chains

# of
Phase
Shifters

at
TX/RX

# of
PAs/L-
NAs at
TX/RX

Digital [117]
3GPP 15.1 1 256 16 256 / 16 256 / 16

NYUSIM 19.0 1 256 16 256 / 16 256 / 16

HBF [117]

3GPP 12.8 1 1 1 256 / 16 1 / 1

NYUSIM 18.0 1 1 1 256 / 16 1 / 1

3GPP 22.8 2 6 6 1536 / 96 6 / 6

NYUSIM 22.9 2 2 2 512 / 32 2 / 2

3GPP 29.6 3 6 4 1536 / 64 6 / 4

NYUSIM 29.6 3 3 3 768 / 48 3 / 3

3GPP 35.2 4 8 4 2048 / 64 8 / 4

NYUSIM 35.3 5 5 5 1280 / 80 5 / 5

of the stronger two dominant eigen channels per user, and the smaller AoA spread

per user such that channels among di↵erent users are less correlated leading to

less interference when compared to the 3GPP model. The evaluation performance

of the 3GPP and NYUSIM channel models for various spatial multiplexing and

beamforming scenarios is summarized in Table 6.17.

Table 6.14 compares the number of RF chains needed for both 3GPP and

NYUSIM channel models to achieve the same or similar spectral e�ciency using the
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Table 6.15: RF hardware needed for the 3GPP channel model [66] and NYUSIM [51,
223] to achieve the same or similar spectrum e�ciency in the single-cell SU-MIMO
case using the HBF algorithm proposed in [117] for the UMi scenario. The carrier
frequency is 28 GHz with an RF bandwidth of 100 MHz and narrowband frequency-
flat fading sub-carriers. The BS is equipped with 256 cross-polarized antenna
elements comprising a URA, and each UE has 16 cross-polarized omnidirectional
antenna elements constituting a URA. Each BS antenna element has a radiation
pattern as specified in Table 7.3-1 of [66] with a maximum gain of 8 dBi, and each
RX antenna element possesses an omnidirectional pattern. The total transmit
power is 46 dBm. In the simulations, it is assumed that the receive SNR is 10 dB.

Beam-
forming

Approach

Channel
Model

Average
Spectral
E�ciency
(bps/Hz)

# of
Streams

# of
TX
RF

Chains

# of
RX
RF

Chains

# of
Phase
Shifters

at
TX/RX

# of
PAs/L-
NAs at
TX/RX

HBF [117]

3GPP 9.1 2 3 2 768 / 32 3 / 2

NYUSIM 9.1 2 2 2 512 / 32 2 / 2

3GPP 10.0 4 10 10
2560 /
160

10 / 10

NYUSIM 10.1 4 4 4 1024 / 64 4 / 4

HBF algorithm proposed in [117]. In Table 6.14, the spectral e�ciency is averaged

over all the user locations in a cell with a cell-edge SNR of 5 dB. Alternatively, the

spectral e�ciency can be calculated with a fixed receive SNR (i.e., 10 dB) at all

user locations, which is shown in Table 6.15. Note that for HBF, adding one RF

chains entails the addition of one extra DAC/ADC at the BS/MS, one extra power

amplifier (PA) and low-noise amplifier (LNA) at the BS/MS, as well as NBS/NMS

extra phase shifters at the BS/MS, as shown in Fig. 6.8, which significantly increases

the hardware complexity, cost, and power consumption, especially for large NBS

and NMS that are likely to be the case in mmWave systems. It is evident from

Tables 6.14 and 6.15 that the 3GPP model necessitates more RF chains, i.e., higher

hardware complexity, cost, and power consumption, to achieve comparable spectral

e�ciency to NYUSIM. For instance, as shown by Table 6.14, when only one data
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Table 6.16: Sum spectral e�ciency in bps/Hz in multi-cell multi-user MIMO systems
for both types of base station HBF architecture shown in Fig. 8.3 using 3GPP [66]
and NYUSIM [51, 52] channel models. There are three cells with one base station
and three users per cell, the total transmit power per cell is 46 dBm, and the
number of antennas is 256 per base station and eight per user. The number of data
streams per user is two, and the number of total RF chains per base station is six.
The 10%, 50%, and 90% points denote the corresponding points in the CDF of the
sum spectral e�ciency.

Sum
Spectral
E�ciency
(bps/Hz)

10%
Point

50%
Point

90%
Point

Structure 1

(Fig. 8.3(a))

3GPP 14.0 29.5 41.0

NYUSIM 38.1 56.9 79.0

Structure 2

(Fig. 8.3(b))

3GPP 27.1 52.1 65.3

NYUSIM 56.9 77.3 98.1

Table 6.17: Summary of the evaluation performance on spectral e�ciency/capacity
of the 3GPP channel model [66] and NYUSIM [51, 223].

Scenario Model Predicting Larger Capacity

Spatial Multiplexing Based on H
3GPP (due to increased multipath richness in the

3GPP model)

Spatial Multiplexing Based on
HFRF

3GPP (due to increased multipath richness in the
3GPP model although FRF makes the channel

correlated)

Digital Beamforming
3GPP (with a large number of data
streams) or NYUSIM (with a small

number of data streams) (shown by Fig. 6.7)

HBF for Single-Cell Single-User
Single-Stream

NYUSIM (due to channel sparsity and larger
dominant eigenvalue in the NYUSIM model and

HBF processing that changes the channel
properties as seen by the RX; shown by

Fig. 6.7(a))

HBF for Multi-Cell Multi-User
Multi-Stream

NYUSIM (due to channel sparsity and larger
dominant eigenvalue in the NYUSIM model and

HBF processing that changes the channel
properties as seen by the RX; to be shown by

Figs. 8.11 and 8.13 in Chapter 8)
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stream is transmitted, the average spectral e�ciency yielded by the 3GPP model

even with the maximum possible RF chains (256 TX RF chains and 16 RX RF

chains) is still smaller than the NYUSIM spectral e�ciency with the minimum

possible RF chains (one TX RF chain and one RX RF chain), due to the much

stronger dominant eigen channel in NYUSIM as shown in Fig. 6.4. When two data

streams are transmitted, the 3GPP model needs three times as many RF chains

and phase shifters to yield similar spectral e�ciency to that of NYUSIM. When

four or more data streams are transmitted, NYUSIM can generate similar spectral

e�ciency with comparable or fewer total RF chains as compared to the 3GPP

model, but more data streams are required since the third and latter eigen channels

in NYUSIM are much weaker than those in the 3GPP model.

6.3 Concluding Remarks

This chapter provided a comprehensive comparison of two representative channel

models, the 3GPP model and the NYUSIM model, and demonstrated the profound

impact of the models on 5G channel performance evaluation via simulations. Key

di↵erences between the two channel models are the LOS probability model, path loss

model, and cluster/TCSL statistics, among which cluster/TCSL statistics matter

most. Analyses and simulation results show that channel model selection has a

huge influence on deployment decisions and on various metrics, such as spectrum

e�ciency, coverage and performance, cell radius, and hardware/signal processing

requirements.

The 3GPP and NYUSIM channel models utilize di↵erent LOS probability models,

path loss models, cluster definitions, and large-scale and small-scale parameters,
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etc. Particularly, the number of clusters in the 3GPP model is over two to four

times as large as the maximum number of spatial lobes in NYUSIM, leading to

di↵erent channel sparsity levels in the two models. The di↵erence in LOS probability

and path loss models gives rise to discrepant cell radius prediction results that

can di↵er by 50 m or so for around 500 transmit antenna elements. Compared

to NYUSIM, the larger cluster number (i.e., more rich multipath) in the 3GPP

model results in more eigen channels and more similar powers among those eigen

channels, thus is advantageous for spatial multiplexing. On the other hand, the

NYUSIM channel exhibits sparsity and has fewer but stronger dominant eigenmodes,

hence generating higher spectral e�ciency when combined with appropriate HBF

procedures. For example, for the one-stream case in a SU-MIMO system using

the HBF algorithm in [117], the average spectral e�ciency yielded by the 3GPP

model even with the maximum possible RF chains is still smaller than the NYUSIM

spectral e�ciency with the minimum possible RF chains. Di↵erent channel models

can lead to substantially varied predictions on diverse channel performance metrics

and hardware requirements, thus it is vital to select an accurate channel model for

5G wireless system performance evaluation.
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Chapter 7

Millimeter Wave MIMO Channel

Estimation Based on Adaptive

Compressed Sensing

CSI is necessary to design precoding and combining procedures at transmitters

and receivers, and it can be obtained through channel estimation. Due to the facts

that large antenna arrays will be used in mmWave systems, and that mmWave

channels exhibit sparsity due to the limited number of dominant spatial lobes [51,

52, 205], conventional MIMO channel estimation methods may not be applicable in

mmWave systems, hence new channel estimation methods are required [118], and CS

techniques [120] can be leveraged to e↵ectively estimate mmWave channels [121, 122].

Adaptive CS, as a branch of CS, yields better performance at low SNRs compared

to standard CS techniques, and low SNRs are typical for mmWave systems before

implementing beamforming gain [119]. Adaptive CS algorithms for estimating

mmWave channel parameters with the presence of antenna arrays were derived
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in [119] for both single-path and multipath scenarios, and it was shown that

the proposed channel estimation approaches could achieve comparable precoding

gains compared with exhaustive training algorithms [119]. However, in [119] and

the majority of existing work, standard basis pursuit (SBP) is used to construct

beamforming dictionary matrices, which renders the problem of basis mismatch so

that not all AoDs and AoAs can be estimated accurately. Therefore, more advanced

beamforming dictionary constructing approaches are needed to improve estimation

accuracy and hence spectral e�ciency.

This chapter presents an enhanced approach to the creation of beamforming

dictionary matrices for mmWave MIMO channel estimation in comparison with the

one introduced in [119], based on adaptive CS concepts. The main novelty of the

proposed method here is the adoption of the CBP method instead of the conventional

grid-based (i.e., SBP) approach to build beamforming dictionary matrices [55].

This chapter shows that the proposed dictionary can significantly improve the

estimation accuracy, i.e., reduce the probability of estimation error, of AoDs and

AoAs. Furthermore, built on the CBP-based dictionary, two new multipath channel

estimation algorithms are proposed that have lower computational complexity

compared to the one introduced in [119], while o↵ering better estimation accuracy

for various signal sparsities. NYUSIM [51, 52] was used in the simulation to

investigate the performance of the proposed algorithms.

The following notations are used throughout this chapter. N denotes the set

of natural numbers; tr(X) and vec(X) indicate the trace and vectorization of X,

respectively; The Hadamard, Kronecker and Khatri-Rao products between two

matrices are denoted by �, ⌦, and ⇤, respectively.
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7.1 System Model

Let us consider a BS equipped with NBS antennas and NRF RF chains communicat-

ing with an MS with NMS antennas and NRF RF chains, where NRF  NMS  NBS.

System interference issues, such as co-channel interference from other BSs and

MSs, are intentionally not considered because of the limited interference found

in directional mmWave channels [118], and also, the focus of this chapter is to

quantify and compare the performance of channel estimation methods in a single

link [55]. System aspects are ongoing research topics. A carrier frequency of 28 GHz

with an 800 MHz RF bandwidth and narrowband frequency-flat fading sub-carriers

are assumed in the simulation settings in this chapter, but the CBP method and

proposed algorithms are applicable to any mmWave frequency and bandwidth. In

the channel estimation stage, the BS employs MBS beamforming vectors to transmit

MBS symbols, while the MS utilizesMMS combining vectors to combine the received

signal. The BS is assumed to implement analog/digital hybrid precoding with

a precoding matrix F = FRFFBB, where FRF 2 CNBS⇥NRF and FBB 2 CNRF⇥MBS

denote the RF and baseband precoding matrices, respectively. Similarly, at the

MS, the combiner W also consists of RF and baseband combiners represented by

WRF 2 CNMS⇥NRF and WBB 2 CNRF⇥MMS , respectively. The received signal at the

MS is given by [55]:

Y = WHHFS+Q (7.1)

where H 2 CNMS⇥NBS denotes the channel matrix, S 2 CMBS⇥MBS is a diagonal

matrix containing the MBS transmitted symbols, and Q 2 CMMS⇥MBS represents

the complex Gaussian noise. The design of analog/digital hybrid precoding and

combining matrices have been extensively investigated [117, 148], and this topic
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is deferred to future work and channel estimation is focused on in this chapter.

Additionally, although CSI can also be obtained by uplink training and channel

reciprocity in TDD systems, this chapter focuses on the downlink training since

channel reciprocity usually does not hold for FDD systems, and even in TDD

systems if there exist non-linear devices that are not self-calibrated so as to incur

non-reciprocal e↵ects.

The mmWave channel can be approximated by a geometric channel model with

L scatterers due to its limited scattering feature [2, 168, 184], and the channel

matrix can be written as

H =

r
NBSNMS

L

LX

l=1

↵laMS('l,#l)a
H
BS(�l, ✓l) (7.2)

where ↵l is the complex gain of the lth path between the BS and MS including the

path loss, where a path refers to a cluster of multipath components traveling closely

in time and/or spatial domains, �l,'l 2 [0, 2⇡) are the azimuth AoD and AoA of

the lth path, ✓l,#l 2 [�⇡/2, ⇡/2] are the elevation AoD and AoA. aBS(�l, ✓l) and

aMS('l,#l) are the antenna array response vectors at the BS and MS, respectively.

The NYUSIM simulator produces a wide range of sample ensembles for (7.2) and

incorporates multiple antenna elements and physical arrays including ULAs [51].

Using a ULA, the array response vector can be expressed as (take the BS for

example)

aBS(�l) =
1p
NBS

[1, ej
2⇡
�

dcos(�
l

), · · · , ej(NBS�1) 2⇡
�

dcos(�
l

)]T (7.3)

where the incident angle is defined as 0 if the beam is parallel with the array

direction, � denotes the carrier wavelength, and d is the spacing between adjacent

antenna elements.
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7.2 Formulation of the mmWave Channel Esti-

mation Problem

Considering the mmWave channel matrix given by (7.2), estimating the channel is

equivalent to estimating the AoD, AoA, and path gain of each path, and training

precoders and combiners are necessary to conduct the channel estimation. The

mmWave channel estimation can be formulated as a sparse problem due to its

limited dominant paths, e.g., on average 1 to 6 time clusters and 2 to 3 spatial

lobes were found from real-world measurements using a 10 dB down threshold,

as presented in [52]. Therefore, some insights can be extracted from the CS

theory. Assuming all transmitted symbols are equal for the estimation phase, i.e.,

S =
p
P IMBS (P is the average power per transmission) and by vectorizing the

received signal Y in (7.1) to y, the received signal can be approximated with a

sparse formulation as follows [119]

y =
p
Pvec(WHHF) + vec(Q)

=
p
P (FT ⌦WH)vec(H) + nQ

=
p
P (FT ⌦WH)(A⇤

BS,D ⇤AMS,D)z+ nQ

=
p
P (FTA⇤

BS,D ⌦WHAMS,D)z+ nQ

=
p
PFTA⇤

BS,DzBS ⌦WHAMS,DzMS + nQ (7.4)

where ABS,D and AMS,D denote the beamforming dictionary matrices at the BS

and MS, respectively. zBS 2 CN⇥1 and zMS 2 CN⇥1 are two sparse vectors that

have non-zero elements in the locations associated with the dominant paths, with

N denoting the number of measurements in the channel estimation stage, and
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z = zBS ⇤ zMS.

A beamforming dictionary based on angle quantization was proposed in [119],

where the AoDs and AoAs were assumed to be taken from a uniform grid of

N points with N � L where L denotes the number of paths, and the resulting

dictionary matrix is expressed as (take the BS side for example, the MS dictionary

matrix can be derived similarly)

ABS,D = [aBS(�1), · · · , aBS(�N)] (7.5)

where aBS(�n) (n = 1, ..., N) denotes the BS array response vector for the grid

point �n.

Given that the true continuous-domain AoDs and AoAs may lie o↵ the center of

the grid bins, the grid representation in this case will destroy the sparsity of the signal

and result in the so-called basis mismatch [233]. This can be mitigated to a certain

extent by finer discretization of the grid, but that may lead to higher computation

time and higher mutual coherence of the sensing matrix, thus becoming less e↵ective

for sparse signal recovery [120]. There are several approaches to mitigate the basis

mismatch problem. One promising approach, named CBP, is proposed in [233],

where one type of CBP is implemented with first-order Taylor interpolator, which

will be demonstrated shortly. Since the antenna array factor a(�) is a continuous

and smooth function of �, it can be approximated by linearly combining a(�k) and

the derivative of a(�) at the point �k via a first-order Taylor expansion:

a(�) = a(�k) + (�� �k)
@a(�)

@�

����
�
k

+O((�� �k)
2) (7.6)

where �k = 2⇡(k � 1)/N is the grid-point with minimal distance from �. This
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motivates a dictionary consisting of the original discretized array factors a(�) and

its derivatives @a(�)
@�

, i.e., a(�) and @a(�)
@�

can be regarded as two sets of basis for the

dictionary. Therefore, the entire basis for the proposed dictionary matrix can be

formulated as

BBS = [aBS(�1), · · · , aBS(�N),bBS(�1), · · · ,bBS(�N)] (7.7)

where bBS(�n) =
@aBS(�)

@�

��
�
n

, and the corresponding interpolator is given by

tBS = [1, · · · , 1| {z }
N

,��, · · · ,��| {z }
N

] (7.8)

where �� denotes the angle o↵set from the angles on the grid, and |��|  ⇡
N
. The

proposed dictionary is hence written as

ÃBS,D = BBS ⇤ tBS =[aBS(�1), · · · , aBS(�N), ��bBS(�1), · · · , ��bBS(�N)]

(7.9)

7.3 Multi-Resolution Hierarchical Codebook

The proposed hierarchical beamforming codebook is composed of S levels, where

each level contains beamforming vectors with a certain beamwidth that covers

certain angular regions [55]. Due to the symmetry of the antenna pattern of a ULA,

if a beam covers an azimuth angle range of [�a,�b], then it also covers 2⇡ � [�a,�b].

In each codebook level s, the beamforming vectors are divided into Ks�1 subsets,

each of which contains K beamforming vectors. Each of these K beamforming

vectors is designed such that it has an almost equal projection on the vectors

aBS(�̄), where �̄ denotes the angle range covered by this beamforming vector, and
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zero projection on the array response vectors corresponding to other angles. Note

that there is no strict constraint on the number of sectors K at each stage, yet

considering practical angle-searching time, K = 3 or 4 is a reasonable choice. Once

the value of K is defined, the total number of estimation measurements N is 2KS.

The value of N should be minimized while guaranteeing the successful estimation

of angles, thus S should be neither too large nor too small. Through simulations,

it is found that S = 3, K = 4 (N = 128) and S = 4, K = 3 (N = 162) are two

sensible combinations [55].

In each codebook level s and subset k, the mth column of the beamforming

vector [F(s,k)]:,m,m = 1, ..., K in the codebook F is designed such that [55]:

[F(s,k)]H:,maBS(�̄u) =

8
><

>:

C, for �̄u 2 �BS
s,k,m

0, otherwise

[F(s,k)]
H
:,mbBS(�̄u) = 0, 8 �̄u (7.10)

with

�BS
s,k,m =

h ⇡

Ks

�
K(kBS

s � 1) +mBS � 1
�
,
⇡

Ks
(K(kBS

s � 1) +mBS)
i

[
h
2⇡ � ⇡

Ks
(K(kBS

s � 1) +mBS), 2⇡ � ⇡

Ks

�
K(kBS

s � 1) +mBS � 1
�i

(7.11)

where C is a constant such that each F(s,k) has a Frobenius norm of K. The fact

that the product of [F(s,k)]H:,m and bBS(�̄u) is zero in (7.10) can be derived from (7.6)

to (7.9). The matrix F(s,k) hence equals the product of the pseudo-inverse of ÃBS,D

and the (k ⇥K � (K � 1))th to (k ⇥K)th columns of the angle coverage matrix
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G(s) with its mth column given by (7.12) [55]:

[G(s)]:,m = [C 0s and 00s| {z }
N

, 0, · · · , 0| {z }
N

]T (7.12)

where C’s are in the locations �BS
s,k,m. The combining matrix W(s,k) in the codebook

W at the receiver can be designed in a similar manner. It is noteworthy that the

di↵erence between the angle coverage matrix G(s) in [119] and the one proposed

here is that the mth column of the former contains only the first N rows without

the last N 0’s in (7.12), i.e., the former did not force [F(s,k)]H:,mbBS(�̄u) to be zero,

hence failing to alleviate the leakage incurred by angle quantization [55].

Fig. 7.1 illustrates the beam patterns of the beamforming vectors in the first

codebook level of an example hierarchical codebook introduced in [119] and the

hierarchical codebook proposed in this chapter withN = 162 andK = 3. Comparing

the two beam patterns, the codebook generated using the CBP-based dictionary

ÃBS,D in (7.9) produces a smoother (i.e., fewer ripples) pattern contour in contrast

to that yielded by the codebook introduced in [119], namely, the beams associated

with ÃBS,D are able to cover the intended angle ranges more evenly [55]. Due to

the more uniform projection on the targeted angle region, the beamforming vectors

generated using ÃBS,D can mitigate the leakage induced by angle quantization, thus

improving the angle estimation accuracy, as will be shown later.
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Figure 7.1: Beam patterns of the beamforming vectors in the first codebook level of
an example hierarchical codebook using the grid-based and CBP-based dictionaries
with N = 162, K = 3 [55].

7.4 Adaptive estimation algorithms for mmWave

MIMO channels

For single-path channels, there is only one non-zero element in the vector z in (7.4).

To e↵ectively estimate the location of this non-zero element, and consequently

the corresponding AoD, AoA, and path gain, the following algorithm, which is an

improved version of Algorithm 1 in [119], is used in conjunction with the innovative

CBP-based dictionary matrices [55].

Algorithm 1 operates as follows. In the initial stage, the BS uses the training

precoding vectors of the first level of the codebook F . For each of those vectors, the

MS uses the measurement vectors of the first level of W to combine the received

signal. After the precoding-measurement steps of this stage, the MS compares the

power of the received signals to determine the one with the maximum received

power. As each one of the precoding/measurement vectors is associated with a

certain range of the quantized AoA/AoD, the operation of the first stage divides
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Algorithm 1 Adaptive Estimation Algorithm for Single-Path mmWave MIMO
channels [55]

Require: K, S, codebooks F and W , N = 2KS

1: Initialization: kBS
1 = 1, kMS

1 = 1
2: for s  S do
3: for mBS  K do
4: BS uses [F(s,kBS

s

)]:,mBS

5: for mMS  K do
6: MS uses [W(s,kMS

s

)]:,mMS

7: end for mMS  K
8: end for mBS  K
9: end for s  S
10: for s  S do
11: Y(s) =

p
Ps[W(s,kMS

s

)]
HH[F(s,kBS

s

)] +Q
12: {m⇤

BS,m
⇤
MS} = argmax

8mBS,mMS=1,...,K
[Y(s) �Y⇤

(s)]mMS,mBS

13: �̂can 2 �BS
s,k,m, '̂can 2 �MS

s,k,m % �BS
s,k,m is given by Eq. (7.11), and �MS

s,k,m can
be calculated similarly

14: kBS
s+1 = K(kBS

s � 1) +m⇤
BS, k

MS
s+1 = K(kMS

s � 1) +m⇤
MS,

15: end for s  S
16: Acan,BS = [aBS(�̂can)] % Antenna array matrix for the candidate AoDs

Acan,MS = [aMS('̂can)] % Antenna array matrix for the candidate AoAs
Z = AH

can,MSHAcan,BS + Q % Received signal matrix corresponding to the
candidate AoDs and AoAs
(�̂, '̂) = argmax Z � Z⇤ % Finding the optimal AoD and AoA that maximize
the Hadamard product of the received signal matrix
↵̂ =

q
Z(�̂,'̂) � Z⇤

(�̂,'̂)
/(NBS ⇤NMS) % Estimated path gain magnitude associated

with the estimated AoD and AoA
Ensure: �̂, '̂, ↵̂
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the entire angle range [0, 2⇡) into K partitions, and compares the power of the

sum of each of them. Hence, the selection of the strongest received signal implies

the selection of the range of the quantized AoA/AoD that is highly likely to contain

the single path of the channel. The output of the maximum power is then used to

determine the subsets of the beamforming vectors of level s+ 1 (1  s  S � 1)

of F and W to be used in the next stage. Since N must be even multiples of K

in order to construct the precoding and measurement codebooks, there are two

possible ranges of AoD/AoA selected out after Step 15 of Algorithm 1, which are

denoted as �̂can and '̂can. Step 16 is aimed at “filtering” out the AoD/AoA from

these two ranges. The MS then feeds back the selected subset of the BS precoders

to the BS to use it in the next stage, which needs only log2K bits.

Based on Algorithm 1 and inspired by the estimation algorithm in [119] for mul-

tipath channels (as opposed to single-path channels), two low-complexity algorithms

for estimating multipath channels are established, namely Algorithms 2 and 3, and

are explained below. In Algorithm 2, IBS
(i,s) and IMS

(i,s) contain the precoding and

measurement matrix indexes of the ith path in the sth stage, respectively. Algorithm

2 operates as follows: A procedure similar to Algorithm 1 is utilized to detect the

first strongest path. The indexes of the beamforming matrices corresponding to the

previous detected l (1  l  L� 1) paths are stored and used in later iterations.

Note that in each stage s from the second iteration on, the contribution of the

paths that have already been estimated in previous iterations are projected out

one path by one path before determining the new promising AoD/AoA ranges. In

the next stage s+ 1, two AoD/AoA ranges are selected for further refinement, i.e.,

the one selected at stage s of this iteration, and the one selected by the preced-

ing path at stage s + 1 of the previous iteration. The algorithm makes L outer
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iterations to estimate L paths. Thanks to the sparse nature of mmWave channels,

the number of dominant paths is usually limited, which means the total number

of precoding-measurement steps will not be dramatically larger compared to the

single-path case.

Algorithm 2 Adaptive Estimation Algorithm for Multipath mmWave MIMO
channels [55]

Require: K, S, codebooks F and W , N = 2KS

1: Initialization: IBS
(:,1) = [1, ..., 1]T , IMS

(:,1) = [1, ..., 1]T , where IBS 2 NL⇥S, IMS 2
NL⇥S

2: Use Algorithm 1 to detect the AoD, AoA, and path gain for the first strongest
path

3: Repeat Algorithm 1 for the lth (2  l  L) path until Step 11 in Algorithm 1
4: For the sth stage in the ith (2  i  L) iteration, project out previous path

contributions one path by one path
Y(s) =

p
Ps[W(s,kMS

s

)]
HH[F(s,kBS

s

)] +Q
y(s) = vec(Y(s))
V(i,s) = FT

(s,IBS
(i,s))

[ÃBS,D]⇤:,IBS
(i,s)

⌦WH
(s,IMS

(i,s))
[ÃMS,D]:,IMS

(i,s)
% Calculating the contri-

bution of previous paths in the form of Eq. (7.4)
y(s) = y(s) �V(i,s)V

†
(i,s)y(s)

5: Convert y(s) to the matrix form Y(s)

6: Repeat Algorithm 1 from Step 12 to obtain the AoD, AoA, and path gain for
the ith strongest path until all the L paths are estimated

Ensure: AoDs, AoAs, and path gains for the L dominant paths

Algorithm 3 is similar to Algorithm 2, but with an even lower complexity. The

major di↵erence between Algorithm 3 and Algorithm 2 stems from the way of

projecting out previous path contributions: Algorithm 3 does not require storing

the beamforming matrix indexes, but instead, it utilizes the antenna array response

vectors associated with the estimated AoDs/AoAs to subtract out the contributions

of previously detected paths simultaneously. Therefore, compared with Algorithm

2, Algorithm 3 results in less computation and storage cost, and a higher estimation

speed (i.e., lower latency). When compared with the multipath channel estimation



219

Algorithm 3 Adaptive Estimation Algorithm for Multipath mmWave MIMO
channels [55]

Require: K, S, codebooks F and W , N = 2KS

1: Initialization: IBS
(:,1) = [1, ..., 1]T , IMS

(:,1) = [1, ..., 1]T , where IBS 2 NL⇥S, IMS 2
NL⇥S

2: Use Algorithm 1 to detect the AoD, AoA, and path gain for the first strongest
path

3: Repeat Algorithm 1 for the lth (2  l  L) path until Step 11 in Algorithm 1
4: For the sth stage in the ith (2  i  L) iteration, project out previous path

contributions simultaneously
ÂBS = [aBS(�̂)], ÂMS = [aMS('̂)] % �̂ and '̂ are the AoDs and AoAs of all the
previously detected paths, respectively
Y(s) =

p
Ps[W(s,kMS

s

)]
HH[F(s,kBS

s

)] +Q
y(s) = vec(Y(s))

V(i,s) = [W(s,kMS
s

)]
HÂMSÂH

BS[F(s,kBS
s

)] % Calculating the contribution of previous
paths in the form of Eq. (7.1)
v(i,s) = vec(V(i,s))

y(s) = y(s) � v(i,s)v
†
(i,s)y(s)

5: Convert y(s) to the matrix form Y(s)

6: Repeat Algorithm 1 from Step 12 to obtain the AoD, AoA, and path gain for
the ith strongest path until all the L paths are estimated

Ensure: AoDs, AoAs, and path gains for the L dominant paths
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presented in [119], the most prominent advantages of both Algorithm 2 and Algo-

rithm 3 are that they do not require the re-design of multi-resolution beamforming

codebooks for each stage when the number of dominant paths vary, and only a

single path is selected in each stage instead of L paths in [119], thus substantially

reducing the calculation and memory overhead [55].

7.5 Simulation Results

In this section, the performance of the proposed CBP-based dictionary and Algo-

rithms 1, 2, and 3 are evaluated in terms of average probability of estimation error

of AoDs and AoAs, and spectral e�ciency, via numerical Monte Carlo simulations.

The channel matrix takes the form of (7.2), where the path powers, phases, AoDs,

and AoAs are generated using NYUSIM [51]. ULAs are assumed at both the BS

and MS with 64 and 32 antenna elements, respectively. All simulation results are

averaged over 10,000 random channel realizations, with a carrier frequency of 28

GHz and an RF bandwidth of 800 MHz and OFDM modulation with narrowband

sub-carriers. In calculating spectral e�ciency, eigen-beamforming is assumed at

both the transmitter (with equal power allocation) and receiver. Other beamform-

ing techniques can also be employed, and the performance of the beamforming

dictionaries and algorithms were found to be similar.

The simulated probabilities of estimation errors of AoDs and AoAs as a function

of the average receive SNR, using Algorithm 1 and both grid-based and CBP-based

dictionaries for single-path channels, are depicted in Fig. 7.2 for the cases of N =

162, K = 3, and N = 128, K = 4, which are found to yield the best performance

via numerous trials. In Fig. 7.2, the probability of estimation error denotes the
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ratio of the incorrectly estimated angles to the total number of angles estimated

and is averaged over 10,000 random channel realizations. An estimation error is

considered to take place when the absolute di↵erence between the estimated angle

(AoD or AoA) and the true angle is larger than ⇡
N

(e.g., 1.1� when N = 162 and

1.4� when N = 128). In actual cellular systems, if the angular spread of a cluster

(3GPP nomenclature) or spatial lobe (NYUSIM nomenclature) is larger than the

absolute di↵erence between the estimated AoD/AoA and the true AoD/AoA, then

the estimation error will not cause significant degradation in spectral e�ciency.

As shown by Fig. 7.2, the CBP-based approach renders much smaller estimation

errors, by up to two orders of magnitude. For the two cases considered in Fig. 7.2,

the grid-based method generates huge estimation error probability that is over

80% even at an SNR of 20 dB; on the other hand, the estimation error probability

of the CBP-based counterpart decreases rapidly with SNR, and is less than 0.5%

for N = 128, K = 4 and a 20 dB SNR. These results imply that the CBP-based

approach is able to provide much better channel estimation accuracy with a small

number of measurements compared to the conventional grid-based fashion, hence

is worth using in mmWave MIMO systems for sparse channel estimation and signal

recovery [55].

To explicitly show the e↵ect of estimation error on channel spectral e�ciency

using di↵erent beamforming dictionaries, the achievable spectral e�ciency is plotted

and compared as a function of the average receive SNR for both the grid-based and

CBP-based dictionaries for single-path channels, as well as the spectral e�ciency

with perfect CSI at the transmitter, for the case of N = 162, K = 3, and N = 128,

K = 4, as described in Fig. 7.3. It is assumed that the angular spread of a path

(i.e., cluster (3GPP nomenclature) or spatial lobe (NYUSIM nomenclature)) is zero.
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Figure 7.2: Average probability of error in estimating AoD/AoA for single-path
channels, using both the grid-based dictionary and CBP-based dictionary [55].

As stated in the previous paragraph, the angular spread of a cluster or spatial lobe

in actual cellular systems is larger than zero, thus the resultant spectral e�ciency

degradation will be smaller than in Fig. 7.3. It is evident from Fig. 7.3 that for both

cases considered, the CBP-based dictionary yields much higher spectral e�ciency,

by about 2.7 bits/s/Hz to 13 bits/s/Hz, compared with the grid-based one over

the entire SNR range of -20 dB to 20 dB. Furthermore, the CBP-based method

achieves near-optimal performance over the SNRs spanning from 0 dB to 20 dB,

with a gap of less than 0.7 bits/s/Hz [55].

Fig. 7.4 illustrates the average probability of error in estimating AoDs/AoAs

for multipath channels with N = 162, K = 3, and N = 128, K = 4 for an average

receive SNR of 20 dB, using proposed Algorithms 2 and 3 for two to six dominant

paths, as well as Algorithm 2 in [119]. For the approach in [119], since all L paths

have to be estimated simultaneously in a multipath channel, it does not work for

L < K, thus no results are available for L = 2 when K = 3 or 4. The SNR denotes

the ratio of the total received power from all paths to the noise power. As shown
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Figure 7.3: Average spectral e�ciency for single-path channels for the cases of
perfect CSI, grid-based dictionary and CBP-based dictionary [55].

in Fig. 7.4, both Algorithm 2 (Algo 2) and Algorithm 3 (Algo 3) produce lower

estimation errors than the approach in [119] in both multipath-channel cases; for

the case of N = 128, K = 4, Algorithm 3 yields the lowest estimation error, i.e.,

highest accuracy, and meanwhile enjoys the lowest computation expense among the

three algorithms. In addition, the estimation error tends to increase more slowly

and converge to a certain value as the number of dominant paths increase for all of

the three algorithms [55].

The spectral e�ciency performance of the three algorithms above, with N =

162, K = 3, and L = 3, is displayed in Fig. 7.5, which reveals the superiority of

Algorithm 3 pertaining to spectral e�ciency, followed by Algorithm 2, compared

with the approach in [119]. For instance, at an SNR of 10 dB, Algorithms 2 and

3 yield around 5 and 8 more bits/s/Hz than the approach in [119], respectively,

and the discrepancies expand as the SNR ascends. The proposed algorithms work

well for single-path channels, and significantly outperforms the approach in [119]

method for multipath channels, although there is still a noticeable spectral e�ciency
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Figure 7.4: Average probability of error in estimating AoD/AoA for multipath
channels using the CBP-based dictionary [55]. [13] in the figure denotes [119] in
this technical report.

gap compared to the perfect CSI case, due to the non-negligible angle estimation

errors shown in Fig. 7.4 [55]. Further work is needed to improve Algo 2 and Algo 3

to more e↵ectively estimate multipath channels.

7.6 Concluding Remarks

Based on the concept of adaptive compressed sensing and by exploiting the sparsity

of mmWave channels, this chapter presented an innovative approach for designing

the precoding/measurement dictionary matrices, and two new low-complexity algo-

rithms for estimating multipath channels. In contrast to the conventional grid-based

method, the principle of CBP was leveraged in devising the beamforming dictionary

matrices, which had lower mutual coherence due to the first-order Taylor interpola-

tion, and was shown to be more beneficial for sparse signal reconstruction [55].

Simulations were performed based on the open-source 5G channel simulator
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Figure 7.5: Average spectral e�ciency for multipath channels with the CBP-based
dictionary using the approach in [119], and Algorithms 2 and 3 proposed in this
chapter, with N = 162, K = 3, and L = 3 [55]. [13] in the figure denotes [119] in
this technical report.

NYUSIM for broadband mmWave systems. Results show that the CBP-based

dictionary renders up to over two orders of magnitude higher estimation accuracy

(i.e., lower probability of estimation error) of AoDs and AoAs, and more than 12

bits/s/Hz higher spectral e�ciency, with a small number of estimation measurements

for single-path channels, as opposed to the grid-based approach, as shown in

Figs. 7.2 and 7.3. Moreover, the newly proposed two algorithms, Algorithm 2 and

Algorithm 3, can o↵er better estimation and spectral e�ciency performance with

lower computational complexity and time consumption for multipath channels,

when compared with existing algorithms, as shown in Figs. 7.4 and 7.5 [55].

Interesting extensions to this work will be to improve the multipath estimation

algorithms to make them more e↵ective, and to extend the multipath estimation

algorithms to the case where the number of dominant paths is unknown, as well as

to implement the proposed dictionary matrices and algorithms to other types of
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antenna arrays such as 2D arrays.
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Chapter 8

Multi-Cell Multi-User

Multi-Stream Hybrid

Beamforming

In this chapter, multi-cell multi-user multi-stream analog and digital HBF strategies

for mmWave MIMO systems are investigated, which has not been studied before

to my best knowledge. It is assumed that the TPs in di↵erent cells have full CSI

and can exchange the CSI among each other, such that they can take actions to

mitigate inter-cell interference, which corresponds to the coordinated beamforming

per the definition by 3GPP [161]. We first formulate a multi-cell communication

framework based upon today’s conventional three-sector BS antenna configuration,

where each 120� sector (i.e., cell, as defined in 3GPP parlance [161]) uses a URA

with 256 antenna elements (eight rows by 16 columns by two polarization states)

for each TP, similar to what is envisioned for 5G MIMO systems [230]. The spacing

between adjacent co-polarized elements is �/2 in azimuth and � in elevation with
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� denoting the carrier wavelength (e.g., 10.7 mm at 28 GHz and 4.1 mm at 73

GHz), and the radiation pattern of each TP antenna element is given in Table 8.1,

which provides a HPBW resolution of about 8� in both azimuth and elevation in

the broadside direction of the URA at each TP. Note that the number of RF chains

used to feed the URA dictates the number of independent RF streams that may be

transmitted to all users in a cell. A number of (3 or 12 in this work) UEs, each

with an eight-element (two rows by two columns by two polarization states) URA

and four RF chains (for up to four streams per user), are randomly dropped in

each cell over distances of 10 m to the cell radius (e.g., 50 m or 200 m). URAs

are considered because they are able to form beams in both azimuth and elevation

dimensions, as exploiting the zenith characteristics of the propagation channel will

be essential for enhanced performance at mmWave frequencies [23]. 28 GHz carrier

frequency with 100 MHz RF bandwidth and OFDM modulation with narrowband

frequency-flat sub-carriers are assumed, and the calculation of the channel matrix

is given by Eqs. (2.8)-(2.11) and explained by the text around them. The main

contributions of this chapter are summarized as follows.

• Built on the multi-cell framework, eigenvalue distributions for channels after

RF precoding in a multi-cell multi-user system with a single stream per

user are investigated for both signal and interference channels, which has

not been studied before. HBF based on RZF is employed at each TP. The

channel matrices are generated using both the 3GPP TR 38.901 Release 14

channel model [66] and the NYUSIM channel model [51]. The eigenvalue

densities are approximated with a gamma distribution. The approximation of

eigenvalue densities is motivated by the fact that exact densities are extremely

challenging to derive so that the best ”trade-o↵” approach is to approximate.
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• Leveraging the approximate channel eigenvalue densities of the 3GPP [66]

and the NYUSIM [51] channel models, for a single-stream multi-cell system

employing hybrid processing, a general methodology is given to derive tight

analytical approximations of the expected per-user SINR, and expected per-

cell sum spectral e�ciency. Our analyses assume a bank of analog phase

shifters for the analog precoding and RZF processing for digital beamforming.

Due to the joint design of both analog and digital processing matrices, there

is tremendous analytical complexity involved in deriving the aforementioned

expressions. Hence, to the best of my knowledge, such general analysis of

mmWave systems have been missing from the vast literature.

• A novel coordination-based HBF approach containing leakage-suppression

and signal-maximization precoding (LSP) is proposed. Four multi-cell multi-

stream downlink HBF approaches, where three use coordinated beamforming

(including LSP) and one does not use any TP coordination (as a baseline),

are compared in terms of spectral e�ciency under various conditions (e.g.,

di↵erent cell radii, user numbers, and stream numbers per user). Both

the 3GPP [66] and NYUSIM [51] channel models are adopted, and equal

power allocations are used for each stream (i.e. no power control or water

filling per stream). Numerical results demonstrate that benefits of multi-cell

coordination depend on the underlying channel model and the interference

levels, to be shown in Fig. 8.11.
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Table 8.1: Simulation settings using the 3GPP [66] and NYUSIM [51] models.

Parameter Setting

Carrier Frequency 28 GHz
Bandwidth 100 MHz [66]

Transmit Power
Without Array Gain

35.2 dBm per UE
(46 dBm for a cell with 12 UEs)

95% Cell-Edge SNR 5 dB

BS Antennas
three panels for the three TP sectors, where each
panel is a uniform rectangular array consisting

of 256 cross-polarized elements in the x-z plane [66]
BS Antenna Spacing half wavelength in azimuth; one wavelength in elevation

BS Antenna Element Gain 8 dBi [66]
BS Antenna Element

Pattern
Model 2, Page 18 in 3GPP
TR 36.873 Release 12 [225]

UE Antennas
uniform rectangular array consisting of eight
cross-polarized elements in the x-z plane [66]

UE Antenna Spacing half wavelength in azimuth; one wavelength in elevation
UE Antenna Element Gain 0 dBi [66]

UE Antenna Element Pattern omnidirectional [66]
Receiver Noise Figure 10 dB

8.1 Multi-Cell System Layout and Hybrid Beam-

forming Framework

8.1.1 Multi-Cell System Layout

We consider an mmWave system with three adjacent cells (i.e., sectors), each having

one TP and multiple (e.g., 3 or 12) UEs. Only three adjacent cells are studied

herein since inter-cell interference among these three cells dominate the interference

due to the geographical proximity and use of mmWave frequencies, thus this case

is representative of homogeneous multi-cell networks with both intra- and inter-cell

interference. The four proposed HBF algorithms are applicable to general cases

with more cells. Fig. 8.1 depicts an example of the three-cell layout with three

users per cell. Throughout this chapter, a carrier frequency of 28 GHz is used,

with an RF bandwidth of 100 MHz, assuming OFDM modulation with narrowband
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Figure 8.1: An example of the three-cell layout where there is one BS URA and
three UEs per cell generated using MATLAB, where each cell is a sector with an
azimuth span of 120� served by one BS URA. The radius of each cell is 300 m.
The UEs in each cell are distributed uniformly and randomly with T-R separation
distances ranging from 10 m to 300 m [66]. It is assumed that 95% of the area in
a cell has an SNR larger than or equal to 5 dB, and the upper bound of the T-R
separation distance is calculated based on this assumption and rounded to 200 m
for both models for fair comparison.

frequency-flat fading sub-carriers as explained in detail in Chapter 6, reflecting

current thinking for 5G spectrum allocations [20, 230, 231]. Simulation parameter

are given in Table 8.1.

8.1.2 Base Station Antenna Array Configurations

A situation that is widely utilized in 5G system deployment is considered herein:

the TP in each sector is equipped with a two-dimensional antenna array consisting

of cross-polarized elements arranged in N1 rows by N2 columns by two polarizations,

for a total of 2N1N2 antenna elements. Two versions of array configurations have

been explored by researchers [230]: a single-panel version and a four-panel version,

as illustrated in Fig. 8.2 with a total of 512 elements comprising 16 rows by 16

columns by two polarizations. It is assumed in [230] that the array generates one
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Figure 8.2: An example of hybrid antenna arrays configurations with a total of
512 elements comprising 16 rows by 16 columns by two polarizations [230]. Left:
single-panel version with two transceiver ports. Right: four-panel version with
eight transceiver ports.

RF beam per polarization per panel. Therefore, the single-panel array renders two

RF beams, i.e., two logical ports, while the four-panel array creates eight RF beams

associated with eight logical ports.

For MU-MIMO operation, the single-panel array generates multiple RF beams

per polarization per panel to serve multiple users simultaneously. Whereas in the

four-panel array, one RF beam is created per polarization per panel to serve a

maximum of four co-scheduled users with one user per panel. The simulation

results in [230] indicate that single-panel arrays can provide much higher gains in

performance compared to multi-panel arrays (130% versus 50%), primarily due

to the narrower RF beams with higher gains formed by the single-panel array

compared to the four-panel array, since the single-panel array has more antennas

than each panel in the four-panel array [230]. Therefore, this technical report

focuses on the single-panel array configuration due to its superior throughput

performance in MU-MIMO.
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Figure 8.3: Multi-cell HBF architecture at the TP in each cell (there are three TPs
in one BS, and one TP serves one cell). NS denotes the number of data streams
per user in each cell, K is the number of users in each cell, NRF

T represents the
total number of RF chains at each TP, and NT denotes the number of TP antenna
elements in each cell, where NS  NRF

T < NT. In this multi-cell single-stream work,
NS = 1, K = 3, NRF

T = 3, and NT = 256.

8.2 Multi-Cell Multi-User Single-Stream Hybrid

Beamforming

This section investigates HBF for a multi-cell MU-MIMO system where each TP

communicates with each of its home-cell users via a single data stream. The HBF

architecture at each TP is illustrated in Fig. 8.3, where there are K baseband

digital precoding units with one for each user in the same cell, one data stream is

transmitted for each home-cell user, and each baseband precoding unit is connected

with NRF
T RF chains with NRF

T = K. Each RF chain is connected to all of the NT

TP antennas through NT phase shifters, thus the total number of phase shifters

equals NRF
T NT. Each user is assumed to be equipped with only one antenna, or an

antenna array with analog beamforming only, for analytical simplicity.

As each TP communicates with each UE via a URA with NT antennas, the

dimension is 1 ⇥ NT for the channel matrix hk,l,l, and NT ⇥ NRF
T for FRF

l

. The
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1⇥NRF
T e↵ective channel Ȟk,l,i after RF precoding is:

ȟk,l,i = hk,l,iFRF
i

(8.1)

where FRF
i

is designed based on Algorithm 1 in [170]. The K ⇥ NRF
T composite

e↵ective channel from TP i to all the K users in cell l is expressed as:

Ȟl,i = [ȟ
H

1,l,i, ȟ
H

2,l,i, ..., ȟ
H

K,l,i, ]
H (8.2)

where the superscript H denotes conjugate transpose. The received signal at user

k in cell l can be formulated as:

yk,l =

s
PT

⌘lPLk,l,l

ȟk,l,lfBB
k,l

sk,l

| {z }
Desired Signal

+
X

(m,i) 6=(k,l)

s
PT

⌘iPLk,l,i

ȟk,l,ifBB
m,i

sm,i

| {z }
Interference

+ nk,l|{z}
Noise

(8.3)

where PT represents the total transmit power in Watts at each TP, PLk,l,i denotes

the large-scale distance-dependent path loss in Watts, including shadow fading,

from TP i to user k in cell l. ⌘l = ||FRF
l

FBB
l

||2F is a scaling factor to satisfy the

total transmit power constraint ||
p
PTFRF

l

FBB
l

/
p
⌘l||2F = PT, where F denotes

the Frobenius norm, and FBB
l

= [fBB1,l
, ..., fBB

K,l

]. sk,l represents the desired

transmitted signal for user k in cell l with E[|sk,l|2] = 1, and nk,l ⇠ CN (0, N0) is

complex Gaussian noise with variance N0. The SINR of user k in cell l is therefore

given by:

SINRk,l =

PT
⌘
l

PL
k,l,l

|ȟk,l,lfBB
k,l

|2
P

(m,i) 6=(k,l)

PT
⌘
i

PL
k,l,i

|ȟk,l,ifBB
m,i

|2 +N0

(8.4)
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The expected per-user SINR can be obtained by calculating E[SINRk,l]. The

exact evaluation of E[SINRk,l], however, is extremely unwieldy or even intractable.

Therefore, the first-order delta method expansion can be adopted, hence the

expected per-user SINR is approximated by [234]:

E[SINRk,l] ⇡
PT

⌘̃
l

PL
k,l,l

E[|ȟk,l,lfBB
k,l

|2]
P

(m,i) 6=(k,l)

PT
⌘̃
i

PL
k,l,i

E[|ȟk,l,ifBB
m,i

|2] +N0

(8.5)

where ⌘̃l = E[⌘l] and ⌘̃i = E[⌘i]. In what follows, the expected values in the

numerator and denominator of (8.5) are derived separately using approximated

densities for an arbitrary eigenvalue and a joint pair of arbitrary eigenvalues of

both signal and interference channels for the 3GPP and NYUSIM channel models.

The approximated density for an arbitrary eigenvalue is obtained via simulations,

followed by the derivation of the approximated density for a joint pair of arbitrary

eigenvalues, as detailed below.

8.2.1 Channel Eigenvalue Distribution

The eigenvalue distribution for uncorrelated and correlated Wishart matrices are

well known, as presented in [235, 236, 237, 238, 239]. Eigenvalue distributions

for channels after RF precoding in HBF, however, have not been investigated in

the prior literature. This is because joint processing of FRF and FBB twice alters

both the magnitude and phase of the preferential channel directions, and therefore

the complexity of exact expressions is very high. While the computation of exact

eigenvalue densities with such complex channel models remains an open problem in

multivariate statistics, accurate approximations is employed in order to facilitate

the subsequent analysis. In this subsection, eigenvalue distributions of ȞȞ
H
for
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the 3GPP channel model and the NYUSIM channel model are studied, where Ȟ

denotes the e↵ective channel matrix after TP RF precoding, i.e., Ȟ = HFRF. Below

are existing works on eigenvalue distributions and the rationale for deriving the

approximated eigenvalue distributions in this technical report.

• In the simplest case of uncorrelated scattering, the entries of H are i.i.d.

complex Gaussian random variables, widely known as Rayleigh fading, HHH

is an uncorrelated central complex Wishart matrix, and the corresponding

PDF of an arbitrary eigenvalue of HHH is derived in [235] via the orthogonal

basis expansion of HHH as it is non-trivial to compute the density of each

eigenvalue, even for the simplest case of Rayleigh fading.

• For the case of semi-correlated Rayleigh fading with spatial correlation at

either transmit or receive end of the link, HHH takes the form of a correlated

central complex Wishart distribution. The corresponding arbitrary eigenvalue

densities are derived in [153, 236, 238, 239, 240] for various types of spatial

correlation models.

• For an uncorrelated LOS channel, or an uncorrelated Ricean channel, which

corresponds to the case with the Ricean factor larger than 0 and the presence

of only one dominant multipath component in the two-wave with di↵use

power (TWDP) distribution [241] describing small-scale, local area fading

experienced by narrowband wireless receivers, HHH follows an uncorrelated

non-central complex Wishart structure, whose eigenvalue densities were de-

rived in [237].

• As shown in [242], LOS components pointing in certain directions can be

regarded as inducing additional spatial correlation. The resultant HHH is a
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correlated non-central complex Wishart matrix, and the arbitrary eigenvalue

densities for such channels were derived in [238, 239] and extended in [242]

by exploiting the above fact.

• For a NLOS channel matrix combined with RF precoding and RF combining,

it is conjectured that this is akin to inducing spatial correlation at both ends

of the link in the direction of the boresight of the antenna (array). The

antenna elements of the array are closely located (e.g., half wavelength) hence

inducing spatial correlation as well. Furthermore, with a fixed number of

scattering clusters and subpaths within each cluster, the channel models

can be statistically treated as an arbitrary link gain pre-multiplied by a

correlated random variable dependent on the antenna array configuration and

the direction-of-departure/arrival distribution. Thus, the resultant arbitrary

eigenvalue density will be similar to the second point mentioned above.

Note that for the first four types of channels above, the underlying mathematical

form of the arbitrary eigenvalue density is a product of exponential functions with

a finite power of the arbitrary eigenvalue upper bounded by the minimum of the

transmit and receive antenna dimension. This is equivalent to the mathematical

form of the density of a gamma-distributed random variable [243]. Moreover, while

the exponential and chi-square distributions also exhibit the above mathematical

form, they are special cases of the gamma distribution with specific shape and scale

parameters. Furthermore, the gamma distribution results in the best Kolmogorov-

Smirnov (KS) test statistic among all other contending distributions1. Therefore, it

is reasonable to use the gamma distribution to approximate the eigenvalue density

1The KS test is a widely used measure in communications theory to determine the accuracy of
an approximate statistical distribution relative to a specific system related metric [244].
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distribution. In what follows, to obtain approximated eigenvalue distributions, the

PDFs of ordered eigenvalues are first plotted via simulations, and then the PDF

curves are fitted with the gamma distribution by optimizing its shape and rate

parameters.

It is worth mentioning that only NLOS mmWave channels are considered herein

because it can be regarded as a starting point, since LOS channels will have more

complicated eigenvalue distributions due to the extra channel correlation induced

by LOS paths as explained above. Furthermore, NLOS mmWave channels are of

greater research interest than LOS channels, as LOS propagation is always feasible

and predictable, while the feasibility and performance of NLOS propagation need

examination. Therefore, this work focuses on the eigenvalue densities of NLOS

channels only, and the eigenvalue densities for LOS channels and LOS-NLOS mixed

channels are worth future investigation.

For both the 3GPP and NYUSIM channel models, the approximated PDF of

the n-th largest eigenvalue, �n, of Ȟl,lȞ
H

l,l in NLOS environments is found to be:

f�
n

(�n) ⇡
bann �a

n

�1
n e�b

n

�
n

�(an)
, n = 1, ..., N (8.6)

where an and bn are the shape and rate parameters to be determined via simulations.

When K = 3, for instance, an = 1 + 20
30n and bn = 3

20

Qn
s=1 s! for the 3GPP channel

model, while an = 1 + 1
3n and bn = 3⇥5n

5000 for NYUSIM. �(·) denotes the complete

gamma function, and N is the smaller dimension of Ȟl,l, which equals K for the

single-stream-per-user case considered in (8.3). Based on the PDFs f�
n

(�n) of the

ordered eigenvalues, the approximated PDF of an arbitrary eigenvalue of Ȟl,lȞ
H

l,l is
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derived and expressed as [236]:

f�arb
(�arb) ⇡

1

K

KX

n=1

bann �a
n

�1
arb e�b

n

�arb

�(an)
, n = 1, ..., K (8.7)

The approximated joint density of the ordered eigenvalues �1 � ... � �K of

Ȟl,lȞ
H

l,l using the 3GPP channel model is given by [235]:

f�,ordered(�1, ...,�K) =A�1
KY

n=1

f(�n)
KY

n<j

(�n � �j)
2, �1 � ... � �K � 0 (8.8)

where A is a normalizing factor. The unordered eigenvalues then have the den-

sity [235]:

f�(�1, ...,�K) =(K!A)�1
KY

n=1

f(�n)
KY

n<j

(�n � �j)
2

(8.9)

Note that
KQ
n<j

(�n � �j) is the determinant of a Vandermonde matrix [235]. By ap-

plying the Gram Schmidt orthogonalization procedure to the sequence 1,�, ...,�K�1

in the space of real-valued functions with the orthogonality relationship:

1Z

0

�n(�)�j(�)�
�1d� = �nj (8.10)

Thus (8.9) can be transformed to:

f�(�1, ...,�K) =C
X

↵,�

(�1)per(↵)+per(�)
Y

n

�↵
n

(�n)��
n

(�n)�
�1
n (8.11)

where the sum is over all possible permutations ↵, � of {1, ..., K}, and per(·) denotes
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the sign of the permutation. Integrating the right hand side of (8.11) over �2, ...,�K

results in:

f(�1) =C
X

↵,�

(�1)per(↵)+per(�)�↵1(�1)��1(�1)�
�1
1

Y

n�2

�↵
n

�
n

=C(K � 1)!
KX

n=1

�
�n(�1)

�2
��1
1 =

(K � 1)!

K!

KX

n=1

�
�n(�1)

�2
��1
1

=
1

K

KX

n=1

�
�n(�1)

�2
��1
1 (8.12)

where the third equality follows from the fact that
�
�n(�1)

�2
��1
1 integrates to unity

and hence C must equal 1/K!. Comparing (8.12) with (8.7), it is observed that

�n(�) =

s
bann �a

ne�b
n

�

�(an)
(8.13)

Integrating the right hand side of (8.11) over �3, ...,�K gives rise to the joint density

in (8.15):

f(�1,�2) =C
X

↵,�

(�1)per(↵)+per(�)�↵1(�1)��1(�1)�
�1
1 �↵2(�2)��2(�2)�

�1
2

Y

n�3

�↵
n

�
n

=
(K � 2)!

K!

KX

n=1

KX

q=1
q 6=n

(�1�2)
�1
h�
�n(�1)

�2�
�q(�2)

�2 � �n(�1)�q(�1)�q(�2)�n(�2)
i

=
1

K(K � 1)

KX

n=1

KX

q=1
q 6=n

(�1�2)
�1
h�
�n(�1)

�2�
�q(�2)

�2 � �n(�1)�q(�1)�n(�2)�q(�2)
i

(8.14)

where �n(�) is given by (8.13). The approximated joint density of two arbitrary
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unordered eigenvalues of Ȟl,lȞ
H

l,l is given by:

f�,unord(�1,�2) ⇡
1

K(K � 1)

KX

n=1

KX

q=1
q 6=n

(�1�2)
�1
h�
�n(�1)

�2�
�q(�2)

�2

� �n(�1)�q(�1)�n(�2)�q(�2)
i

(8.15)

where �n(�) is given by (8.13). The approximated PDF for the n-th largest

eigenvalue of Ȟ
H

l,iȞl,i (or equivalently Ȟl,iȞ
H

l,i) (i 6= l), where Ȟl,i represents the

e↵ective other-cell interference (OCI) channel, is found to be:

f�
n

(�n) ⇡
dcnn �c

n

�1
n e�d

n

�
n

�(cn)
, n = 1, ..., K (8.16)

where cn = 1 + 20
100n and dn = 10n�1

4 for the 3GPP model, and cn = 1 + 1
30n and

dn = 6n�3 for NYUSIM, when K = 3. Note that there is variation with the

coe�cients in (8.6) and (8.16) for the 3GPP and NYUSIM models. One reason for

this variation is the way the underlying channel impulse responses are generated

from the 3GPP and NYUSIM models that results in very di↵erent eigenvalues,

which will be shown later in Figs. 8.4, 8.5, and 6.4. The approximated PDF for an

arbitrary eigenvalue of Ȟ
H

l,iȞl,i is given by [236]:

f�arb
(�arb) ⇡

1

K

KX

n=1

dcnn �c
n

�1
arb e�d

n

�arb

�(cn)
, n = 1, ..., K (8.17)

Figs. 8.4 and 8.5 illustrate the PDFs of an arbitrary (unordered) eigenvalue of

ȞȞ
H

for both desired signal and interference channels generated by the 3GPP

and NYUSIM channel models, which show that the analytical expressions given

by (8.7) and (8.17) match the simulated PDFs very well.
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Figure 8.4: Probability density distribution of an arbitrary eigenvalue of ȞȞ
H

for
the 3GPP channel model for three users per cell, where Ȟ denotes the e↵ective
channel matrix after transmit RF precoding, i.e., Ȟ = HFRF. (a) is for desired
signal channels, while (b) is for interference channels.
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Figure 8.5: Probability density distribution of an arbitrary eigenvalue of ȞȞ
H

for
the NYUSIM channel model for three users per cell, where Ȟ denotes the e↵ective
channel matrix after transmit RF precoding, i.e., Ȟ = HFRF. (a) is for desired
signal channels, while (b) is for interference channels.
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8.2.2 Integrals and Special Functions

In this chapter, the following integrals and special functions are often used when

computing expected signal power and expected interference power in the subsequent

analysis. Let

Jm,n(⇠) =

Z 1

0

�m+a�1e�b�

(�+ ⇠)n
d�, where m,n 2 N, a, b > 0 (8.18)

which can be solved by a change of variable � = x� ⇠ to obtain

Jm,n(⇠) =

Z 1

⇠

(x� ⇠)m+a�1e�b(x�⇠)

xn
dx =

Z 1

⇠

(x� ⇠)m+a�1 e
�bx

xn
eb⇠dx (8.19)

Applying the Taylor series expansion to (x� ⇠)m+a�1 at 0 yields

(x� ⇠)m+a�1 ⇡
bm+a�1cX

s=0

�(m+ a)

s!�(m+ a� s)
(�⇠)m+a�sxs (8.20)

Therefore, (8.19) can be recast as

Jm,n(⇠) ⇡
Z 1

⇠

bm+a�1cX

s=0

�(m+ a)

s!�(m+ a� s)
(�⇠)m+a�sxs

| {z }
(x�⇠)m+a�1

e�bx

xn
eb⇠dx

=
bm+a�1cX

s=0

�(m+ a)

s!�(m+ a� s)
(�⇠)m+a�seb⇠

Z 1

⇠

xs�ne�bxdx

| {z }
h(n,⇠) (8.21)

For the purpose of this chapter, two special cases of h(n, ⇠) are of interest, n = 1

and n = 2, which will be frequently encountered in the following analysis. These

are given by (8.22), where E1(·) denotes the exponential integral and �̃(·, ·) is the
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h(1, ⇠) =

Z 1

⇠

xs�1e�bxdx
let !=bx
=======

1

bs

Z 1

b⇠

!s�1e�!d! =

8
<

:

E1(b⇠) if s = 0

1
bs
�̃(s, b⇠) if s � 1

and

h(2, ⇠) =

Z 1

⇠

xs�2e�bxdx
let !=bx
=======

1

bs�1

Z 1

b⇠

!s�2e�!d! =

8
>>>><

>>>>:

�bE1(b⇠) +
e�b⇠

⇠
if s = 0

E1(b⇠) if s = 1

1
bs�1 �̃(s� 1, b⇠) if s � 2

(8.22)

upper incomplete gamma function.

8.2.3 Expected Per-User Signal Power

Throughout this chapter, 28 GHz carrier frequency with 100 MHz RF bandwidth

and narrowband OFDM sub-carriers are assumed; no power control or water filling

is assumed. The expected per-user signal power in (8.5) is:

�k,l =
PT

⌘̃lPLk,l,l

E[|ȟk,l,lfBB
k,l

|2] (8.23)

When RZF precoding is employed at baseband, the un-normalized RZF precoding

vector for user k in cell l, fBB
k,l

, is the k-th column of the NRF
T ⇥K matrix FBB

l

,

such that

FBB
l

= Ȟ
H

l,l(Ȟl,lȞ
H

l,l + ⇠lIK)
�1 (8.24)

The constant ⇠l > 0 represents the regularization parameter specific to TP l. In
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this work, ⇠l is set to the following value based on [156, 170]:

⇠l =
KN0

PT
(8.25)

An eigenvalue decomposition leads to Ȟl,lȞ
H

l,l = U⇤UH2. The entries in U have

an isotropic distribution for NLOS conditions. For LOS conditions where there

is a dominant specular component, U is not isotropic, but the averaging over the

random AoDs/AoAs in the array steering vectors makes U retain its isotropicity.

Therefore, the expected value in (8.23) over the isotropicity of U can be expressed

as [153, 156, 242]:

%k,l = E[|ȟk,l,lfBB
k,l

|2] = E
" 

KX

a=1

�a

�a + ⇠l
|ul,a|2

!2#
(8.26)

The expression in (8.26) can be further averaged over the entries of U and can be

reformulated as [153, 156]:

%k,l =
1

K(K + 1)

(
E�

⇣ KX

a=1

�a

�a + ⇠l

⌘2
�
+ E�

 KX

a=1

⇣ �a

�a + ⇠l

⌘2
�)

(8.27)

where E�[·] represents the expectation over the eigenvalues of Ȟl,lȞ
H

l,l. Now the

expected values in (8.27) for 3GPP and NYUSIM channel models will be calculated

using the approximated PDFs of eigenvalues derived above. For the first expectation

2To facilitate the analytical study later on, an SVD or an economy-size SVD is first performed

such that Ȟl,l = U⇤1/2VH , which leads to Ȟl,lȞ
H

l,l = U⇤1/2VHV⇤1/2UH = U⇤UH .
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term in (8.27), it can be recognized that

E�

"✓ KX

k=1

�k

�k + ⇠l

◆2
#
=E�

"
KX

k=1

✓
�k

�k + ⇠l

◆2
#
+ E�

"
KX

a=1

KX

b=1
b 6=a

✓
�a

�a + ⇠l

◆✓
�b

�b + ⇠l

◆#

(8.28)

We begin by evaluating the first term on the right-hand side of (8.28), yielding

sl = E�

"
KX

k=1

✓
�k

�k + ⇠l

◆2
#
= K

" 1Z

0

�2

(�+ ⇠l)2
f�arb

(�)d�

#
=

KX

n=1

1Z

0

�2

(�+ ⇠l)2
f�

n

(�)d�

(8.29)

where f�
n

(·) denotes the approximated PDF for the n-th largest eigenvalue as

expressed in (8.6). sl in (8.29) can be solved using the special functions in (8.21)

and (8.22) with m = n = 2. By utilizing the joint density of two arbitrary

eigenvalues in (8.15), the second term on the right-hand side of (8.28) can be
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written as:

✏l =E�

"
KX

a=1

KX

b=1
b 6=a

✓
�a

�a + ⇠l

◆✓
�b

�b + ⇠l

◆#

=K(K � 1)

1Z

0

1Z

0

✓
�a

�a + ⇠l

◆✓
�b

�b + ⇠l

◆
f�,unord(�a,�b)d�bd�a

=
KX

n=1

KX

q=1
q 6=n

1Z

0

1Z

0

✓
�a

�a + ⇠l

◆✓
�b

�b + ⇠l

◆
(�a�b)

�1
h�
�n(�a)

�2�
�q(�b)

�2

� �n(�a)�q(�a)�n(�b)�q(�b)
i
d�bd�a

=
KX

n=1

KX

q=1
q 6=n

(" 1Z

0

✓
�a

�a + ⇠l

◆�
�n(�a)

�2
��1
a d�a

#2

�
" 1Z

0

✓
�a

�a + ⇠l

◆
�n(�a)�q(�a)�

�1
a d�a

#2)

=
KX

n=1

KX

q=1
q 6=n

(" 1Z

0

✓
�a

�a + ⇠l

◆
f�

n

(�a)d�a

#2

�
" 1Z

0

✓
�a

�a + ⇠l

◆
�n(�a)�q(�a)�

�1
a d�a

#2)

(8.30)

which can be solved using the special functions in (8.21) and (8.22) with m = n = 1.

The second expectation in (8.27) equals:

pl = E�

 KX

k=1

⇣ �k

�k + ⇠l

⌘2
�
= sl (8.31)

Therefore, combining (8.29), (8.30) and (8.31), the expected signal power in (8.23)

is given by:

�k,l =

✓
PT

⌘̃lPLk,l,l

◆
2sl + ✏l

K(K + 1)

�
(8.32)
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in which [170]

⌘̃l = E[||FRF
l

FBB
l

||2F ] ⇡ E�

"
KX

k=1

�k

(�k + ⇠l)2

#
= K

1Z

0

�

(�+ ⇠l)2
f�arb

(�)d� (8.33)

where the approximation stems from the fact that the array response vectors of

FRF
l

become orthogonal to each other as NT ! 1, such that FH
RF

l

FRF
l

= INRF
T

(see (21) in [170]). ⌘̃l in (8.33) can be solved using the special functions in (8.21)

and (8.22) with m = 1 and n = 2, yet an alternative approach can also be used

to compute ⌘̃l as explained below. Numerous numerical results reveal that the

eigenvalues of Ȟl,lȞ
H

l,l are at least three orders of magnitude larger than ⇠l, thus

�
(�+⇠

l

)2 ⇡ �
�2 = 1

�
. Consequently, (8.33) can be approximated as:

⌘̃l = K

1Z

0

�

(�+ ⇠l)2
f�arb

(�)d�

⇡ K

1Z

�min

1

�
f�arb

(�)d� =
KX

n=1

1Z

�min

bann �a
n

�2e�b
n

�

�(an)
d�

=
KX

n=1

✓
bn

�(an)
⌥
⇣
an � 1, bn�min

⌘◆

(8.34)

where �min = min(�arb), and ⌥
⇣
an�1, bn�min

⌘
is defined in (8.35). Plugging (8.34)

back into (8.32), the expected per-user signal power �k,l is solved and will be used

in (8.50) to calculate the expected per-user SINR.
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⌥
⇣
an� 1, bn�min

⌘
=

8
>>>>><

>>>>>:

�̃
�
an � 1, bn�min

�
if an > 1

E1(bn�min) if an = 1

� (b
n

�min)an�1e�b

n

�min

a
n

�1 + 1
a
n

�1 �̃
⇣
an, bn�min

⌘
if 0 < an < 1

(8.35)

8.2.4 Expected Per-User Interference Power

The expected interference power at the kth user in cell l in (8.5) is given by:

&k,l =
X

(m,i) 6=(k,l)

PT

⌘̃iPLk,l,i

E[|ȟk,l,ifBB
m,i

|2]

=
PT

⌘̃lPLk,l,l

KX

m=1
m 6=k

E[|ȟk,l,lfBB
m,l

|2]

| {z }
Intra-Cell Interference

+
LX

i=1
i 6=l

PT

⌘̃iPLk,l,i

KX

m=1

E[|ȟk,l,ifBB
m,i

|2]

| {z }
Inter-Cell Interference (8.36)

The first term on the right-hand side of (8.36) denotes the inter-user interference

(IUI) within the same cell, and can be evaluated as the di↵erence between the total

(signal plus intra-cell interference) power from TP l and the desired signal power

at user k in cell l [234]. The expected total power from TP l to user k in cell l is

given by:

�k,l = E[||ȟk,l,lFBB
l

||2] = E
 KX

a=1

|uk,a|2�2
a

(�a + ⇠l)2

�
=

1

K
E�

 KX

a=1

�2
a

(�a + ⇠l)2

�
=

sl
K

(8.37)

where sl is given by (8.29). Consequently, the intra-cell interference in (8.36) can
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be expressed as:

&k,lIUI =
PT

⌘̃lPLk,l,l

KX

m=1
m 6=k

E[|ȟk,l,lfBB
m,l

|2]

=
PT

⌘̃lPLk,l,l

�k,l � �k,l =
PT

⌘̃lPLk,l,l


sl
K

� 2sl + ✏l
K(K + 1)

�
=

PT

⌘̃lPLk,l,l


(K � 1)sl � ✏l
K(K + 1)

�

(8.38)

where (8.32) is utilized to obtain the third equality. The second term in (8.36)

denotes the inter-cell interference, or OCI, and can be formulated as:

E[|ȟk,l,ifBB
m,i

|2] =E[tr{ȟH

k,l,iȟk,l,ifBB
m,i

fHBB
m,i

}]

=tr{E[ȟH

k,l,iȟk,l,i]E[fBB
m,i

fHBB
m,i

]} =
1

K
tr{E[ȟH

k,l,iȟk,l,i]E[FBB
i

FH
BB

i

]}

(8.39)

The second equality in (8.39) holds because ȟk,l,i and fBB
m,i

are independent, since

fBB
m,i

is only related to Ȟi,i which is independent of ȟk,l,i when l 6= i according

to (8.2). Note that FBB
i

= Ȟ
H

i,i(Ȟi,iȞ
H

i,i + ⇠iIK)�1, the second expectation in (8.39)

can be recast as:

E[FBB
i

FH
BB

i

] =E[ȞH

i,i(Ȟi,iȞ
H

i,i + ⇠lIK)
�2Ȟi,i]

=E[ȞH

i,i(U⇤UH + ⇠lIK)
�2Ȟi,i] = E[ȞH

i,iU(⇤+ ⇠lIK)
�2UHȞi,i]

(8.40)

where the second equality stems from Ȟi,iȞ
H

i,i = U⇤UH . For the case NRF
T = K

considered in this work, it follows from SVD that Ȟi,i = U⇤1/2VH . Conse-
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quently, (8.40) is transformed to:

E[FBB
i

FH
BB

i

] =E[V⇤1/2UHU(⇤+ ⇠lIK)
�2UHU⇤1/2VH ]

=E[V⇤1/2(⇤+ ⇠lIK)
�2⇤1/2VH ]

(8.41)

For the first expectation in (8.39), let

Ȟl,i = [Ȟ
H

1,l,i, Ȟ
H

2,l,i, ..., Ȟ
H

K,l,i, ]
H (8.42)

one can denote Ȟ
H

l,iȞl,i = QH⌃Q, where ⌃ = diag(�1, ..., �K), then the trace

in (8.39) becomes:

{i =tr{E[ȟH

k,l,iȟk,l,i]E[FBB
i

FH
BB

i

]}

=
1

K
tr{E[ȞH

l,iȞl,i]E[FBB
i

FH
BB

i

]} =
1

K
E[tr{QH⌃QV⇤1/2(⇤+ ⇠iIK)

�2⇤1/2VH}]

=
1

K
E[tr{VHQH⌃QV⇤1/2(⇤+ ⇠iIK)

�2⇤1/2}] = 1

K
E
"

KX

k=1

KX

a=1

�a|wa,k|2
�k

(�k + ⇠i)2

#

(8.43)

where wa,k denotes the (a, k)-th entry of the unitary matrix QV. Let r = |wa,k|2,

then the PDF of r is given by [156]:

fr(r) = (K � 1)(1� r)K�2, 0  r  1 (8.44)

which implies

E[|wa,k|2] =
1Z

0

r(K � 1)(1� r)K�2dr =
1

K
(8.45)
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Therefore,

{i =
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K
E
"

KX

k=1

KX

a=1

�aE[|wa,k|2]
�k

(�k + ⇠i)2

#

=
1

K2
E
"

KX

k=1

KX

a=1

�a
�k

(�k + ⇠i)2

#
=

1

K2
E�

"
KX

a=1
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#
E�

"
KX

k=1

�k

(�k + ⇠i)2

#

⇡ 1

K
⌘̃i

1Z

0

�f�arb
(�)d�

(8.46)

where the approximation follows from (8.33). Based on (8.17), the integral in (8.46)

can be recast as:

$ =

1Z

0

�f�arb
(�)d� =

1

K

KX

n=1

1Z

0

�
dcnn �c

n

�1e�d
n

�

�(cn)
d� =

1

K

KX

n=1

�(cn + 1)

dn�(cn)
(8.47)

Plugging (8.47) and (8.34) into (8.46) results in:

{i =
1

K
⌘̃i$ (8.48)

Combining the results in (8.38), (8.39), and (8.48), the expected per-user interfer-
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ence in (8.36) is expressed as:

&k,l =
PT

⌘̃lPLk,l,l


(K � 1)sl � ✏l
K(K + 1)

�
+

LX

i=1
i 6=l

PT{i

⌘̃iPLk,l,i

=
PT

⌘̃lPLk,l,l


(K � 1)sl � ✏l
K(K + 1)

�
+

LX

i=1
i 6=l

PT⌘̃i$

K⌘̃iPLk,l,i

=
PT

⌘̃lPLk,l,l


(K � 1)sl � ✏l
K(K + 1)

�
+

LX

i=1
i 6=l

PT$

KPLk,l,i

(8.49)

which will be used in (8.50) to calculate the expected per-user SINR.

8.2.5 Expected Per-User SINR and Ergodic Per-Cell Spec-

tral E�ciency

Combining the expected per-user signal power �k,l in (8.32) and the expected per-

user interference power &k,l in (8.49), the expected per-user SINR in (8.5) can be

expressed as:

E[SINRk,l] ⇡
�k,l

&k,l +N0
(8.50)

The expected ergodic spectral e�ciency for cell l can be approximated from

E[SINRk,l] in (8.50) as:

E[Rl] =E
"

KX

k=1

log2(1 + SINRk,l)

#
⇡

KX

k=1

log2
�
1 + E[SINRk,l]

�
(8.51)

It is noteworthy that (8.51) arouses an approximation instead of an upper bound via



254

Jensen’s inequality, as the value of E[SINRk,l] is itself an approximation [234, 245].

The generality of the results derived above is worth mentioning. The analysis

methodology derived above is applicable for any link SNR and channel model,

including potential special cases such as the presence of a fixed LOS component in

the channel (as long as the necessary eigenvalue densities are known). If there is

a change in the transmit or the receive dimension, then the analytical approach

is still valid, however, the approximated gamma distributed eigenvalue densities

need to be re-fitted. This is because of the mathematical complexity of finding

closed–form expressions when using such an advanced channel model as well as the

additional presence of RF beamforming.

8.2.6 Numerical Results and Discussion

The accuracy of the derived expected per-user SINR in (8.50) and expected per-cell

spectral e�ciency in (8.51) is evaluated in this subsection through comparison with

numerical results for the three-cell homogeneous network introduced in Section 8.1

with three users per cell, along with the HBF architecture in Fig 8.3. In the

simulations, the number of TP antennas was 256, the number of UE antennas was

one, the number of streams per UE is one, the number of RF chains at each TP was

three, and the cell radius was 200 m. For each channel model, 500 random channel

realizations were carried out for each set of parameter settings. It is assumed

that the carrier frequency is 28 GHz with a 100 MHz RF bandwidth and OFDM

modulation with narrowband frequency-flat fading sub-carriers.

The CDFs of simulated and approximated expected per-user SINR and per-cell

spectral e�ciency are illustrated in Fig. 8.6. The expected SINR and spectral

e�ciency curves denote (8.5) (for simulated CDF) or (8.50) (for approximated CDF)
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Figure 8.6: CDFs of (a) expected per-user SINR and (b) expected per-cell spectral
e�ciency, with a cell radius of 200 m, a cell-edge SNR of 5 dB, and three users per
cell.
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and (8.51), respectively, where the expectation is taken over the small-scale fading

with the distribution representing the randomness in user location (i.e., large-scale

path loss and shadow fading). It is observed from Fig. 8.6 that the derived SINR

and spectral e�ciency approximations closely follow the corresponding simulated

values over the entire probability range. Furthermore, the expected per-user SINR

as a function of the cell-edge SNR is illustrated in Fig. 8.7, where the average is

performed globally over both the link gains and the multipath fading. As shown by

Fig. 8.7, for both 3GPP and NYUSIM models, the analytical expressions remain

su�ciently accurate over the entire cell-edge SNR range investigated, revealing

the tightness and generality of the derived SINR approximations. The spectral

e�ciencies between 3GPP and NYUSIM in Fig. 8.6 do not di↵er much because

there is only one stream per user, the di↵erence will be larger for multi-stream per

user, as will be shown later in this chapter.

8.3 Multi-Cell Multi-User Multi-Stream Hybrid

Beamforming

In this section, multi-cell multi-user HBF schemes when multiple streams are

transmitted from each TP to each of its serving users are investigated. As the

analytical derivation for the expected per-user SINR is extremely cumbersome

and even intractable for the multi-stream-per-user case, numerical simulations

are utilized to evaluate the performance of various multi-cell HBF approaches.

Furthermore, it is found through simulations that the spectral e�ciency obtained

by using the TP HBF architecture in Fig. 8.3 is lower than using the structure

shown in Fig. 8.8, as demonstrated in Table 6.16, due to the increased IUI in the
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Figure 8.8: Multi-cell HBF architecture at the TP in each cell. NS denotes the
number of data streams per user in each cell, K is the number of users in each cell,
NRF

T represents the total number of RF chains at each TP, MRF
T is the number of

RF chains connected to the baseband precoder for one user, and NT denotes the
number of TP antenna elements in each cell. In this multi-cell multi-stream work,
NS varies from 1 to 4, K is either 3 or 12, MRF

T = 4 which equals the number of
RF chains at each UE, NRF

T = KMRF
T which is either 12 or 48, and NT = 256.

former. Therefore, the HBF architecture in Fig. 8.8 is used for multi-stream-per-user

beamforming, where at each TP the NRF
T RF chains are divided into K subsets

with MRF
T RF chains (fixed at four in this work due to channel sparsity [51]) in each

subset, such that the total number of TP RF chains is NRF
T = KMRF

T . Additionally,

there is a baseband digital precoder which is connected to a subset dedicated to a

user in the home cell. The URA architecture at each UE is illustrated in Fig. 8.9,

where there are NR antennas and NRF
R RF chains at each UE, and all the RF chains

are connected to all the antennas.

For TP i and user k in cell l, the NR ⇥ NT downlink channel is denoted as

Hk,l,i, the NT ⇥MRF
T RF precoding matrix is FRF

k,l

, and the MRF
T ⇥NS baseband

precoding matrix is FBB
k,l

. The NR⇥NRF
R RF combining matrix and the NRF

R ⇥NS

baseband combining matrix is WRF
k,l

and WBB
k,l

, respectively. The received signal
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Figure 8.9: Multi-cell HBF architecture at each UE. NS denotes the number of
data streams per UE, NRF

R represents the number of RF chains at each UE, and
NR denotes the number of UE antenna elements. In this multi-cell multi-stream
work, NS varies from 1 to 4, NRF

R = 4, and NR = 8.

at user k in cell l is formulated as:

yk,l =

s
Pt

⌘k,lPLk,l,l

WH
BB

k,l

WH
RF

k,l

Hk,l,lFRF
k,l

FBB
k,l

sk,l

| {z }
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+
X

(m,i)
6=(k,l)

s
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⌘m,iPLk,l,i

WH
BB

k,l

WH
RF

k,l

Hk,l,iFRF
m,i

FBB
m,i

sm,i

| {z }
Interference

+WH
BB

k,l

WH
RF

k,l

nk,l| {z }
Noise

(8.52)

where Pt represents the transmit power for each user in Watts, and is assumed to

be constant regardless of the number of users per cell and the cell radius. PLk,l,i

denotes the large-scale distance-dependent path loss in Watts, including shadow

fading, from TP i to user k in cell l, ⌘k,l = ||FRF
k,l

FBB
k,l

||2F is a scaling factor to

satisfy the per-user transmit power constraint ||
p
PtFRF

k,l

FBB
k,l

/
p
⌘k,l||2F = Pt. sk,l

represents the desired transmitted signal for user k in cell l with E[sk,lsHk,l] = INS ,

and nk,l ⇠ CN (0, N0INR) is circularly symmetric complex Gaussian noise with

variance N0. The spectral e�ciency of user k in cell l is calculated as in (8.53) [117],

where the interference term D in (8.53) is given by:
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D =
X

(m,i)
6=(k,l)

Pt

⌘m,iPLk,l,i

Hk,l,iFRF
m,i

FBB
m,i

FH
BB

m,i

FH
RF

m,i

HH
k,l,i (8.54)

Note that the spectral e�ciency in (8.53) is formulated based on Shannon theory

assuming ideal encoding and decoding functions and serves as an upper bound of

the achievable rate [246]. Non-ideal/more practical encoding and decoding may

be used in reality which results in lower spectral e�ciency compared to (8.53).

Additionally, for all the multi-cell HBF approaches henceforth, it is assumed that

no power control is performed.

8.3.1 Baseline Case — No Coordination Among Cells

Let us first consider the interference-ignorant baseline case where there is no TP

coordination among cells. Assuming only local CSI is available at each TP, a

reasonable precoding scheme is eigenmode transmission [235]. User k in cell l

will be treated as the desired user in all the subsequent multi-cell HBF design.

Let us define the e↵ective channel matrix Ȟk,l,k,l 2 CNRF
R ⇥MRF

T for user k in cell

l as 1p
PL

k,l,l

WH
RF

k,l

Hk,l,lFRF
k,l

, where the RF precoding and combining matrices

FRF
k,l

and WRF
k,l

are designed such that ||WH
RF

k,l

Hk,l,lFRF
k,l

||2F is maximized to

enhance SNR. The RF beamforming approach in Eqs. (12)-(14) proposed in [171] is

applied to obtain FRF
k,l

and WRF
k,l

, in which the codebooks for FRF
k,l

and WRF
k,l
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consist of the TP and UE antenna array response vectors corresponding to the

angles-of-departure (AoDs) and angles-of-arrival (AoAs) associated with the desired

user, respectively [117]. The baseband precoding matrix FBB
k,l

is composed of

the dominant NS right singular vectors obtained from the SVD of Ȟk,l,k,l, and the

baseband combining matrix WBB
k,l

is constituted by the dominant NS left singular

vectors obtained from the SVD of Ȟk,l,k,lFBB
k,l

.

8.3.2 Leakage-Suppressing and Signal-Maximizing Precod-

ing

A coordinated scheduling/beamforming CoMP scheme named leakage-suppressing

and signal-maximizing precoding (LSP) is proposed herein, where the RF precoder

is aimed at mitigating the dominant leakage to all the other users while enhancing

the strength of the desired signal. The precoding matrix at TP l for user k in cell l

is designed as follows. First, the cascaded leakage channel matrix consisting of all

the channel matrices except the one for user k in cell l is obtained through CSI

exchange among TPs as:

H̃k,l =

"
1p

PL1,1,l

HT
1,1,l, ...,

1p
PLk�1,l,l

HT
k�1,l,l,

1p
PLk+1,l,l

HT
k+1,l,l, ...,

1p
PLK,L,l

HT
K,L,l

#T

(8.55)

The columns of RF beamforming matrices at each TP and UE are selected from

pre-defined beamforming codebooks that consist of antenna array response vectors

aT and aR at the TP and UE, respectively. The matrix AT and AR are composed

of aT’s and aR’s corresponding to the AoDs and AoAs associated with the desired

user, respectively [117]. The first column in the RF precoding matrix FRF
k,l

is
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chosen from AT such that ||H̃k,lFRF
k,l

(:, 1)||2F is minimized, whose physical meaning

is using the first RF precoding vector at TP l to suppress the leakage to all the

other users in all the cells considered. The remaining MRF
T � 1 columns in FRF

k,l

are selected from AT to maximize ||Hk,l,lFRF
k,l

(:, 2 : MRF
T )||2F , the physical meaning

of which is utilizing the remaining MRF
T � 1 RF precoding vectors to maximize the

desired signal power to user k in cell l. Then the baseband precoding matrix FBB
k,l

is designed by taking the SVD of Hk,l,lFRF
k,l

and setting FBB
k,l

as V(:, 1 : NS) where

V(:, 1 : NS) represents the first NS dominant right singular vectors of Hk,l,lFRF
k,l

.

For the design of the hybrid combining matrix at user k in cell l, first, the opti-

mum fully digital combining matrix is obtained by taking the SVD ofHk,l,lFRF
k,l

FBB
k,l

,

and setting the columns of the combining matrix to be the dominant NS left singular

vectors. Then the RF and baseband combining matrices are designed according to

Algorithm 1 on Page 1505 of [117] based on the optimum fully digital combining

matrix.

As extensions of LSP, if su�cient channel diversity exists, more than one

precoding vector could be used for suppressing leakage when designing the precoding

matrix at each TP.

8.3.3 SLNR-Based Precoding

The third multi-cell HBF strategy is an SLNR-based scheme incorporating coordi-

nated scheduling/beamforming in CoMP. Directly maximizing the SINR over all

users in all cells involves a challenging optimization problem with coupled variables,

thus the SLNR is utilized as an alternative optimization criterion. In the SLNR-

based TP coordination, the e↵ective channel matrix Ȟm,i,k,l 2 CNRF
R ⇥MRF

T is defined

as 1p
PL

m,i,l

WH
RF

m,i

Hm,i,lFRF
k,l

, and the (KL � 1)NRF
R ⇥ MRF

T leakage matrix for
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TP l communicating with user k in cell l is given by:

H̃k,l =
h
Ȟ

T

1,1,k,l, ..., Ȟ
T

k�1,l,k,l, Ȟ
T

k+1,l,k,l, ..., Ȟ
T

K,L,k,l

iT
(8.56)

The RF precoding and combining matrices FRF
k,l

and WRF
k,l

are designed such

that ||WH
RF

k,l

Hk,l,lFRF
k,l

||2F is maximized, where FRF
k,l

and WRF
k,l

are obtained in

the same manner as in the baseline case. The baseband precoding matrix FBB
k,l

is

designed to maximize the SLNR as follows [157]. The expected received signal power

prior to the baseband combining process is E
⇥

Pt
⌘
k,l

sHk,lF
H
BB

k,l

H̆
H

k,l,k,lH̆k,l,k,lFBB
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,

the expected leakage power is E
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, and

the expected noise power is E
⇥
nH
k,lWRF

k,l

WH
RF

k,l

nk,l

⇤
. The SLNR is hence formu-

lated as in (8.57) [157],
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(8.57)

The SLNR in (8.57) is used as an optimizing criterion to calculate the optimal
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baseband precoding matrix FBB
k,l

, where H̃k,l is given by (8.56), and the second

equality in (8.57) holds since E[sk,lsHk,l] = INS and E[nk,lnH
k,l] = N0INR . And �

satisfies:

tr(�FH
BB

k,l

FBB
k,l

) =
⌘k,l
Pt

N0tr(WRF
k,l

WH
RF

k,l

) (8.58)

The optimal FBB
k,l

that maximizes the SLNR in (8.57) can be derived similarly to

the precoding matrix in [157] and is composed of the leading NS columns of Tk,l

which contains the generalized eigenvectors of the pair
�
H̆

H

k,l,k,lH̆k,l,k,l, H̃
H

k,lH̃k,l +

�IMRF
T

 
. WBB

k,l

is designed as a matched filter at the receiver [157]:

WBB
k,l

=
H̆k,l,k,lFBB

k,l

||H̆k,l,k,lFBB
k,l

||F
(8.59)

8.3.4 Generalized Maximum-Ratio Precoding

The fourth HBF strategy is generalized maximum-ratio (GMR) transmission that

belongs to coordinated scheduling/beamforming in CoMP, and has the same RF

precoding, RF combining, and baseband combining procedures as the baseline. In

contrast to conventional maximum ratio (MR) transmission where the precoder

is designed based on the channel matrix H, GMR transmission uses the e↵ective,

RF-filtered channel HFRF to design the baseband precoder. In the GMR-based

approach, the e↵ective channel for user k in cell l after RF precoding and combining

is denoted as the NRF
R ⇥MRF

T matrix Ȟm,i,k,l defined as

Ȟm,i,k,l =
1p

PLm,i,l

WH
RFm,i

Hm,i,lFRFk,l (8.60)

and the KLNRF
R ⇥MRF

T concatenated e↵ective channel matrix is:

H̃k,l = [Ȟ
T

1,1,k,l, ..., Ȟ
T

k,l,k,l, ..., Ȟ
T

K,L,k,l]
T (8.61)

If NS = NRF
R , then the baseband precoding matrix can be set as the NS(K(l �
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1) + k � 1) + 1th to the NS(K(l � 1) + k)th columns of FBB yielded by the GMR

transmission matrix:

FBB = H̃
H

k,l (8.62)

Or equivalently

FBBk,l = Ȟ
H

k,l,k,l (8.63)

Eq. (8.63) shows that GMR essentially requires no coordination among TPs. How-

ever, it should be noted that GMR only works for the situation where NS = NRF
R ,

and will not work otherwise due to matrix dimension mismatch. All the other

proposed algorithms work for any situations where NS  NRF
R . In practice, the

dimension issue is easily accounted for by turning o↵ the unnecessary RF chains.

8.3.5 Feasibility of Zero-Forcing Precoding

Another popular multi-user precoding method besides maximum ratio is ZF [247,

248], thus it is reasonable to consider whether ZF precoding is feasible in the

system setup herein. Analogous to GMR introduced in the previous subsection,

let us assume the RF precoding, RF combining, and baseband combining schemes

are the same as those in the GMR-based HBF method, and that NS = NRF
R ,

then the baseband precoding matrix for user k in cell l FBB
k,l

is composed of the

NS(K(l� 1) + k� 1) + 1th to the NS(K(l� 1) + k)th columns of FBB given by the

generalized ZF matrix:

FBB = H̃
H

k,l(H̃k,lH̃
H

k,l)
�1 (8.64)

where H̃k,l is given by (8.61) with the dimension KLNRF
R ⇥MRF

T , hence H̃k,lH̃
H

k,l

has the dimension KLNRF
R ⇥KLNRF

R with a rank of MRF
T which is smaller than

KLNRF
R . Therefore, H̃k,lH̃

H

k,l is rank deficient thus not invertible, hence ZF precod-
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ing is not feasible for the proposed multi-cell system due to dimension constraints.

Alternatively, the rank deficiency problem will not exist if ZF is done at the receiver

side, which, however, requires that each user has the CSI of all TPs to all users,

and this is too much overhead for the user hence not feasible, either.

While RZF can be used to avoid the rank deficiency issue in ZF, the optimal

regularization parameter remains to be solved for multi-cell multi-stream scenarios,

which is outside the scope of this technical report. Further, the performance of

RZF approximates MR for low SNRs and ZF for high SNRs, thus it is su�cient to

study MR and ZF.

8.4 Simulation Results and Analysis

Using the multi-cell MU-MIMO HBF procedures proposed above and the system

layout and settings demonstrated in Section 8.1, spectral e�ciency is studied using

both the 3GPP [66] and NYUSIM [51] channel models via MATLAB simulations.

It is assumed that there are NRF
R RF chains at each UE, and each TP communicates

with each UE via NS (NS  NRF
R ) data streams. For each channel model, 400

random channel realizations were carried out where 27 channel matrices were

generated in each channel realization for the three-user-per-cell case (hence resulting

in 10800 channel matrices in total), which represent the channel matrices between

each TP and each UE in the three cells; while 100 random channel realizations were

carried out where 108 channel matrices were generated in each channel realization

for the 12-user-per-cell case (hence resulting in 10800 channel matrices in total).

In each channel realization, UE locations in each cell are randomly and uniformly

generated with T-R separation distances ranging from 10 m to the cell radius.
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The cell radius is set to 50 m and 200 m, respectively, where the 200 m radius is

obtained by assuming that 95% of the area in each cell has a signal-to-noise ratio

(SNR) larger than or equal to 5 dB, and the upper bound of the T-R separation

distance is calculated based on this assumption and is rounded to 200 m for both

models for fair comparison [51, 66], while the 50 m radius is chosen for comparison

purposes.

Beam patterns generated by the baseline, LSP, and SLNR-based precoding

matrices in an example channel realization are illustrated in Fig. 8.10, where the

cell radius is 50 m, there are three users per cell and two streams per user. It is seen

from Fig. 8.10 that the SLNR-based precoding is able to generate six distinct main

beams each for one stream at one user. In the baseline and LSP beam patterns,

however, some of the main beams are much weaker than in the SLNR case, and

some main beams are accompanied with a side beam that may cause interference to

other streams or other users, hence reducing spectral e�ciency. The di↵erence in

beam patterns will give rise to di↵erence in spectral e�ciency to be analyzed below.

The CDFs of per-user spectral e�ciency in the three-cell MU-MIMO system

using both 3GPP [66] and NYUSIM [51] models are illustrated in Fig. 8.11 for

di↵erent cell radii and user numbers with two steams per user. Fig. 8.11 shows that

for both 3GPP and NYUSIM models, the SLNR-based HBF outperforms all the

other HBF schemes, revealing its e↵ectiveness in suppressing both intra-cell and

inter-cell interference and noise. Another distinguishing feature is that LSP does

not outperform the baseline case for the 3GPP model, which is probably due to

the fact that LSP spends part of the transmit power on suppressing leakage, thus

leaving less power for signal transmission compared to the baseline case. While for

NYUSIM, LSP renders comparable performance relative to the baseline case as
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(a) Baseline (b) LSP

(c) SLNR

Figure 8.10: Beam patterns in an example channel realization generated by the
(a) baseline, (b) LSP, and (c) SLNR-based precoding matrices at one TP. The cell
radius is 50 m, there are three users per cell and two streams per user.
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Table 8.2: Multi-cell per-user spectral e�ciency at the 50% CDF point in Fig. 8.11
using the SLNR-based HBF.

Per-User Spectral E�ciency
(bps/Hz)

50 m Cell Radius
(3GPP/NYUSIM)

200 m Cell Radius
(3GPP/NYUSIM)

3 UEs Per Cell 8.8 / 10.2 5.3 / 8.8

12 UEs Per Cell 2.6 / 3.0 1.4 / 2.6

compared to the 3GPP model, since the NYUSIM channel has a stronger dominant

eigenchannel than 3GPP (see Fig. 6.4), thus LSP appears to be much more e↵ective

when using the NYUSIM channel model, since the dominant leakage is stronger.

Furthermore, using NYUSIM leads to higher spectral e�ciency as compared to

the 3GPP model, likely due to the stronger two dominant eigenmodes per user

yielded by NYUSIM channel matrices. This implies that it is important to design

a proper beamforming approach (e.g., the SLNR-based approach) to make CoMP

superior to the non-CoMP case, since some coordinated beamforming methods

(e.g., LSP) may not yield higher spectral e�ciency than the baseline. Table 8.2

summarizes the per-user spectral e�ciency at the 50% CDF point in Fig. 8.11 using

the SLNR-based HBF, which shows that NYUSIM can provide up to 86% more

spectral e�ciency than the 3GPP channel model.

When comparing Figs. 8.11(a) and 8.11(b), or Figs. 8.11(c) and 8.11(d), it is

noticeable that for the same cell radius, the spectral e�ciency gap between the

SLNR approach and the baseline decreases as the user number increases. This

phenomenon can be explained by Fig. 8.12 which depicts the average signal power

and interference power (averaged over users) for di↵erent user numbers using the

SLNR method and the baseline for the 50 m cell radius as an example. Fig. 8.12

shows that for either the SLNR approach or the baseline, when the user number

increases from three to 12, the average signal power remains almost the same, while
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Figure 8.11: CDFs of the spectral e�ciency per user with (a) a 50 m cell radius
and 12 users per cell, (b) a 50 m cell radius and three users per cell, (c) a 200 m cell
radius and 12 users per cell, and (d) a 200 m cell radius and three users per cell,
in the three-cell multi-user MIMO system using the HBF algorithms proposed in
this chapter for 3GPP [66] and NYUSIM [51] channel models. Baseline means no
coordination among TPs, LSP denotes leakage-suppressing and signal-maximizing
precoding, and SLNR represents SLNR-based precoding. There is one TP per
cell, and the users in each cell are distributed uniformly and randomly with T-R
separation distances ranging from 10 m to the cell radius [66]. There are four RF
chains and two streams per user, and 48 and 12 TP RF chains for 12 and three
users per cell, respectively.
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Figure 8.12: Average signal power and average interference power generated from
the NYUSIM channel model for the three-cell system with a cell radius of 50 m,
where the average is taken over users. There are two streams and four RF chains
per user, and 48 and 12 TP RF chains for 12 and three users per cell, respectively.

the average interference power increases, and the ratio of the interference power in

the baseline to that in the SLNR scheme is smaller in the 12-user case than in the

three-user case (about 16 versus 140), since the interference power in the SLNR

method approaches zero for the three-user case. Therefore, the corresponding SINR

gap and hence the spectral e�ciency gap is smaller in the 12-user case.

Moreover, it is observable by comparing Figs. 8.11(a) and 8.11(c), or Figs. 8.11(b)

and 8.11(d), that for the majority (about 70%-90%) of the users, the spectral

e�ciency for the 200 m cell radius is lower than the 50 m cell radius for any of the

proposed HBF schemes with the same user number per cell and the same transmit

power per user, except for the peak spectral e�ciency. This indicates that the e↵ect

of interference does not dictate the spectral e�ciency, but rather coverage/SNR

matters most, since the 200 m cell radius corresponds to weaker interference but
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has lower spectral e�ciency in most cases.

Next, the case where each TP communicates with each of its home-cell users

via one and four data streams is considered, along with the two-stream-per-user

case. As NS = NRF
R in the four-stream-per-user case, GMR is tractable hence is

considered herein. Fig. 8.13 depicts the 10%, 50%, and 90% CDF points of spectral

e�ciency for both 3GPP and NYUSIM models for one-stream, two-stream, and

four-stream cases with a cell radius of 50 m and three users per cell. As unveiled

by Fig. 8.13, SLNR yields the highest spectral e�ciency except for the 10% CDF

point in Fig. 8.13(c), where GMR outperforms all the other HBF schemes since

GMR intrinsically maximizes the received signal power hence is more e�cient when

the SNR is low. For the single-stream case in Fig. 8.13(a), RZF is inferior to the

baseline at low and medium SNRs (represented by the 10% and 50% CDF points)

but outperforms the baseline at high SNRs (represented by the 90% CDF point),

because the RZF method demonstrated in Section 8.2 is more like ZF due to the

small regulation factor in (8.25) (on the order of 10�16), hence the RZF method is

more e�cient in high SNR regions since it focuses more on mitigating interference

instead of noise. Interestingly, the eigenmode beamforming scheme in the baseline

case exhibits better performance as the number of streams increases, especially

for the 3GPP channel model, likely due to its capability to focus all the transmit

power onto strongest eigenmodes, and that the third and fourth eigenmodes in the

3GPP model are mostly stronger than those in NYUSIM (see Fig. 6.4). Figs. 8.11

and 8.13 indicate that the spectral e�ciency performance of the four HBF strategies

proposed in this chapter depend upon the interference and SNR level. Furthermore,

TP coordination (e.g., SLNR) generally provides higher spectral e�ciency than the

no-coordination case (e.g., up to 67% more spectral e�ciency for the weakest 5%
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(c) Four streams per user, 50 m cell radius, three users per cell

Figure 8.13: CDFs of the per-user spectral e�ciency of the three-cell multi-user
MIMO system using the HBF algorithms proposed in this chapter for 3GPP [66]
and NYUSIM [51] channel models for the cases of (a) one stream, (b) two streams,
and (c) four streams per user. Baseline means no coordination among TPs, LSP
denotes leakage-suppressing and signal-maximizing precoding, SLNR represents
SLNR-based precoding, RZF refers to regularized zero-forcing for the single-stream-
per-user case, and GMR represents generalized maximum ratio precoding. The
users in each cell are distributed uniformly and randomly with T-R separation
distances ranging from 10 m to 50 m.
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of users), thus is worth using in mmWave multi-cell networks.

8.5 Concluding Remarks

This chapter focused on multi-cell multi-user communication in mmWave systems,

derived analytical expressions for expected SINR and spectral e�ciency for the

single-stream-per-user case, and proposed and compared four HBF algorithms

for the multi-stream-per-user case based on the assumption that base stations

in di↵erent cells have full CSI and can exchange the CSI, but not the user data,

among each other, such that they can take into account both intra-cell and inter-cell

interference when designing precoding matrices.

Numerical results show that the derived multi-cell analytical expected SINR and

spectral e�ciency have good accuracy and analytical tractability, and the analysis

framework is applicable to any link SNR and channel model, as long as the necessary

eigenvalue densities are known. SLNR-based CoMP generally provides higher

spectral e�ciency than the no-coordination case (e.g., up to 67% higher spectral

e�ciency for the weakest 5% of users), thus is worth using in mmWave multi-cell

networks. LSP shows minimal improvement over the baseline. Furthermore, the

behaviors of the four proposed multi-stream HBF approaches are a↵ected by the

interference and SNR level, which are themselves influenced by the cell radius,

the number of users per cell, and the number of streams per user. Specifically,

a smaller cell radius and fewer users per cell usually give rise to higher per-user

spectral e�ciency given a constant transmit power for each user. Moreover, it is

critical to maintain coverage in mmWave systems when the cell radius is relatively

large (e.g., 200 m).
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Chapter 9

Conclusions and Future Work

9.1 Thesis Summary

The technical report has focused on investigation and comparison of 5G channel

models, and multi-cell multi-user analog-digital HBF approaches for mmWave

MIMO systems. Channel models have a penetrating impact on numerous aspects

of wireless systems ranging from system design to performance evaluation, and

di↵erent channel models can lead to substantially varied predictions on diverse

channel performance metrics and hardware requirements, thus it is critical to de-

velop and use an accurate channel model able to generate realistic temporal and

spatial channel responses. This technical report has presented a novel 5G channel

simulator, NYUSIM, including its underlying channel model, the development

of GUI, generation of output files, and its diverse applications. Then the tech-

nical report systematically compared the 3GPP and NYUSIM channel models,

demonstrated their di↵erent evaluation results, and analyzed the reason for the

discrepancies. Furthermore, a general analytical framework has been provided to
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study the multi-cell spectral e�ciency performance in the presence of both intra-cell

and inter-cell interference. Particularly, eigenvalue distributions for channels after

RF precoding in a multi-cell multi-user system with a single stream per user are

investigated for both signal and interference channels in NLOS environments, which

has never done in the prior literature, and tight analytical approximations of the

expected per-user SINR, and expected per-cell sum spectral e�ciency, under the

condition of a bank of analog phase shifters for the analog precoding and RZF

processing for digital beamforming. Numerical results for multi-cell multi-stream

networks show that benefits of multi-cell coordination depend on the underlying

channel model and the interference and noise levels.

9.2 Future Work

The work conducted throughout the technical report motivate further investigations

in unexplored research fields directly related to the contents of the technical report,

which are identified and discussed below:

• Currently NYUSIM only contains the channel models for UMi, UMa, and

RMa scenarios, without indoor scenarios. It is worth developing a channel

model for indoor environments, such as the indoor o�ce, and integrating it

into NYUSIM.

• The eigenvalue densities in the multi-cell multi-user systems are developed

for NLOS channels only in this technical report (Chapter 8). It is worth

investigating the eigenvalue densities for LOS and LOS-NLOS combined

channels. As indicated in [242] and Chapter 8 of this technical report, LOS

paths are likely to induce additional spatial correlation to eigenvalue densities,
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thus the eigenvalue densities for LOS and LOS-NLOS combined channels can

be obtained by adding extra correlation terms to the eigenvalue densities for

NLOS channels.

• The eigenvalue densities in the multi-cell multi-user systems are developed

for a transmission point antenna array with 256 elements and a single receive

antenna in Chapter 8. If there is a change in the transmit or the receive

dimension, then the analytical approach is still valid, but the approximated

gamma distributed eigenvalue densities need to be re-fitted. This can be done

using the eigenvalue density fitting method in Chapter 8.

• The analytical framework for the multi-cell system is done in Chapter 8 for

the situation with a single stream per user. It will be valuable to explore the

possibility of conducting similar analysis for the multi-stream-per-user case,

although this is highly challenging since it involves an optimization problem

with coupled variables and matrices.
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