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ABSTRACT

Channel Modeling and Multi-Cell Hybrid Beamforming for

Fifth-Generation Millimeter-Wave Wireless Communications

The rapid growth of mobile communications and the soaring popularity of smart
phones, tablets, and other mobile devices are creating unprecedented challenges for
wireless service providers to surmount a global bandwidth crunch. This has also
motivated the evolution of wireless communications from the fourth-generation to
the fifth-generation (5G). To overcome the bandwidth shortage and to meet the
ever increasing data rate demands expected for 5G systems, the millimeter-wave
(mmWave) frequency band (usually considered as 30 GHz to 300 GHz) is being
explored for cellular communications, where a tremendous amount of raw bandwidth
exists. Nevertheless, while the knowledge on mmWave propagation channels in
various outdoor environments is being gained via numerous measurement campaigns
carried out by both the academia and industry around the world over the past few
years, channel modeling for 5G including mmWave systems is still ongoing, and the
system performance, especially combined with the multiple-input multiple-output
(MIMO) technology, is yet to be fully evaluated.

This thesis investigates some fundamental aspects of 5G channel modeling and
the evaluation of mmWave MIMO system performance, with the use of multi-
cell multi-user analog-digital hybrid beamforming (HBF') approaches. A practical

omnidirectional path loss synthesizing method and systematic study of various
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omnidirectional path loss models considered by the standards bodies are first
demonstrated, followed by the introduction of a 5G channel simulator, NYUSIM.
The thesis then systematically compares the modeling methodology and system
performance prediction of two popular channel models developed for 5G systems:
the 3rd Generation Partnership Project (3GPP) TR 38.901 Release 14 channel
model, and the NYUSIM channel model. Next, focuses on shifted to mmWave
MIMO systems, where a novel channel estimation codebook construction strategy is
proposed, and multi-cell multi-user system spectral efficiency is examined using the
above two channel models and several HBF approaches, leveraging the coordinated
multi-point (CoMP) concept. Specifically, eigenvalue densities for mmWave channels
coupled with radio-frequency (RF) precoding are derived, which has never been done
in the vast literature. Moreover, a general methodology is provided to analytically
compute the average (expected) per-cell sum spectral efficiency of a mmWave
multi-cell single-stream system using phase-shifter-based analog beamforming and
regularized zero-forcing digital beamforming, and the results are validated through
numerical simulations.

The investigations in this thesis concludes that it is vital to develop an accurate
channel model applicable for all the potential 5G spectrum, as the channel model
has a profound impact on deployment decisions and on various metrics, such as
spectrum efficiency, coverage and performance, cell radius, and hardware/signal pro-
cessing requirements. For instance, compared to NYUSIM, the larger cluster number
(i.e., more rich multipath) in the 3GPP model results in more eigen channels and
more similar powers among those eigen channels, thus is advantageous for spatial
multiplexing. On the other hand, the real-world measurement-based NYUSIM

channel exhibits sparsity and has fewer but stronger dominant eigenmodes, hence
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generating higher spectral efficiency when combined with appropriate HBF proce-
dures. Numerical results show that CoMP based on the signal-to-leakage-plus-noise
ratio (SLNR) method provides highest spectral efficiency in most cases (e.g., up to
67% higher spectral efficiency for the weakest 5% of users as compared to the non-
CoMP case), thus is worth using in mmWave multi-cell networks. Furthermore, the
benefits of multi-cell base station coordination (as opposed to the no-coordination
case) are ultimately governed by the underlying propagation model, as well as the
aggregate interference levels proportional to the cell radius and the number of users
per cell. Specifically, a relatively small cell radius (e.g., 50 m) and a small number
of users (e.g., three) per cell usually give rise to high per-user spectral efficiency

given a constant transmit power for each user.
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Chapter 1

Introduction

The rapidly increasing demands from consumers for high data rates, ubiquitous
connectivity, high-quality video streaming, and low-latency control or communi-
cation are driving the development of fifth-generation (5G) wireless communica-
tions [1, 2]. Compared to 4G/International Mobile Telecommunications-Advanced
(IMT-Advanced) standards, 5G is envisioned to support a higher density of mobile
broadband users, better implementation of Internet of Things (IoT), virtual reality,
augmented reality, and many other use cases. There is currently no standard for
5G deployments, but the millimeter-wave (mmWave) spectrum (from around 30
gigahertz (GHz) to 300 GHz) is expected to be a key ingredient due to its massive
amount of raw available bandwidths [2]. In July 2016, the Federal Communications
Commission (FCC) in the United States approved nearly 11 GHz of spectrum above
24 GHz for 5G, including the 28 GHz, 37 GHz, 39 GHz, and 64 - 71 GHz bands [3],
which was more than four times larger than the total amount of licensed spectrum

currently available for mobile services.



1.1 Technologies Required to Realize 5G

The demand for cellular data traffic continues to outstrip forecasts and is currently
growing at a rate of 40-70% per annum [4, 5|. This growth rate implies that relative
to current levels, a 1000 times capacity increase within the next decade may be
required to be met by the new radio capabilities of the fifth-generation (5G) wireless
communications [1, 2, 6, 7, 8,9, 10, 11, 12]. The capacity gains required by 5G are

expected to be provided by:

e Massive multiple-input multiple-output (MIMO) antenna arrays at base
stations (BSs) and smaller arrays at the mobile user equipment (UE) [13, 14,
15, 16, 17, 18, 19]

e Increased spectrum bandwidth and use of wideband (> 100 MHz) channels |20,

21]
e Multi-user and three-dimensional (3D) MIMO [22, 23, 24, 25, 26]
e Network densification using smaller cell coverage zones [27, 28, 29, 30|
e New modulation waveforms [31, 32, 33, 34, 35]

A discussion of the above is given in [6] and references therein, but it is clear that
new waveforms will offer the smallest capacity increase, while increased spectrum

bandwidth and channel bandwidth will provide the largest capacity increases.

1.2 Spectrum Bands Suitable for 5G

Increased spectrum bandwidth cannot come from existing microwave bands which

are already congested and allocated for other purposes, thus new millimeter-wave



3
(mmWave) spectrum bands of 30-300 GHz are being considered for 5G and beyond,

since they have ample unused spectrum relative to the microwave bands [4] and are
potential candidates for allocation to mobile services. The World Radio Conference
in 2015 (WRC-15) approved a number of candidate bands for 5G, which are: 24.25-
27.5 GHz, 31.8-43.5 GHz, 45.5-50.2 GHz, 50.4-52.6 GHz, 66-76 GHz, and 81-86
GHz (see Table 1.1). A final list of the bands will be approved by WRC-19. In
addition to these bands, spectrum in the unlicensed bands (60 GHz) may also be
used [36]. A judicious contribution of spectrum use across all bands is necessary
to keep up with capacity demands, and this is likely to include lower ultra-high
frequency (UHF)/microwave frequencies for wider area coverage, and high rate

mmWayve links for both licensed and unlicensed use.

Table 1.1: Candidate spectrum bands for 5G

Group 30

Group 40/50

Group 70/80

24.25-27.5 GHz

31.8-33.4 GHz

37-40.5 GHz
40.5-42.5 GHz
42.5-43.5 GHz

66-76 GHz
81-86 GHz

45.5-47 GHz
47-747.2 GHz
47.2-50.2 GHz

50.4-52.6 GHz

The WRC-15 candidate bands are carefully chosen in terms of low-loss atmo-
spheric attenuation versus (vs.) frequency as shown in Fig. 1.1. In particular, they
avoid the oxygen absorption peaks in Fig. 1.1 that represent molecular oxygen and
water vapor loss [38]. The very small wavelengths of mmWave signals combined
with advances in CMOS technology enable the fabrication of large numbers of
antenna elements to be placed in extremely small dimensions [39, 40, 41, 42, 43, 44],

for example, 128 cross-polarized antennas (equal to 256 elements) can be placed
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Figure 1.1: Atmospheric attenuation vs. frequency (from [37]).

in a small area of 8 cm x 16 cm. Also, the large relatively unused bandwidths in
these bands will enable the allocation of very large spectrum (up to several GHz)

per operator in most countries.

1.3 Role of Channel Models in 5G Systems

The radio channel is fundamental to wireless communications [45]. Almost every
aspect of wireless communications, ranging from real-world performance predic-
tion, equipment design and system design, antenna architectures, and system
performance, to capacity and coverage evaluation, depends upon an accurate un-
derstanding of the performance of radio signals when they propagate via a radio
channel. The modeling of a radio channel is therefore vital to wireless communica-

tions research [46, 47, 48].

1.4 Technical Report Outline

Subsequent to the introduction chapter, the technical report is organized as follows.



5

Chapter 2 provides a comprehensive background of channel model basics and
differences between microwave and mmWave channel modeling, followed by litera-
ture review of channel models and simulators, channel estimation, and single-cell
and multi-cell beamforming approaches for mmWave MIMO systems.

Chapter 3 presents a practical method for synthesizing omnidirectional received
power and path loss from field mmWave measurements using directional horn
antennas [49]. The omnidirectional antenna pattern and omnidirectional received
power are synthesized by summing the received powers from all measured unique
pointing angles obtained at antenna half-power beamwidth step increments. The
method is shown to provide accurate results while enhancing the measurement
range substantially through the use of directional antennas.

Chapter 4 compares three candidate large-scale propagation path loss models for
use over the entire microwave and mmWave radio spectrum: the alpha-beta-gamma
(ABG) model, the close-in free space reference distance (CI) model, and the CI
model with a frequency-weighted path loss exponent (CIF) [50]. The accuracy and
sensitivity of the three path loss models are studied using measured data from 30
propagation measurement data sets from 2 GHz to 73 GHz over distances ranging
from 4 m to 1238 m. A series of sensitivity analyses show that the physically-based
CI and CIF models offer very similar goodness of fit as compared to the ABG
model but with fewer parameters, exhibit more stable model parameter behavior,
and yield smaller prediction error in sensitivity tests over a vast range of microwave
and mmWave frequencies, scenarios, and distances.

Chapter 5 demonstrates details and applications of a novel channel simulation
software named NYUSIM (New York University SIMulator) [51], which can be used

to generate realistic temporal and spatial channel responses to support realistic
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physical- and link-layer simulations and design for 5G cellular communications.
NYUSIM is built upon the statistical spatial channel model for broadband mmWave
wireless communication systems developed by researchers at New York University
(NYU) [52]. The simulator is applicable for a wide range of carrier frequencies
(500 MHz to 100 GHz), radio-frequency (RF) bandwidths (0 to 800 MHz), antenna
beamwidths, and operating scenarios, and also incorporates MIMO antenna arrays.

Chapter 6 systematically compares the 3rd Generation Partnership Project
(3GPP) TR 38.901 Release 14 channel model and the measurement-based NYUSIM
channel model [53], including the line-of-sight (LOS) probability model, large-scale
path loss model, outdoor-to-indoor penetration model, clustering methodology,
large-scale and small-scale parameters, and their prediction performance for mobile
systems. Particularly, the number of clusters in the 3GPP model is over two to four
times as large as the maximum number of spatial lobes found through many years of
measured data in New York City [2, 52, 54] and implemented in NYUSIM, leading
to different channel sparsity levels in the two models. Compared to NYUSIM, the
larger cluster number (i.e., more rich multipath) in the 3GPP model results in
more eigen channels and more similar powers among those eigen channels, thus is
advantageous for spatial multiplexing. On the other hand, the NYUSIM channel
exhibits sparsity and has fewer but stronger dominant eigenmodes, hence generating
higher spectral efficiency when combined with appropriate analog-digital hybrid
beamforming (HBF) procedures. Results show that different channel models can
lead to substantially varied predictions on diverse channel performance metrics and
hardware requirements, thus it is vital to select an accurate channel model for 5G
wireless system performance evaluation.

Chapter 7 presents a novel approach of constructing beamforming dictionary
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matrices for mmWave sparse channel estimation using the continuous basis pursuit
(CBP) concept [55], and proposes two novel low-complexity algorithms to exploit
channel sparsity for adaptively estimating multipath channel parameters. The
performance of the proposed CBP-based beamforming dictionary and the two
algorithms are verified using NYUSIM. Numerical results show that the CBP-based
dictionary offers significantly lower estimation error and higher spectral efficiency
than the existing grid-based counterpart, and the proposed algorithms render
better performance while requiring less computational effort compared with existing
algorithms.

Chapter 8 provides a general methodology to analytically compute the average
(expected) per-cell sum spectral efficiency of a mmWave multi-cell single-stream
system using phase-shifter-based analog beamforming and regularized zero-forcing
digital beamforming [56]. Four analog-digital hybrid beamforming techniques for
multi-cell multi-stream mmWave communication are also proposed, in which it
is assumed that base stations in different cells share channel state information to
cooperatively transmit signals to its home-cell users. Spectral efficiency performance
of the proposed hybrid beamforming approaches are investigated and compared
using the 3GPP and NYUSIM channel models. Numerical results show that the
benefits of base station coordination (as opposed to the no-coordination case) are
ultimately governed by the underlying propagation model, as well as the aggregate
interference levels proportional to the cell radius and the number of users per
cell [56, 57].

Finally, Chapter 9 draws the concluding remarks of the technical report and
presents potential future research directions based on the topics of the technical

report.
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This concludes the outline of the technical report, leading to the publications

which have resulted from the work developed in the technical report.

1.5 Publications

The work carried out throughout the technical report has resulted in the following
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S. Sun et al., ”Investigation of Prediction Accuracy, Sensitivity, and Param-
eter Stability of Large-Scale Propagation Path Loss Models for 5G Wireless
Communications,” IEEE Transactions on Vehicular Technology, vol. 65, no. 5,

pp. 2843-2860, May 2016.

S. Sun and T. S. Rappaport, ” Millimeter wave MIMO channel estimation based
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Conference on Communications Workshops (ICC Workshops), Paris, France,

2017, pp. 47-53.

S. Sun, G. R. MacCartney, and T. S. Rappaport, ” A novel millimeter-wave
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France, 2017, pp. 1-7.
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Chapter 2

Background

In order to properly design and deploy 5G wireless systems, accurate channel models
are needed. Channel models describe and model how wireless channel parameters
behave in a given scenario, and help analyze link-level and system-level performance,
thus playing an important role in wireless system design. A proper channel model
should be able to faithfully reproduce the channel parameters obtained in real-
world measurements and accurately predict channel performance. As the mmWave
frequency band is expected to be exploited in 5G due to its tremendous amount of
raw bandwidths, knowledge and modeling for mmWave channels are in huge need,

which can be gained via field measurements.

2.1 MmWave Propagation Measurements Con-

ducted by NYU WIRELESS

In order to build realistic channel models, channel measurements are needed to

learn the channel and to study channel parameter statistics. NYU WIRELESS has
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conducted extensive propagation measurements at multiple mmWave frequencies
in various scenarios, such as urban microcell (UMi), urban macrocell (UMa), rural
macrocell (RMa), and indoor office, from 2012 to 2017 [2, 54, 58, 59]. In what
follows, several measurement campaigns with over one Terabytes of raw data used

over 2012-2016 for developing the NYUSIM channel model [51] are described.

2.1.1 28 GHz Propagation Measurements in UMi Scenario

The 28 GHz propagation measurements were conducted in summer 2012 in down-
town Manhattan around NYUs main campus, with a maximum RF transmit power
of 30.1 dBm over an 800 MHz first null-to-null RF bandwidth, yielding a maximum
measurable dynamic range of 178 dB [2, 54]. Measurements were performed for a
typical base station-to-mobile (access) scenario with the transmitter (TX) antenna
on relatively low rooftops and the receiver (RX) antenna located at a mobile height
(1.5 m) around common city blocks typical of a dense urban environment. Narrow-
beam TX and RX antennas were used, each with 24.5 dBi boresight gain and 10.9°
and 8.6° half-power beamwidths (HPBWs) in azimuth and elevation planes, respec-
tively. The narrowbeam outdoor-to-outdoor measurements in Manhattan consisted
of over 10,000 recorded PDPs using three TX locations and 27 RX locations that
were visited repeatedly for each TX location, providing for a total of 74 TX-RX
location combinations. For each TX-RX location combination, the RX antenna
was swept in 10° increments (approximately the antenna HPBW) in the azimuth
plane for three different RX antenna elevation pointing angles and three different
TX azimuth angles, all with a fixed TX downtilt elevation of 10°, where a PDP was
acquired at each distinct azimuth pointing increment at the RX. One TX antenna

sweep was conducted as well, resulting in 10 total azimuth sweeps for each TX-RX
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combination. T-R separation distances ranged from31 m to 425 m, but PDPs were

not measurable beyond 200 m. Fig. 2.1 illustrates the TX and RX hardware and
measurement locations used in the 28 GHz campaign. More detailed information

on the measurement procedure and results are provided in [2, 54].

2.1.2 73 GHz Propagation Measurements in UMi Scenario

The 73 GHz outdoor propagation measurements were conducted in downtown
Manhattan around the NYU campus in summer 2013, with a maximum RF transmit
power of 14.6 dBm over an 800 MHz first null-to-null RF bandwidth, yielding a
maximum measurable dynamic range of 181 dB. The measurements consisted of five
TX locations and 27 RX locations with a few of them repeated for more than one
TX location, for both base station-to-mobile and backhaul-to-backhaul scenarios.
RX antenna heights of 2 m and 4.06 m were used to emulate base station-to-mobile
access and wireless backhaul scenarios, respectively [54]. Four TX sites were 7 m
above ground and one was 17 m. PDPs were recorded using rotatable 27 dBi gain
antennas at the TX and RX to capture azimuthal sweeps in 8° (approximately the
antenna HPBW) increments using many RX antenna elevation angles for different
fixed TX antenna azimuth and elevation angles. Azimuthal TX sweeps were also
performed with the RX antenna fixed in the azimuth and elevation planes. Up to ten
RX azimuthal sweeps and up to two TX azimuthal sweeps were conducted for each
TX-RX location combination for both mobile and backhaul measurement scenarios.
Fig. 2.2 displays the TX and RX hardware and measurement locations used in
the 73 GHz UMi campaign. More information on the measurement procedure and

results is detailed in [54].
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Figure 2.1: (a) Transmitter, (b) receiver, and (c) measurement locations used in
the 28 GHz propagation measurements in New York City in 2012 [2].
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2.1.3 73 GHz Propagation Measurements in RMa Scenario
The 73 GHz RMa measurements were carried out in Riner and Christiansburg,
Virginia, rural towns in southwest Virginia in summer 2016. The TX was positioned
on a porch at Professor Rappaports mountain home at a height of 110 m above
the surrounding terrain [58, 59]. A narrowband continuous wave (CW) signal was
transmitted with a maximum RF power of 14.7 dBm (29 mW) using a rotatable
7° azimuth and elevation HPBW horn antenna with 27 dBi of gain. An identical
rotatable antenna with 27 dBi of gain and 7° azimuth and elevation HPBW was
used at the RX to capture the RF signal, providing a maximum measurable path
loss of 190 dB. The RMa measurements were made over a two-day period of clear
weather using a receiver measurement van, with the receiving antenna fixed on a
tripod outside of the van at an average height between 1.6 m and 2 m above the
ground along country roads and streets near rural homes and businesses [58, 59].
Measurements were made at 14 LOS and 17 NLOS locations where a measurable
signal was detected. The 2D T-R separation distance for LOS locations ranged
from 33 m to 10.8 km, and from 3.4 km to 10.6 km for NLOS locations [58, 59].
Remarkably, signals can be detected with a T-R separation distance of over 10
km even in NLOS environments. Fig. 2.3 shows the TX and RX locations and
surrounding areas in the 73 GHz RMa campaign. More information on measurement
procedure and results can be found in [58, 59].
Extensive indoor measurements were also made during 2013-2016 [60, 61, 62, 63],
but this technical report focuses on the outdoor UMi, UMa, and RMa scenerios
since these are of greatest interest to wireless carriers who will bid on spectrum

and deploy 5G networks.
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2.2 Channel Model Basics

A radio channel is the medium linking the TX and the RX. Various objects, such
as glass windows, concrete buildings, plants, moving cars, etc., exist in the real
environments, thus the radio waves may be reflected, scattered or diffracted, arriving
at the RX with different paths [64, 65], and transmitted signal experiences dramatic
variation when going through the radio channel. The received signal is thereby the
sum of multiple radio waves with different phases and delays. Fig 2.4 illustrates an
example wireless channel with a base station, a user, and obstructions (buildings
and a bus), where the transmitted signal is decomposed into several clusters (defined
jointly in the space and time domains) as defined in the 3GPP channel model [66],
or, spatial lobes as defined in the NYUSIM channel model [51] (NYUSIM also
defines time clusters, where a time cluster could contain rays in different spatial
lobes, and a spatial lobe could also contain rays in different time clusters [52]), and
subpaths/rays within clusters (3GPP)/spatial lobes (NYUSIM), stemming from
LOS propagation, reflection, scattering, and diffraction.

The signal variation is categorized into large-scale and small-scale fading [64,
65, 67]. Large-scale fading describes the average channel gain over a distance of
tens to a few hundred of wavelengths, and is important for coverage prediction
and interference analysis of a radio system. Shadow fading, which belongs to
large-scale fading and is caused by large terrain features between the BS and
mobile station (MS), is generally modeled as a Gaussian variable in dB. Small-scale
fading describes the signal variation over a short distance scale [62, 68, 69, 70], e.g.,
fractions of wavelengths. For instance, measurement results in [62] showed that
the small-scale spatial fading was very small over a 35.31-cm (~ 87 wavelengths)

linear track at 73 GHz with a 1 GHz bandwidth, with at most -4 dB to +2 dB
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Figure 2.4: An example wireless channel with a base station, a user, and obstructions
(buildings and a bus), where the transmitted signal is decomposed into several
clusters (defined jointly in the space and time domains) as defined in the 3GPP
channel model [66], or, spatial lobes as defined in the NYUSIM channel model [51]
(NYUSIM also defines time clusters, where a time cluster could contain rays in
different spatial lobes, and a spatial lobe could also contain rays in different time
clusters [52]), and subpaths/rays within clusters (3GPP) /spatial lobes (NYUSIM),
stemming from LOS propagation, reflection, scattering, and diffraction.
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fading depth relative to the mean for an omnidirectional antenna, while the fading

depth for a directional RX antenna depends on the RX orientation in relation to
the environment and the TX [62]. Small-scale fading determines the performance
of air interface technologies. In the delay domain, root-mean-square (RMS) delay
spread is defined as the standard deviation in propagation time between multipath
components (MPCs), and large delay spread often induces strong inter-symbol
interference. RMS angular spread is defined as the standard deviation in the
angles between MPCs. It is found from the published literature [2, 52, 71, 72, 73]
that similar modeling philosophy can also be used for mmWave frequencies, as

introduced below.

2.2.1 Path Loss and Large-Scale Fading

Path loss is the reduction in power of a radio wave as it propagates through the

channel, which is defined as [67, 74]:

P
PL[dB] = 10log,, —, (2.1)
Pr
where Pr and Py are the transmitted and received power, respectively. In free

space, the received power is a function of distance and wavelength/frequency, also

known as Friis’ law [64, 67]:

A 2
PR(d, )\) — PTGTGR (m) P (22)

where Gt and Gg are the antenna gains at the TX and RX, respectively, A is the

wavelength, dsp is the spatial distance between the TX and RX. However, in real
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environments, there are many dielectric and conducting obstacles and path loss
is more severe than in free space, thus a lot of effort has been devoted to field
measurements and path loss modeling. Several empirical path loss models have been
widely used for frequencies below 6 GHz, including the Hata model for 2G systems
[?7 ], ITU-R M. 1225 for 3G [75], and ITU-R M. 2135 for 4G [76], etc. Similarly, for
mmWave, numerous field measurements [54, 58, 59, 77, 78, 79, 80, 81] have been
carried out in the 28, 38, 60, 73, and 80 GHz bands. Two main types of path loss
models for mmWave channels, along with their corresponding shadow fading values,
have been proposed and used by researchers and standards bodies [50, 82], i.e., the
ABG model and the CI model, which are detailed in Section 6.1.2.

2.2.2 Small-Scale Fading

Small-scale fading is involved in the channel impulse response (CIR). Considering

a narrowband flat fading channel, the CIR can be described as:

h(t,7) =V +g(t, 1), (2.3)

where V is a complex and deterministic component, which exists in the LOS case
with a strong and dominant path between the TX and RX. If assuming the multiple
received radio waves are wide-sense stationary uncorrelated scattering (WSSUS),
g(t, 7) is typically a complex zero-mean Gaussian random variable with its envelope
obeying the Rayleigh distribution. However, if there is a fixed LOS component, the
phase and quadrature components of the CIR are not zero-mean variables. For
such a composite channel, the amplitude obeys the Ricean distribution [83]. The

Ricean factor (also named K-factor) is the power ratio of the LOS component to
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that of the other components, e.g., scattered and diffracted components, and it

indicates the severity of fading. When the K-factor decreases to zero, the amplitude
of the fading channel becomes the Rayleigh distribution. As the channel bandwidth
increases, the RX can resolve multiple paths according to their delays and the CIR

will change to:

h(t,7) = Vo(r —70) + Y gi(t)d(r — 72), (2.4)

i=1

where g¢;(t) is a complex Gaussian variable with the excess delay 7;, 6(+) is the Dirac
function and N is the number of resolvable delay bins. This tapped delay line
(TDL) model can describe the channel variation in delay dispersion. However, as the
channel bandwidth increases from 5 MHz to 20 MHz, even to 100 MHz, the delay
resolution is also enhanced significantly and more multipaths can be expected below
6 GHz. This makes the TDL model extremely complex and increases computational
complexity. In [84], a novel CIR model, known as the Saleh and Valenzuela (SV)
model, was proposed based upon the analysis of indoor measurements. In this model,
the MPCs are assumed to arrive in clusters, where the clusters and components
within a cluster form a Poisson arrival process with different rates. Then the CIR

is given by:

ht,7) = Gt 7)6(T = o) (2.5)

n=0 m=0

where N denotes the number of clusters, M is the number of MPCs in a cluster,
n,m 1s the complex amplitude of the mth MPC within the nth cluster, and 7, ,, is
the delay of the mth MPC in the nth cluster. Clusters are also defined and used in
3GPP/ITU/WINNER models, e.g., the spatial channel model (SCM). Furthermore,
in the SCM, directions of MPCs and antenna patterns are considered, and it

describes not only delay dispersion, but also angular dispersion, which consists of a
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sum of contributions from the MPCs [85]. For the nth cluster, the impulse response

can be written as follows:

M
hn(tv T, ¢tx7 gbr:c) = Z an,mFrx(qbn,m,rz)th(qbn,m,tz)(s(T - Tn,m)é(qb - gbn,m,rw)d(qb - ¢n,m,tx)
m=1

(2.6)

where a,, ., is the complex amplitude of the mth MPC within the nth cluster, F,
and F,, are the antenna patterns at the TX and RX, respectively, ¢, . and
Gn.m.to are the angle of arrival (AoA) and angle of departure (AoD) of this MPC,
respectively. For a LOS scenario, the impulse response consists of two parts, a
deterministic component, i.e., the LOS path, and a random component (often

composed of scattered components). The impulse response is expressed as:

1 K

hn(t7 T, qb'rm ¢tm) - K—th(t7 T, ¢m¢, d)tm) + 5(” - 1) 1 ‘I‘ K

ar,os Fiz(0r0s) Fra(dr0s)

X exp(j27r)\_1(vec7"m7Los . Vecdm))exp(j%r)\_l(VecrmLos - vecdy,))

(2.7)

where K is the K-factor, vecr,, r0s denotes the spherical unit vector corresponding
to the LOS angle at the RX, vecry; 1,05 denotes the spherical unit vector corre-
sponding to the LOS angle at the TX, vecd,, and vecd,;, represent the location
vectors of the RX and TX antenna elements, respectively. Variables with subscript
LOS represent the parameters of the LOS path. This model assumes that the LOS
path appears in the first cluster.

The Geometry-based Stochastic Channel Model (GSCM) is another modeling
method (used in the COST modeling framework)[85], in which the geometric

position of scatterers is determined by a probability density function and ray tracing



30

is used to determine the actual double-directional impulse response. Furthermore,
large-scale parameters (e.g., path loss, shadow fading, K-factor, angular spread (AS)
and delay spread (DS)) and small-scale parameters (e.g., delays, cluster powers,
cross polarization ratios (XPRs), arrival and departure angles) are proposed to
describe the GSCM.

For 3D MIMO systems with Nt TX antennas and Ng RX antennas, the chan-
nel between the uth RX antenna and the sth TX antenna is characterized by
a complex coefficient h, ((7) in (2.8) [86], where (n,m) stands for the mth sub-
path/ray in the nth cluster, P, ,, represents the normalized received power of
subpath/ray m in cluster n such that > > P, =1, F,.¢ and F,,, 4 are
the field patterns of RX antenna w in the direction of the spherical basis vectors
6 and gzg respectively, 0, ,, and ¢, ,, denote the elevation and azimuth angles for
subpth/ray m in cluster n, respectively, Fi, s and Fj, s, are the filed patterns of
TX antenna s in the direction of the spherical basis vectors 6 and qZA>, respectively,
Kinm is the cross-polarization power ratio in linear scale, ®% % &% oo
are random initial phases for subpath/ray m in cluster n for four different polar-
ization combinations (06, 0¢, ¢0, p¢), [exp(j?\—g(ertx(Qn,mVZOD,qbn’m’AoD)))]s and
lexp(j ?\—Z(erm(emm ZoAs On.m.A0A)))]u are the TX and RX array response vectors
evaluated at the TX antenna s and the RX antenna u, respectively, Wy, and W,
denote location matrices of the TX and RX antennas in 3D Cartesian coordinates,
Tt (On.m.zoDs Prm.Aop) AN Try(0rm ZoAs Pn.m,A0a) are the angular spherical unit vec-
tors of the TX and RX corresponding to subpath/ray m in cluster n, respectively,
Ao denotes the wavelength, and v,, ,,, in the Doppler frequency. If polarization is not
exp(j2Y,,) ¢nn,zexp<j¢2?m>]

VErhexp(i®i)  exp(js,)

considered, the 2 x 2 polarization matrix
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S

(2.8)

is replaced by exp(j®, ) and only vertically polarized filed patterns are applied.
In the 3GPP model [66], the number of clusters and the number of subpaths/rays
per cluster are fixed for a given scenario, whereas both numbers are statistical
and variable in certain regions in NYUSIM. For the 3GPP LOS channel model,
hys(T) is obtained by adding a LOS coefficient to the non-line-of-sight (NLOS) CIR
and scaling both terms according to the Ricean K-factor [66]. In NYUSIM, the
LOS channel matrix is calculated in the same manner as the NLOS case but with
different parameters derived from measured data, both of which can be expressed
by (2.8) [52].

The channel impulse response matrix H(7) is then given by:

[ hl,l(T) hl’Q(T) e hLNT (T) ]

ho1(T hoo(T) ... hong(T

sy | 1) o) xal7)
v 1 (T) A 2(T) - Avg e (7))

Let p(7) denote a pulse-shaping function for Ts-spaced signaling evaluated at 7
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seconds [87], then the delay-dy channel matrix, H(dy), is formulated as [87]:

H(d,) = H()p(dTs — Tom) (2.9)

Assuming OFDM modulation which is used in 4G systems, where the RF bandwidth
is divided into K OFDM narrowband (e.g., 15 kHz for 4G LTE, but likely 75 GHz
for 5G pre-trial [6]) sub-carriers stacked in a wide band, the frequency-domain
channel response at sub-carrier ks (kf =0, ..., Ky — 1) can be obtained from the

impulse response H(ds) as follows [87]:

Ds—1

H(ke) = ) H(dg)e 7>oke/ K (2.10)
d%—o

where H(k¢) is the matrix frequency response at sub-carrier k¢, Ds denotes the
number of delay bins, and #(ds) represents the channel matrix impulse response at
delay ds. Eq. (2.10) indicates that for a narrowband channel with a single carrier

frequency f, the frequency-domain channel response matrix is equivalent to [87]:

H() = 3 H(d,) 2.11)

In what follows, H(f) will be denoted as H for simplicity. As 5G MIMO systems
will likely employ OFDM modulations similar to 4G systems but with larger sub-
carrier spacings [6], this technical report will focus on OFDM-like modulations
with narrowband (e.g., 15 kHz for 4G LTE and 75 kHz for 5G pre-trial [6]) flat-
fading sub-carriers. Note that the maximum omnidirectional RMS delay spread in

mm Wave channels is on the order of 250 ns [52], such that the coherence bandwidth

is roughly 1/(250 ns) = 4 MHz [67], hence RF bandwidths smaller than 4 MHz can
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be considered as flat-fading. This narrowband flat-fading assumption is also used
in most of the literature works to be demonstrated later in this chapter.

For mmWave channels, special changes in channel model are needed to describe
the new characteristics, e.g., frequency dependency, varying cluster numbers and
high path loss. For example, new models have to consider the high path loss and
high penetration loss in mmWave propagation. The differences between mmWave

models and microwave models are discussed below in detail.

2.3 MmWave and Microwave Model Differences

Due to the increase in frequency, radio waves with high frequency have different
propagation characteristics compared to microwave [64]. For example, mmWaves
can not efficiently penetrate and diffract around obstacles, e.g., cars, buildings and
people. This results in less diffracting MPCs and high path loss. The following
subsections focus on several channel properties in mmWave bands and discuss new

requirements for channel models.

2.3.1 Frequency Dependence

MmWave channels have high free space path loss in the first meter of propagation
due to its frequency dependence [50], to be shown by Eq. (4.2). Furthermore,
frequency dependence on other channel parameters, e.g., delay spread and angular
spread, also need further investigation. In 3GPP TR 38.901 Release 14 [66], both
delay spread and angular spread are modeled as a function of frequency for the

channels (except for the rural macro (RMa) scenarios) above 6 GHz.
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2.3.2 Attenuation and Blockage
During propagation, mmWaves may be partially or totally absorbed by an absorbing
medium, which results in additional loss. Thus, rain attenuation and atmospheric
attenuation [88, 89, 90, 91] should be considered in mmWave systems, although this
is not a concerned problem in microwave systems. Additionally, mmWave systems
are much more sensitive to blockage by obstacles. For example, the path loss
increases with the propagation distance. In [92], it was found that outdoor tinted
glass had a penetration loss of 40.1 dB at 28 GHz, and three interior walls of an
office building had a penetration loss of 45.1 dB, with a distance of 11.39 m between
the TX and RX. Table 6.5 shows the penetration loss of different materials. If
stationary or moving objects stand between the TX and RX, channel characteristics
will be dramatically changed when the signal is blocked, especially for mmWave
channels [93]. The shadowing caused by these objects is important for the link
budget and the time variance of the channel. Furthermore, such dynamic blocking
is perhaps important to capture in evaluations of technologies, e.g., beam-finding

and beam-tracking capabilities.

2.3.3 Channel Sparsity

It is usually claimed that mmWave channels are sparse in the angle and delay
domains [2, 71]. For example, in [52], only up to five spatial lobes are found in
dense-urban NLOS environments, and the delay/angle spreading within each cluster
is relatively small. However, more experimental verifications of this are needed.
Nonetheless, a lower bound on the channel sparsity can still be established based

on existing measurements, and in many environments the percentage of delay/angle
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bins with significant energy is rather low while it is higher at centimeter-wave

frequencies.

2.3.4 Large Bandwidth and Large Antenna Array

To meet the demand of future mobile data growth [94], bandwidths on the order of
1 GHz are needed. In mmWave bands, there are large bandwidths available (see
Table 1.1). On the other hand, smaller wavelengths make large antenna arrays
feasible [95]. Thus, the channel model should consider high resolution in both delay
and angular domains. In order to model this effect, the offset angles and relative
delay within a cluster should be modeled as variable rather than constant. Various
types of antenna arrays, such as the uniform linear array (ULA), uniform rectangle
array (URA), and uniform cylinder array (UCA), are being considered. In [96], lens
antenna arrays were proposed to enable mmWave MIMO communications. Besides,
compared to uniform planar arrays (UPAs), lens antenna arrays can significantly
reduce the signal processing complexity and RF chain cost without performance

degradation.

2.3.5 Spatial Consistency

Spatial consistency is identified as an important feature for 5G channel models [97].
The spatial consistency of a channel means that the channel evolves smoothly
without discontinuities when the TX and/or RX moves or turns. It also means
that channel characteristics in closely located users are highly correlated. Spatial
consistency covers various aspects, e.g., large-scale parameters and small-scale
parameters of delays, AoAs and AoDs, outdoor/indoor state, and LOS/NLOS

state. In [66], a spatial consistency procedure is used for both cluster-specific and
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ray-specific random variables to be spatially consistent. For example, cluster delays
Tn = TmazXn, Where Tpq, is the maximum delay (2 - 104925 t950s) - X, is a spatially
uniform random variable within (0,1), yyps and o;yps are the mean value and

standard deviation of RMS DS (see Tables 6.7 and 6.8), respectively.

2.3.6 Stationarity Regions

The study of channel stationarity plays an important role in channel modeling
and estimation, since stationarity has to be assumed in order to obtain accurate
estimates and reproduce channel parameters. Measurements at 2 GHz to 30 GHz
have indicated that the spatial stationarity regions of mmWave bands (less than 0.09
m or so) are much smaller than those at microwave frequencies (around 0.6 m) for
an allowance of similarity level of 0.6 [98]. Furthermore, recent field measurements
have shown very sharp spatial decorrelation over small distance movements of just
a few tens of wavelengths at mmWave frequencies [62], yet it is noteworthy that the
orientation of directional antennas with respect to the surrounding environment
can impact the stationarity and correlation distances, as demonstrated in [62].
Additionally, the average received power of wideband 73 GHz signals can change
by 25 dB as the mobile RX transitioned around a building corner from NLOS to
LOS in a UMi scenario [62]. Therefore, stationarity regions need to be carefully

characterized in 5G channel modeling that incorporates mmWave bands.

2.3.7 Random Cluster Numbers

In the existing channel model for microwave bands, the number of clusters is a
constant [76]. For the mmWave bands, this assumption may not be reasonable.

According to recent literature, cluster/time-cluster numbers are small and random,
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and are well-modeled by a Poisson distribution [52, 71]. In [99], the mean cluster

number is 12 while it is less than 4 in [71] (Note that the definition of cluster is
different in these two references). By making the cluster numbers random, some

channel properties, e.g., capacity, will change correspondingly.

2.4 Review of Channel Models and Simulators

The construction and implementation of channel models are becoming increasingly
important for wireless communication system design, and computer-aided design
tools such as channel simulators are essential for performance evaluation of commu-
nications systems and for simulating network deployments, before moving forward
with new technologies.

There are several channel simulators that have been developed and used by
previous researchers [100, 101, 102, 103, 104, 105, 106]. For instance, Smith [107]
built simulation software for indoor and outdoor propagation channels by making
use of the two-ray Rayleigh fading channel model developed by Clarke [108].
Fraunhofer Heinrich Hertz Institute developed a 3-D multi-cell channel model
that can accurately predict the performance for an urban macrocell setup with
commercial high-gain antennas, upon which a channel simulator has been built
that supports features such as time evolution, scenario transitions, and so on [101].
A channel simulator for indoor scenarios was developed for machine-to-machine
applications [102]. Rappaport and Seidel developed a measurement-based statistical
indoor channel model named SIRCIM (Simulation of Indoor Radio Channel Impulse
Response Models) for the early development of WiFi [103] and the corresponding

simulation software to generate channel impulse responses (CIRs) for indoor channels
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operating from 10 MHz to 60 GHz. A similar open-source RF propagation simulator

is SMRCIM (Simulation of Mobile Radio Channel ITmpulse Response Models), that
was useful for simulating outdoor channels [104, 105]. Another software simulation
program, called BERSIM [106], developed by Fung et al., was able to simulate
mobile radio communication links and calculate average bit error rate (BER) and
bit-by-bit error patterns, that was useful for evaluating link quality in real time
without requiring any radio frequency hardware. More detailed descriptions and

comparisons of several popular channels models are provided below.

2.4.1 SIRCIM Channel Model and Simulator

The SIRCIM model, which is a statistical radio channel impulse response model,
was developed based on propagation measurements in indoor factory and open plan
office scenarios at 1.3 GHz [103] in both LOS and obstructed (OBS) topographies.
The model can describe the distribution of the number of multipath components in
a particular multipath delay profile, the distribution of the number of multipath
components received within a local area, the probability of receiving each multipath
component at a particular excess delay, the distributions of the amplitudes, phases,
and time delays of multipath components received within a local area, and the
probability of receiving a multipath component at small scale locations. The
computer simulator SIRCIM, which is built based upon the aforementioned channel
impulse response model, is able to recreate multipath power delay profiles (PDPs)
and continuous-wave (CW) fading profiles that are representative of measured
results. SIRCIM allows the prediction of arriving signals at a receiver from one
(or many) transmitters by performing convolutions of transmitted signals with

simulated channels.
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2.4.2 SMRCIM Channel Model and Simulator
The SMRCIM channel model and simulator are aimed for outdoor environments
including urban microcell (UMi) and suburban scenarios [104], which can generate
realistic channels based on extensive measured data. The software package SMRCIM
belongs to Wireless Valley Communications, Inc. SMRCIM accurately models
various types of multipath, including flat-fading, small delay spreads, and very large
delay spreads, which are usually encountered in an urban cellular scenario, and it also
models the spatial correlation in small-aperture two-element arrays [104]. SMRCIM
has been utilized to generate empirically derived random multipath channel for

examining the performance of various techniques in CDMA systems [109].

2.4.3 QuaDRiGa Channel Model and Simulator

QuaDRiGa is developed at the Fraunhofer Heinrich Hertz Institute to enable the
modeling of MIMO radio channels for specific network configurations, such as
indoor, satellite or heterogeneous configurations. The QuaDRiGa channel model
is geometry-based stochastic channel model, which collects features created in
SCM(e) and WINNER channel models along with novel modeling approaches which
provide features to enable quasi-deterministic multi-link tracking of users (receiver)
movements in changing environments. It supports 3D propagation, 3D antenna
patterns, time evolving channel traces, scenario transitions and variable terminal
speeds. In the QuaDRiGa channel model, it is assumed that the base stations
are fixed, the mobile terminals are moving, and scattering clusters are fixed as
well and the time evolution of the radio channel is deterministic. QuaDRiGa also

supports massive MIMO modeling enabled through a new multi-bounce scattering
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approach and spherical wave propagation. It will be continuously extended with
features required by 5G and frequencies beyond 6 GHz. The QuaDRiGa channel
model is supported by data from extensive channel measurement campaigns at

10/28/43/60/82 GHz performed by the same group.

2.4.4 COST 2100 Channel Model

The COST 2100 channel model [110] is a geometry-based stochastic channel model
for MIMO systems that is built on the framework of the earlier COST 259 and
273 models [111], which covers aspects such as multi-user, multi-cellular, and
cooperative operation in MIMO systems. The most distinguishing feature of the
COST 2100 channel model lies in that it is a cluster-based model which is not
constrained by large-scale parameters (LSPs), and the environment is described
independent of the mobile station location. Specifically, the COST 2100 channel
model defines a large number of clusters with consistent stochastic parameters
throughout the simulation environment according to the base station location, as
well as the mobile station location, and determining the scattering from the visible
clusters at each channel instance, and synthesizes the LSPs based on the cluster
scattering. There are two key modeling concepts: wvisibility region and cluster [110].
A visibility region denotes a circular region given a fixed size in the simulation area,
which determines the visibility of only one cluster. When the mobile station enters
a visibility region, the related cluster smoothly increases its visibility. A cluster
is represented by an ellipsoid in space as viewed from the base station and from
the mobile station, which is characterized with specific positions and orientations

toward the base station and mobile station [110].
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2.4.5 METIS Channel Models
The METIS channel models consist of a map-based model, a stochastic model,
and a hybrid model as a combination of both [112]. The map-based model is
based on ray tracing using a simplified 3D geometric description of the propagation
environment and thus inherently accounts for major propagation mechanisms
such as diffraction, specular reflection, diffuse scattering, blocking, etc. Channel
realizations are generated with an implementation of the map-based model and
are compared to the measurement results in some selected scenarios by analysing
propagation parameter statistics [112]. The stochastic model extends the geometry
based stochastic channel model (GSCM), which has been further developed from
WINNER/3GPP, in order to provide multi-dimensional shadowing maps with low
complexity, mmWave parameters, direct sampling of the power angular spectrum,
and frequency dependent path loss models [112]. The hybrid model provides a
flexible and scalable channel modelling framework that tries to ibalance between
the simulation complexity and realism. The METIS channel models are intended
for the frequency range from sub-1 GHz to 86 GHz and beyond, bandwidths greater
than 500 MHz, massive MIMO, extremely large arrays even beyond stationarity
interval, direct device-to-device (D2D), machine-to-machine (M2M) and vehicular-
to-vehicular (V2V) communications, spatial consistency between topologies and

between users (e.g., birth-death process and/or visibility regions for clusters).

2.4.6 MiWEBA Channel Model

The MiWEBA channel model is a quasi-deterministic channel model aimed for

millimeter-wave outdoor mobile access links of small cell base stations with a
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typical cell radius of several hundred meters [113]. The MiWEBA channel model

is developed based on a measurement campaign conducted at 60 GHz with an
RF bandwidth of 250 MHz on a plaza in downtown Berlin, Germany. The quasi-
deterministic channel model is a combination of a geometry-based method for a
limited number of multipath components and a stochastic approach, and builds
on the representation of the mmWave channel impulse response comprised of a
few quasi-deterministic strong rays, a number of relatively weak random rays
originating from the static surfaces reflections, and flashing rays originating from
moving cars, buses, and other dynamic objects reflections [113]. The key benefit of
the quasi-deterministic modeling approach compared to pure statistical models is
its inherent support for spatial consistency, since it takes into account the positions
of the transmitter and receiver. In the MiWEBA channel model, the propagation
loss is calculated by the Friis equation, taking additional losses from the oxygen
absorption into consideration. The parameters of reflected rays are calculated based
upon the Fresnel equations, plus additional losses due to surface roughness [113].
The quasi-deterministic modeling approach requires a precise description of the
scenario, thus it is only applicable to the specific scenario investigated and cannot

be extended to other scenarios.

2.4.7 WINNER II Channel Model

The WINNER family is a set of geometry-based stochastic channel models. The
channel parameters are determined stochastically, based on statistical distributions
extracted from channel measurements. The WINNER II channel model is applicable
for link-level and system-level simulations of local area, metropolitan area, and

wide area wireless communication systems [114]. The channel model is antenna
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independent, i.e., different antenna configurations and different element patterns
can be inserted. The channel parameters are determined stochastically, based on
statistical distributions extracted from channel measurement. Channel realizations
are generated by summing contributions of rays with specific channel parameters
like delay, power, angle-of-arrival and angle-of-departure. The channel model is
applicable to any wireless system operating in 2 - 6 GHz frequency range with
up to 100 MHz RF bandwidth. As the WINNER II channel model is devised for
cellular communication between a fixed base station and a mobile user terminal, it
is not adequate for situations where both link ends can be at arbitrary locations,
or even ultra-dense deployment, where closely located base stations see partly the
same environment. Another known defect of the WINNER approach is the lack of
support for spherical waves and consistent modeling of closely located users. In
particular, it yields poor realism for cases that need high spatial resolution such as

massive MIMO and pencil beamforming.

2.4.8 ITU-R IMT-Advanced Channel Model

The ITU working party 5D has recently been developing a recommendation on the
framework and objectives of the future development of IMT for 2020 and beyond.
The ITU-R IMT-Advanced channel model is a geometry-based stochastic channel
model [115], which is known as a double directional channel model. The modeling
methodologies of the ITU-R IMT-Advanced channel model are similar to those in

the 3GPP channel model to be described in the following subsection.
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2.4.9 3GPP Channel Model
The 3GPP channel model is also a geometry-based stochastic spatial channel
model developed based on the 2D channel models from ITU and WINNER II,
and has been extended to 3D, which is also inspired by the extension from 2D
to 3D channel model published as part of WINNERII/WINNER+ [116]. The
channel model is suitable for link-level and system-level simulations to estimate
realistic channels between a base station, and one or more UEs, that account for
empirical correlations between large-scale parameters. The large-scale parameters
denote the omnidirectional RMS delay spread, the azimuth spread, the shadow
fading, and the Rician K-factor (for LOS channels), and were shown to exhibit
significant correlation for a given base-to-mobile link. It is assumed that each
multipath component can be represented by a planar wavefront, characterized by
small-scale parameters such as path delays, powers, AoAs, and AoDs, extracted
from measurement-based statistical distributions. In the 3GPP channel model,
a cluster is defined as a group of multipath components traveling close in both
the temporal and spatial domains, and a ray is defined as a multipath component
within a cluster. A joint delay-angle clustering approach is adopted in the 3GPP
channel model, such that a group of traveling multipaths must depart and arrive
from a unique AoD-AoA angle combination centered around a mean propagation
delay. The 3GPP TR 38.901 Release 14 channel model [66] is targeted for carrier
frequency range from 0.5 GHz to 100 GHz and large channel bandwidths (up to
10% of the carrier frequency), and takes into account mmWave propagation aspects
such as blocking and atmosphere attenuation. The channel model is also aimed
to accommodate user terminal mobility with mobile speeds up to 500 km/h, and

develop a methodology considering that model extensions to D2D and V2V may be



45

developed in future work. One of the most prominent blemish of the 3GPP channel
model is the unrealistically large number of clusters, which might be proper to
model sub-6 GHz channels, but is not suitable for modeling mmWave channels that

exhibit sparsity [52, 54, 117].

2.4.10 Statistical Spatial Channel Model by NYU

NYU WIRELESS conducted mmWave measurements from 2012 through 2017 [2, 54,
58, 59], having acquired a total of over 1 Terabytes of data, at frequencies from 28
to 73 GHz in various outdoor environments in UMi, UMa, and RMa environments.
as presented in Section 2.1. A 3D SSCM [52] has been developed based upon
the measured data, which is comprised of similar modeling steps to the 3GPP
channel model [66] such as LLOS probability model, large-scale path loss model,
large-scale parameters, and small-scale parameters, but with different modeling
approaches and/or parameters in each step. For instance, for the large-scale path
loss model, the CI model is utilized that has solid physical basis and provides
lower computational complexity, higher prediction accuracy and higher parameter
stability than the ABG model, as demonstrated in [50] and Chapter 4 of this
technical report. For multipath clustering, the time-cluster-spatial-lobe (TCSL)
clustering approach is proposed that extends the existing ultra-high frequency
(UHF) 3GPP model through the additional model parameters of directional RMS
lobe angular spreads for spatial lobes [52].

In the SSCM, TCs are composed of multipath components traveling close in
time, and arriving from potentially different directions in a short propagation time
window. SLs denote primary directions of departure (or arrival) where energy

arrives over several hundred nanoseconds [52]. Per the definitions given above,
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a TC contains multipath components traveling close in time, but may arrive
from different SL angular directions, such that the temporal and spatial statistics
are decoupled and can be recovered separately. Similarly, an SL may contain
many multipath components arriving (or departing) in a space (angular cluster)
but with different time delays. This distinguishing feature is obtained from real-
world propagation measurements [2] which have shown that multipath components
belonging to the same TC can arrive at distinct spatial pointing angles and that
energy arriving or departing in a particular pointing direction can span hundreds or
thousands of nanoseconds in propagation delay, detectable due to high-gain steerable
directional antennas. The TCSL clustering scheme models the directionality of
mmWave channels via separate TCs that have time-delay statistics, and via SLs
that represent the strongest directions of multipath arrival and departure [52]. The
TCSL framework is physically based (e.g., it uses a fixed inter-cluster void interval
to represent the minimum propagation time between possible obstructions causing
reflection, scattering, or diffraction), and is derived from field observations based on
about 1 Terabytes of measured data over many years, and can be used to extract
TC and SL statistics for any measurement or ray-tracing data sets [52]. Fig. 2.5
illustrates an omnidirectional PDP, where there are four multipath taps which are
grouped into two time clusters with exponentially decaying amplitudes. The four

multipath taps are then grouped into two AOA spatial lobes, as shown in Fig. 2.6.
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Figure 2.5: Example of an omnidirectional PDP with four multipath taps [52].
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Figure 2.6: Example of an AOA power spectrum with four multipath taps [52].
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2.5 Review of Channel Estimation Based on Com-

pressed Sensing

Channel modeling is an important and fundamental step towards wireless system
design, after which communication infrastructures will be built and various signal
transmission and reception techniques will be utilized at both communication link
ends, in which the knowledge of actual channels plays a key role in the design
of signal processing strategies. Channel state information (CSI) is needed to
design precoding and combining procedures at transmitters and receivers, and
it can be obtained through channel estimation. Conventional MIMO channel
estimation methods may not be applicable in mmWave systems because of the
substantially greater number of antennas, hence new channel estimation methods
are required [118]. Due to the sparsity feature of mmWave channels observed
in [2, 52], which means majority of the resolvable delay/angular bins do not contain
MPCs with sufficient electromagnetic energy caused by a small number of spatial
lobes [52, 119], compressed sensing (CS) techniques [120] can be leveraged to
effectively estimate mmWave channels [121, 122, 123]. Adaptive CS, as a branch of
CS, yields better performance at low signal-to-noise ratios (SNRs) compared to
standard CS techniques, and low SNRs are typical for mmWave systems before
implementing beamforming gain [119]. Adaptive CS algorithms for mmWave
antenna arrays were derived in [119] to estimate channel parameters for both
single-path and multipath scenarios, and it was shown that the proposed channel
estimation approaches could achieve comparable precoding gains compared with
exhaustive training algorithms. Additionally, Destino et al. proposed an adaptive-

least absolute shrinkage and selection operator (A-LASSO) algorithm to estimate
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sparse massive MIMO channels [124]. In [125], reweighted [; minimization was
employed to realize sparsity enhancement based on basis pursuit denoising. The
authors of [126] demonstrated a CS-based channel estimation algorithm for mmWave
massive MIMO channels in ultra-dense networks, in conjunction with non-orthogonal
pilots transmitted by small-cell base stations.

A channel estimation algorithm was proposed in [127] for a frequency-division
duplexing (FDD) multi-user (MU) massive MIMO system using the structured
compressed sensing theory, which took advantage of the common sparsity and
private sparsity architecture of the channel matrix in an MU massive MIMO system.
A structured joint subspace matching pursuit (SJSMP) algorithm was proposed to
estimate channels jointly with limited pilot at the base station [127]. The authors
of [128] employed the subspace pursuit, orthogonal matching pursuit (OMP), and
compressed sampling matching pursuit (CoSaMP) techniques in conjunction with
minimum mean square error (MMSE) and least mean square (LMS) approaches to
estimate the channel coefficients for a MIMO-OFDM (orthogonal frequency-division
multiplexing) system. Simulation results showed that the proposed method was
able to reduce the normalized mean square error versus SNR significantly when
compared with the existing subspace pursuit, OMP, and CoSaMP combined with
the least square method, and that CoSaMP combined with LMS provided better
performance than the subspace pursuit and OMP with LMS with less computational
complexity [128].

Marzi et al. investigated a compressive structure to estimate and track sparse
spatial channels in the downlink in mmWave picocellular networks at 60 GHz [129],
where compressive beacons were sent with pseudo-random phase settings at the base

station antenna array, and compressively processed using pseudo-random phase
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settings at the mobile array, which is compatible with coarse phase-only control
and RF beamforming, and allows scaling to a large number of antenna elements
independent of channel reciprocity [129].

In [130], a CS-based adaptive channel estimation and feedback scheme was
proposed for FDD-based massive MIMO systems, which adapts non-orthogonal
pilot design to reliably estimate and feed back the downlink CSI with reduced
overhead using the spatially channel sparsity. Moreover, a distributed sparsity
adaptive matching pursuit was proposed for jointly estimating the channels for
multiple sub-carriers [130], which was able to acquire the high-dimensional CSI
from a small number of non-orthogonal pilots.

Invoking the CS techniques, the authors of [131] devised a novel channel co-
variance estimation scheme for analog/digital hybrid architecture for time-division
duplexing (TDD) mmWave single-user (SU) MIMO systems, where the mobile
station has a single antenna, and the covariance was directly estimated via a
one-step approach without the need to estimate the channel explicitly. Both the
sparsity of mmWave channels and the Hermitian property of covariance matrices
were utilized, and a time-varying analog combining matrix at the receiver was
employed to effectively extend the number of measurements [131].

Low-resolution ADCs can significantly reduce the power consumption in mmWave
systems, thus they are of special interest in mmWave MIMO research [132, 133, 134].
In [132], channel estimation algorithms were developed for mmWave MIMO systems
with one-bit ADCs and all digital combining utilized at the receiver, in which the
estimation problem was formulated as a one-bit CS problem. A modified expectation-
maximization scheme was proposed which exploits the sparsity and exhibits better

performance compared with the conventional expectation-maximization approach.
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Furthermore, a second algorithm named generalized approximate message passing

(GAMP) was applied to solve the optimization problem [132], which is computa-
tionally efficient and can reduce the mean squared error in the low and moderate
SNR ranges that are typical in mmWave systems before carrying out beamforming.
One limitation of the algorithm in [132] is the assumption that each element in the
virtual channel obeys i.i.d. Bernoulii Gaussian distribution, otherwise there will be
"leakage” such that each path is not associated with a single entry in the virtual
channel. Besides, each path has an angular spread hence probably correspond to
several adjacent elements [132]. The above issues may be solved by making the
virtual channel sparse through a windowing scheme [132, 135].

In order to reduce power consumption in mmWave MIMO systems, hybrid
beamforming architectures have been widely considered that will be detailed in
Section 2.6, as well as low-resolution ADCs. To this end, a channel estimation
method was proposed in [133] for such type of structures, where hybrid beamforming
architectures were used at both the transmitter and receiver, and low-resolution
ADCs that coarsely quantize the in-phase and quadrature components with ¢ (¢ < 3)
quantization bits were adopted at the receiver, which was called the mix hybrid-
low resolution MIMO architecture [133]. In such a system, the received signal
suffers from two compression stages: (i) the analog processing and the reduced
number of RF chains, and (ii) signal quantization by the low-resolution ADCs.
Accordingly, the authors of [133] proposed a compressive channel estimator which
exploits the sparsity of mmWave channels to compensate for the information loss
intrinsic to the aforementioned structure. A modified expectation-maximization
algorithm was proposed that combines both MMSE estimation of the receieved

signal before quantization and the OMP to recover the sparse channel vector
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iteratively. Simulation results show that utilizing no more than three quantization
bits does not reduce the mean square error substantially [133].

Huang et al. proposed a joint channel estimation and beamforming strategy
for broadband mmWave cellular systems in [136], in which the sparse mmWave
channel was estimated utilizing a low-complexity CS-based estimation algorithm.
The computational complexity of the proposed algorithm was reduced by avoiding
matrix inverse and singular value decomposition but using multiplication opera-
tions. Considering practical hardware constraints for mmWave structures, finite
phase control with limited quantization bits for analog beamforming was applied.
Simulation results show that the proposed strategy leads to only 2 dB to 3 dB loss
compared to the perfect CSI case [136].

A low-rank spatial channel estimation scheme was proposed in [137] for mmWave
MIMO systems, where the long-term receive-side spatial channel covariance ma-
trix was estimated from a series of power measurements conducted in different
angular directions. The maximum likelihood estimation scheme was employed to
estimate the covariance matrix, which reduces to a non-negative matrix comple-
tion problem [137]. Thanks to the sparse/low-rank nature of mmWave channels
with respect to the number of antenna elements, the non-negative feature of the
covariance matrix significantly reduces the number of measurements. Specifically,
a simple iterative soft thresholding algorithm (ISTA) approach was adopted to
estimate the covariance matrix, following which a second algorithm that provides
further improvements by exploiting the directional nature of the covariance using a
component-wise gradient descent was proposed [137]. Simulation results unravel
that the proposed algorithms converge relatively fast and can provide good channel

estimates with significantly less number of measurements than unknowns. The
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authors of [137] presented channel estimation methods for analog beamforming and
hybrid beamforming, yet there is an increasing interest in fully digital architectures,
especially using low-resolution ADCs. Covariance estimation in low-resolution digi-
tal channels would require different strategies in [137] and would be an interesting
research topic for future work.

In [138], an asymmetric channel estimation method combining an exhaustive
beam training at the receiver for AoAs and a CS-based scheme for the transmit
beam training for AoDs was proposed for MU-MIMO mmWave systems, which
makes use of the asymmetric number of antenna elements at the base station and
mobile stations. In the proposed channel estimation strategy, the best receive beam
was first found using an exhaustive search since the overhead for exhaustive receive
beam search is affordable due to a small number of antenna elements at the user in
general [138]. Then a CS-based scheme was employed to train the base station beam
while the receive beam was fixed as selected in the first stage. Simulation results
show that by performing beamforming at the receiver side while CS is applied at
the transmitter side, the proposed algorithm yields better estimation performance
compared to the conventional CS-based approach in the low SNR regime [138].

As a modified algorithm to the single-path estimation technique presented
in [119], an enhanced version of the single-path estimation algorithm was proposed
in [139], which utilized the property of the diagonally dominant matrix, rather
than the received signal strength as in [119], as the criterion to detect the single
path. The disadvantage of the received signal strength-based algorithm in [119]
is that the received signal is usually submerged in the noise before conducting
the beamforming, which indicates that the selected maximum power is not always

associated with the desired signal [139]. Simulation results show that the proposed
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modification enhances the single-path channel estimation performance in terms
of the spectral efficiency [139]. However, the achievable spectral efficiency yielded
by the proposed algorithm still has a large gap compared to the perfect channel
knowledge case. One major limitation of the introduced method is that it only
applies to single-path channels, not multipath channels.

In [140], a pilot design was proposed to facilitate fast LASSO-based sparse
channel estimation that exploits the inherent delay- and angle-domain sparsity of
mmWave channels, where aperture shaping was used to ensure a sparse virtual-
domain MIMO channel representation [141]. It was shown by the numerical
results that the proposed pilot-aided designs can approximate the spectral efficiency
rendered by the perfect-CSI capacity-optimal system [140]. The strategy presented
in [140] can be extended to continuous aperture phased (CAP) MIMO systems and
digital beamforming using one-bit ADCs.

Based on the Least Square Estimation (LSE) and Sparse Message Passing
(SMP) algorithm, the authors of [142] proposed a channel estimation strategy
that leverages the intrinsic sparse feature of mmWave channels. The SMP was
employed to detect the exact location of non-zero entries of the channel vector,
and the LSE was utilized to estimate its value at each iteration. Furthermore,
the authors analyzed the Cramer-Rao Lower Bound (CRLB) of the proposed
algorithm. An intermediate virtual channel representation was used in [142] due
to its ability to capture the essence of physical modeling and to render simple
geometric interpretation of the scattering environment [141, 142]. Numerical
simulations reveal that the proposed algorithm yields better performance compared
to the traditional LSE estimator and existing sparse estimators such as the LASSO

approach. Moreover, only four iterations were needed to achieve its CRLB [142].
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Nevertheless, the presented algorithm has a high computational complexity owning
to matrix inversion operations in coarse and fine estimation stages. Another aspect
to improve is to relax the assumption that the number of non-zero entries in the

virtual channel vector is exactly equal to the number of paths [142].

2.6 Review of Beamforming for mmWave MIMO
Systems

The use of mmWave bands opens up the possibility of using large-scale antenna
arrays where hundreds of (if not more) antennas are used. The antenna elements
can be arranged in a linear array or a full-dimensional (i.e., with both elevation and
azimuth angle resolution capabilities) array. These multi-element antenna arrays
will provide spatial multiplexing gain but it is not necessary that an array type in
one morphology is best for another. For example, some areas may require elevation
beamforming (narrow beams in the elevation) and may need more antennas along
the zenith axis as compared to other areas where beamforming in the azimuth may
require more antennas in the azimuth. Antenna architectures are also influenced
by the horizontal and vertical angle spreads in a multipath channel. The antennas
likely to be used are active antennas i.e. the power amplifiers, and bulk of the
signal processing hardware are at the backplane of the antennas. Therefore, the
number of antenna elements (dependent upon channel model) will also have an
impact on power consumption, energy efficiency, hardware complexity, etc [143].
Beamforming is a signal processing technique that focuses the signal onto desired
directions by adjusting the phases and/or amplitudes for each antenna element [144].

It is necessary to conduct beamforming, especially in mmWave channels that gen-
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erally experience high free space path loss in the first meter, so as to provide
beamforming gain which can improve coverage and support multiple users. Three
types of beamforming have been proposed and studied in the literature: analog
beamforming [145], digital beamforming, and analog/digital hybrid beamform-
ing [117, 118, 119, 146, 147, 148, 149, 150, 151, 152}, as depicted in Fig. 2.7. For
analog beamforming, a single RF chain is connected to all antenna elements. The
main drawback of analog beamforming is the huge power consumption of analog
phase shifters. For digital beamforming, multiple data streams are transmitted, and
the number of data streams cannot exceed the smaller of the number of TX and
RX antenna elements. Stream separation is done via precoding techniques such as
zero-forcing (ZF) and regularized ZF (RZF) [153]. The spectral efficiency achieved
by digital beamforming is the highest among the three beamforming structures,
where the optimal precoder and decoder consist of the first Ng columns of V and U,
respectively, with Ng denoting the number of data streams, V and U representing
unitary matrices derived from the channel’s singular value decomposition (SVD),
i.c., H=UXVY. Digital beamforming, however, requires a complete RF chain be-
hind each antenna element, which entails high complexity and cost when the antenna
number is large. HBF, as illustrated in Fig. 2.7(c), is realized via low-dimensional
digital baseband processing combined with analog RF processing usually enable by
phase shifters. In HBF, the number of RF chains is often much less than the number
of TX/RX antenna elements, which is especially reasonable for mmWave channels
as the channel is sparse hence a small number of RF chains can already exploit
the limited number of spatial lobes, so that HBF spectrum efficiency approaches
digital spectrum efficiency [117]. Fig. 2.8 illustrates the beam patterns generated

by a 256-element uniform rectangular array in an example channel realization with
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Figure 2.7: Block diagrams of beamforming architectures at a BS for a downlink
transmission, where structures (a), (b), and (c) represent the analog beamforming,
digital beamforming, and hybrid beamforming structures, respectively. Ngg, Ng,
and Ngrp ps denote the numebr of BS antenna elements, the number of data streams,
and the number of BS RF chains, respectively.

the NYUSIM channel model [51] using the (a) analog beam steering vector in
the channel’s dominant physical direction, (b) optimal digital precoding vector,
and (c) hybrid precoding vector with four RF chains produced using Algorithms
1in [117]. The hybrid precoding results in beam patterns that closely resemble the
patterns generated by optimal digital precoding, and this beam pattern similarity

will ultimately lead to similar spectral efficiency [117].



o8

Beam Pattern: Analog Precoding Beam Pattern: Digital Precoding

Precoding Gain (dB)

Precoding Gain (dB)

o4

3
@
So©

o 120
60 te ©)
307 nut A0

(a) Analog Precoding (b) Digital Precoding

Beam Pattern: Hybrid Precoding

Precoding Gain (dB)

®
S o

150

_ 120
Ll %)
N a0 =" 60 age
Q/s(o) 30 Ai\“‘“mp\

(¢) Hybrid Precoding

Figure 2.8: Beam pattern generated by a 256-element uniform rectangular array
in an example channel realization with the NYUSIM channel model [51] using
the (a) analog beam steering vector in the channel’s dominant physical direction,
(b) optimal digital precoding vector, and (c¢) hybrid precoding vector with four
RF chains produced using Algorithms 1 in [117]. The hybrid precoding results
in beam patterns that closely resemble the patterns generated by optimal digital

precoding, and this beam pattern similarity will ultimately lead to similar spectral
efficiency [117].



59
2.6.1 Multi-User Digital Beamforming
The optimal downlink digital precoding method that achieves the capacity in MIMO
broadcast channels is known to be dirty paper coding (DPC) [154], a multi-user
precoding scheme whose fundamental approach is to cancel out interference via
precoding at the transmitter using perfect CSI and complete knowledge of the
signals to be sent. DPC, however, is a nonlinear precoding strategy and is difficult
to implement in practice due to high computational complexity. As an alternative,
linear precoding approaches have lower computational burden and can sometimes

yield near-optimal performance [155].

2.6.1.1 Single-Antenna Users

In this scenario, a mobile UE has only one antenna element. There are several
popular linear digital signal processing techniques used in MIMO systems: matched
filtering (MF') transmission/reception (also known as maximum ratio transmission
(MRT) transmission and/or maximum ratio combining (MRC), or conjugate beam-
forming), ZF [156], RZF [156], and signal-to-leakage-plus-noise ratio (SLNR)-based
beamforming scheme [157].

MF aims to maximize the signal power on each stream transmitted to or from
the terminals, without taking into account the effects of multi-user interference.
This is realized by multiplying the transmitted /received signals by the conjugate
channel responses. MF operates poorly in interference-limited scenarios since it
neglects inter-user interference. In contrast to MF, ZF aims to null the inter-user
interference by projecting each data stream onto the orthogonal complement of the
inter-user interference. Mathematically, the ZF matrix is the pseudo-inverse of the

composite instantaneous small-scale fading channel matrix. One disadvantage of ZF
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is that it ignores the effect of additive Gaussian noise, thus yields poor performance
under noise-limited conditions. As an enhanced version of ZF, RZF considers both
interference and additive Gaussian noise, which can overcome noise inflation in the
low SNR regime [156]. The precoding matrix F for three signal processing schemes

introduced above can be mathematically expressed as:

;

H? for MF
F=JdHYHHY)", for ZF (2.12)

HY (HH"” + ¢NoI)™!, for RZF

\

where H denotes the downlink channel matrix, £ is a regularization factor in RZF,
and Ny represents the noise variance. When £ — 0o, RZF becomes equivalent to
MF; when £ = 0, RZF reverts to ZF. Note that the baseband matrices using MF, ZF,
and RZF all have dimensionality constraints, as indicated by (2.12). Namely, if the
dimension of H is Nr x N, then the dimension of F is constrained to be Nt x Ng.
This dimensionality requirement, however, may not be satisfied in reality, especially
in HBF, due to the constraint of the number of RF chains and/or data streams.
Nevertheless, SLNR-based processing does not have the dimensionality constraint
and is hence more flexible, and more details about SLNR-based beamforming

approach is provided in Chapter 8.

2.6.1.2 Multi-Antenna Users

When each user is equipped with multiple antennas, a popular precoding method is
block diagonalization (BD) [158], which eliminates inter-user interference and can be

thought of as a generalization of channel inversion for circumstances with multiple
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antennas per user. BD also has dimensionality constraints and is only applicable

to situations where the number of transmit antennas is no smaller than the total
number of receive antennas. Furthermore, BD requires the independence of the
matrices between the transmitter and individual receivers, and user-grouping has
to be performed if two or more users have highly correlated channels [159]. SLNR-
based precoding is another processing strategy when there are multiple antennas

per user [157], and has no dimensionality or matrix independence constraints.

2.6.2 Analog Beamforming

Analog beamforming relies on the RF domain processing and is usually implemented
using phase shifters which induces constant modulus constraints on the elements
of the RF beamformer [117]. Analog beamforming can also be implemented with

analog switches [147, 160], which often requires antenna element selection.

2.6.3 Multi-Cell Signal Processing

Multi-cell networks suffer both intra- and inter-cell interference, which can be
mitigated via proper beamforming approaches including inter-cell base station
cooperation/coordination. The 3GPP completed a study on coordinated multipoint
(CoMP) techniques for both downlink and uplink for the Long Term Evolution
(LTE)-Advanced system in 2013 [161]. Four CoMP scenarios are considered in [161]:
(1) Homogeneous network with intra-site CoMP; (2) Homogeneous network with
high transmit power remote radio heads (RRHs); (3) Heterogeneous network with
low power RRHs within the macrocell coverage where the transmission/reception
points created by the RRHs have different cell IDs as the macrocell; (4) Hetero-

geneous network with low power RRHs within the macrocell coverage where the
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transmission /reception points created by the RRHs have the same cell IDs as the

macrocell. Each CoMP scheme may be categorized into two types: joint processing
and coordinated scheduling/beamforming, where joint processing includes joint
transmission and dynamic point selection (DPS)/muting. The different CoMP
strategies in [161] entail different levels of complexity and requirements with respect
to CSI feedback and CSI sharing ,which are detailed below in increasing order of

complexity and requirements.

2.6.3.1 Coordinated Scheduling/Beamforming

In coordinated scheduling/beamforming, data for a UE is only available at and
transmitted from one transmission point (TP) using its own beamforming approach
in the CoMP cooperating set (downlink data transmission is done from that TP)
for a time-frequency resource, but user scheduling/beamforming decisions are made
with coordination among TPs. Coordinated scheduling/beamforming necessitates
CSI feedback from multiple TPs. Inter-TP phase information is not required. It is

possible to configure multiple CSI feedback instances [161].

2.6.3.2 Dynamic Point Selection/Muting

In DPS/muting, data is available simultaneously at multiple TPs but is transmitted
from only one TP in a time-frequency resource, and the transmitting/muting TP
may change from one subframe to another. DPS requires similar CSI feedback as
coordinated scheduling/beamforming in the sense that no inter-TP phase informa-
tion is required, although some additional channel quality indicator (CQI) report
targeting other TPs may be needed. Similarly to the other schemes, optimizations

to existing CSI reporting procedures are not precluded. DPS may require UE
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recommendation on selected TP(s) [161].

2.6.3.3 Joint transmission

In joint transmission, data for a UE is available at multiple TPs and is simultaneously
transmitted from multiple TPs to a single UE or multiple UEs in a time-frequency
resource. Additional information such as inter-TP amplitude information, which is
a new specification aspect, may be needed. Similar to coordinated scheduling/beam-
forming, enhancements or modifications to the existing CSI reporting procedures
are not precluded [161].

Additionally, hybrid joint processing and coordinated scheduling/beamforming
may be possible, where data for a UE may be available only in a subset of TPs in
the CoMP cooperating set for a time-frequency resource, but user scheduling/beam-
forming decisions are made with coordination among TPs corresponding to the

CoMP cooperating set [161].

2.6.4 Hybrid Beamforming

There are several possible antenna array architectures for hybrid beamforming that
can be used in both CoMP and non-CoMP systems. Based on the mapping from RF
chains to antenna elements, which determines the number of phase shifters needed,
the hybrid precoding transceiver architectures can be categorized into the fully-
connected and partially-connected architectures [117, 148], as illustrated in Fig. 2.9.
The former architecture enjoys full beamforming gain for each RF chain with a
natural combination between RF chains and antenna elements, i.e., each RF chain
is connected to all antennas. On the other hand, sacrificing some beamforming gain,

the partially-connected structure significantly reduces the hardware implementation
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Figure 2.9: Example block diagrams of hybrid beamforming structure at BS for a
downlink transmission (from [162]), where the top and bottom figures illustrate
the fully-connected and partially-connected architectures, respectively.

complexity by connecting each RF chain only with part of the antennas [148].

2.6.5 Hybrid Beamforming for mmWave SU-MIMO Sys-

tems

By exploiting the spatial structure of mmWave channels, Ayach et al. proposed a
hybrid precoding and combining approach by formulating the precoding/combining
problem as a sparse reconstruction problem [117] due to the small number of spatial
lobes in mmWave channels. According to the point that maximizing the spectral
efficiency of mmWave systems can be approximated by minimizing the Fuclidean
distance between hybrid precoders and the fully digital precoder, standard basis

pursuit (whose performance can be improved by using continuous basis pursuit [55],
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as detailed in Chapter 7) based algorithms were proposed to approximate optimal
unconstrained precoders and combiners such that they could be implemented in
low-cost RF hardware. The authors in [117] focused on a fully-connected hybrid
beamforming architecture, where each RF chain was connected to every antenna
element in the transmit or receive array, and had a set of dedicated phase shifters.
Since the RF precoding/combining matrix is implemented using analog phase
shifters, all elements in the matrix have equal norm. Antenna array response
vectors were utilized as the columns in the RF precoding/combining matrices,
since the array response vectors form a finite spanning set for the channels row
space, and they also satisfy the equal norm requirement on each element in the RF
precoding/combining matrix. Iterative algorithms were therefore devised based on
the above observations and the digital precoding/combining matrix was obtained
via the least squares method subject to a transmit power constraint (for the digital
precoding matrix). Numerical results show that the proposed spatially sparse
processing can approach the spectral efficiency achieved by fully digital precoding
and combining.

Hybrid precoding for the partially-connected antenna array structure has been
considered in [151, 163], in which the complex capacity optimization problem is
decomposed into a series of sub-problems that are easier to deal with by considering
each antenna sub-array one by one. The successive interference cancellation (SIC)
method is adopted to optimize the achievable capacity of each sub-array, which is
implemented in an iterative manner favorable for parallelization. It is shown that
the computational complexity is comparable with conventional analog precoding
scheme, and that the proposed algorithm can provide near-optimal capacity perfor-

mance especially when the number of antenna elements in each sub-array is small
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(e.g.,4) [151, 163]. The proposed hybrid precoding scheme in [151, 163] is based on

the based on the assumption that the digital precoding matrix is diagonal, which
means that the digital precoder only allocates power to different data streams, and
the number of RF chains should be equal to that of the data streams.

The authors of [148] proposed hybrid beamforming algorithms for both fully-
connected and partially-connected antenna array architectures, based on the alter-
nating minimization concept. The hybrid precoder design is treated as a matrix
factorization problem. for the fully-connected antenna array structure, an alternat-
ing minimization (AltMin) algorithm based on manifold optimization is proposed
to approach the performance of the fully digital precoder. To reduce the complexity
of the aforementioned algorithm, another approach is proposed by enforcing an
orthogonal constraint on the digital precoder. Moreover, for the partially-connected
antenna array structure, an AltMin algorithm is also developed with the help of
semidefinite relaxation. For practical implementation, the proposed AltMin algo-
rithms are further extended to the broadband setting with OFDM modulation [148].
Simulation results demonstrate that the hybrid precoders with the fully-connected
architecture can approach the performance of the fully digital precoder when the
number of RF chains is slightly larger than the number of data streams, and that
the hybrid precoders for the partially-connected structure provide considerable
gains over analog beamforming, and it is recommendable to utilize a relatively large
number of RF chains, in order to enhance both spectral and energy efficiency [148].

A near-optimal closed-form solution for fully-connected and partially-connected
OFDM-based hybrid precoding is developed in [164] for frequency-selective wide-
band mmWave MIMO systems. Fully digital receivers are assumed. The developed

solution yields the same spectral efficiency as the unconstrained fully-digital method
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when the number of channel paths is smaller than the number of RF chains. Further-
more, a criterion is proposed for constructing the optimal sub-arrays that maximize
a proxy of the system spectral efficiency, namely, the best partitioning/grouping
of the antenna elements over the RF chains [164]. Based on the above criterion,
the authors proposed a dynamic structure and a greedy algorithm which adapt the
sub-array architecture per the long-term channel statistics. Simulation results show
that the designed hybrid precoding method approximates the spectral efficiencies
of the fully-digital scheme for both fully-connected and fixed sub-array structures.
In addition, the dynamic sub-array approach is shown to be superior to any fix
sub-array architecture [164].

In [165], a hybrid architecture was proposed for multi-stream for large-scale SU-
MIMO beamforming systems operating at mmWave bands, where Hadamard RF
codebook with low-bit (e.g., 1-bit or 2-bit) resolution phase shifters were employed,
in contrast to conventional RF codebook designs available in the literature that
require over 7-bit resolution to obtain identical performance with the proposed
approach. Simulation results reveal that the spectral efficiency performance of
the proposed hybrid structure with low-resolution phase shifters approaches the
unconstrained singular-value-decomposition (SVD)-based precoding method [165].

A low-complexity frequency selective hybrid precoding scheme was presented
in [87] based on GramSchmidt orthogonalization for a SU-MIMO wideband mmWave
system with a limited feedback channel between the transmitter and receiver. As
a first step, the RF precoders were taken from a quantized codebook, then the
optimal hybrid precoder design was derived which maximizes the achievable mutual
information under total power and unitary power constraints. Second, a limited

feedback frequency selective hybrid precoding system was explored where both
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the baseband and RF precoders are taken from quantized codebooks, for which
efficient hybrid analog and digital precoding codebooks were developed. At last, a
greedy hybrid precoding algorithm based on Gram-Schmidt orthogonalization for
limited feedback frequency selective mmWave systems was proposed, which was
shown to achieve a similar performance with a low complexity compared with the
optimal hybrid precoding design that requires an exhaustive search over the RF and
baseband codebooks. For future work, it would be interesting to investigate efficient

hybrid precoding codebooks for wideband multi-user millimeter wave systems [87].

2.6.6 Hybrid Beamforming for mmWave MU-MIMO Sys-

tems

In [166], a joint spatial division and multiplexing (JSDM) algorithm [167] was
utilized for mmWave MU-MIMO channels operating in the FDD mode. Realistic
propagation channels were considered where there exists partial overlap of the
angular spectra from different users caused by the presence of common scatterers.
The problem of user grouping was formulated for two distinct objectives: (i)
maximizing spatial multiplexing, and (ii) maximizing total received power in a
graph-theoretic framework. Given the computational complexity of the problems,
sub-optimum greedy algorithms were proposed as efficient solutions [166]. It is
worth noting that JSDM necessitates hybrid beamforming at the base station,
where pre-beamforming may be implemented in the analog RF domain, while the
MU-MIMO precoding stage is implemented by baseband processing [166, 167].
Pre-beamforming can null the common multipath components so as to create
linearly independent user groups, which can be served simultaneously on the same

transmission source. Baseband digital precoding can allocate the user groups on
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orthogonal transmission resources. Two algorithms were proposed for user grouping
and pre-beamforming, where the first algorithm selects users filling many angular
directions and serves fewer users with higher beamforming gain, while the second
algorithm maximizes the number of users with at least one mutually non-overlapping
set of directions hence tending to serve more users with lower beamforming gain [166].
Various numerical results using the realistic 28 GHz measurement data [2, 54, 168]
demonstrate that JSDM with proper user selection is a promising strategy for
downlink mmWave MU-MIMO channels, especially considering the fact that the
JSDM approach achieves remarkable spatial multiplexing while requiring only the
knowledge of the channels second-order statistics (covariance), such that feedback
of instantaneous CSI at the transmitter is not required [166].

Alkhateeb et al. [122] developed a low-complexity hybrid precoding for downlink
MU-MIMO mmWave systems, leveraging the sparse nature of the channel and
the large number of deployed antennas. In particular, hybrid precoders at the
transmitter and analog combiners at multiple receivers which induce a small training
and feedback overhead are considered in [122], where the base station communicates
with each mobile station through only one stream, and the number of base station
RF chains is no smaller than the number of mobile stations. The hybrid precoding
and analog combining scheme consists of two stages: (i) the base station and each
user design the RF beamforming and combining vectors to maximize the desired
signal power for the user with the other users interference neglected; (ii) the base
station designs its zero-forcing digital precoder based on the quantized channels.
The proposed algorithm was analyzed in two special cases: when the channels are
single-path, and when the number of transmit and receive antennas are very large,

which are relevant for mmWave systems. Simulation results show that the hybrid
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precoding gain is not very sensitive to RF angles quantization, but it is vital to
have a good quantization for the digital precoding layer to maintain a reasonable
precoding gain over analog only approaches.

The authors in [169] proposed a novel hybrid precoding structure for multi-
user OFDM mmWave systems, where two groups of phase shifters were combined
to map the signals from RF chains to antennas and an effective AltMin hybrid
precoding algorithm was devised. A major algorithmic innovation in [169] is a
LASSO formulation for the analog precoder, which yields computationally efficient
algorithms. It was revealed that implementing twice the number of phase shifters
in the analog precoder is advantageous from the respects of both performance
and complexity, and that inter-user interference is a major problem to tackle with
besides the fully digital precoder approximation. Therefore, it is beneficial to
cascade a digital baseband precoder that specializes in canceling the inter-user
interference [169].

ZF-based hybrid beamforming methods for MU-MIMO mmWave systems were
analyzed in [170], where the base station equipped with a large antenna array
communicated with several single-antenna users. At the base station, the columns
of the RF beamforming matrix was chosen from the antenna array response vectors,
which was similar to the approach in [117], and the baseband digital precoding
matrix was obtained via the zero-forcing scheme. Furthermore, to mitigate the noise
enhancement effect induced by the zero-forcing technique, another type of baseband
digital precoding matrix was calculated through the RZF approach. In addition,
the authors of [170] also proposed a limited feedback protocol for mmWave channels
and a robust RZF-based hybrid beamforming scheme for the MU-MIMO system.

The limitation of the method proposed in [170] is that no beamforming/combining
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processing can be performed at the receiver side and only one data stream per user
can be transmitted since only a single antenna is available therein.

In [171], a coordinated hybrid beamforming approach that supports multi-stream
transmission for each user was proposed for downlink MU massive MIMO mmWave
systems. First, an RF beamforming technique based on the Generalized Low Rank
Approximation of Matrices (GLRAM) approach was proposed, then an efficient
modified GLRAM algorithm was developed. The proposed scheme only requires
the information of the composite channel, instead of the complete physical channel
matrix which is assumed to be known in the existing literature. It makes use of
the coordination between the base station and users to achieve a maximal array
gain and has no dimensionality constraint. The multiplexing gain is then exploited
by applying the BD technique. Simulation results show that the proposed scheme
approaches the fully digital BD solution [171].

Kwon et al. proposed a joint scheduling and hybrid beamforming downlink
system with partial side information for mmWave broadcast channels [172]. The
achievable sum rate upper bound and the scaling law of the asymptotic sum rate
were derived, where the sum rate upper bound demonstrates the trade-off between
the multiplexing gain and the MU diversity gain dependent on the number of
RF chains. The base station is equipped with several RF chains and schedules a
subset of users and corresponding beams for each transmission according to the
signal-to-interference-plus-noise ratio (SINR) feedback. It is worth noting that the
proposed hybrid system is even superior to the digital zero-forcing beamforming
system in the low SNR realm typical in mmWave channels, since the proposed
approach utilizes the degrees of freedom of the transmit antenna elements only for

SNR gain but not for interference cancellation in sparse mmWave channels [172].
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It has been demonstrated in [173] that the hybrid beamforming structure can

realize any fully digital beamformer exactly regardless of the number of antenna
elements, on the condition that the number of RF chains is twice the total number of
data streams. For cases where fewer number of RF chains are available, the authors
investigated the hybrid beamforming design problem for both the transmission
scenario of a point-to-point MIMO system and a downlink multi-user multiple-input
single-output (MU-MISO) system where the base station has a large-scale antenna
array but each user is equipped with only one antenna. For each scenario, a heuristic
hybrid beamforming design was proposed that achieves a performance close to
the performance of the fully digital beamforming baseline. Finally, the proposed
algorithms are modified for the more practical setting in which only finite resolution
phase shifters are available. Numerical simulations show that hybrid beamforming
can achieve spectral efficiency close to that of the fully digital solution with the
number of RF chains approximately equal to the number of data streams, and
that the proposed schemes are effective even using phase shifters with very low
resolution. One key assumption in [173] is the availability of prefect CSI at the base
station, which rarely occurs practically. For imperfect CSI scenario, one approach
to the design of the hybrid beamformers is to first design the RF beamformers
assuming perfect CSI, and then to design the digital beamformers employing robust
beamforming schemes to deal with imperfect CSI [173, 174].

In [175], an adaptive single-cell MU-MIMO hybrid precoding algorithm was
proposed, which iteratively designs the precoders/combiners leveraging the reci-
procity of TDD mmWave systems. The combiners were designed based on the
MMSE criterion and dependent on second-order statistics of the channel. Com-

pressed measurements taking advantage of the sparsity of mmWave channels were
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utilized to estimate the covariance of the received signal at the antenna array in
an online manner, mitigating the training overhead and complexity. The proposed
scheme avoids the explicit estimation of the channel matrix corresponding to each
user, which is hard to acquire caused by the dimensionality reduction owning to
the hybrid beamforming structure and the short coherence time of the mmWave
channel [175]. Simulation results show that the proposed method can approach the
sum spectral efficiencies of that achieved by block diagonalization One disadvantage
of the proposed algorithm in [175] is that the convergence is not theoretically
guaranteed.

The authors of [95] investigated optimal designs of hybrid beamforming archi-
tectures, with a focus on an N (the number of transceivers) by M (the number of
active antennas per transceiver) hybrid beamforming structure. Moreover, they also
studied the energy efficiency and spectrum efficiency of the N x M beamforming
architecture, including their relationship at the green point (i.e., the point with the
highest energy efficiency) on the energy efficiency-spectrum efficiency curve, the
impact of the number of transceivers N on the energy efficiency performance for a
given spectrum efficiency, and the effect of N on the green point energy efficiency.
In addition, a reference signal design for the hybrid beamforming architecture is
presented, which achieves better channel estimation performance than the method
purely based on analog beamforming. The main feature of the design based on
hybrid beamforming in [95] is the same analog beamforming on each transceiver,
on top of which digital beamforming is designed to maximize the gain in a certain
direction around the main beam direction of the analog beamforming.

Lin et al. presented low-complexity energy-efficient hybrid precoding and low-

resolution ADCs for downlink MU-MIMO mmWave systems [176], and proposed
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a transmission strategy comprising beamspace MIMO communications and beam
selection. In the hybrid precoding structure, analog beamforming was based upon
Butler matrix that multiplexes data onto orthogonal spatial beams, while digital
precoding was designed using MMSE to cancel inter-user interference. Then a
beam selection algorithm was created to determine a subset of beams to optimize
system energy efficiency based on the limited feedback information from users.
Low-resolution ADCs were employed at the user side. Power consumption per
transmission data bit was minimized by adaptively selecting the best RF chain
configuration [176]. Simulation results show that the proposed beam selection
strategy outperforms the conventional approach based upon received signal strength,
and that one-bit ADCs result in moderate degradation in the BER performance
and severe degradation in the sum rate when utilizing the quadrature phase-shift

keying (QPSK) signaling [176].

2.7 Beamforming in Multi-Cell MIMO Systems

For multi-cell wireless systems, a crucial aspect is to combat inter-cell interference
(ICT), especially for dense networks which are envisioned attractive for mmWave
frequency bands. Multi-cell cooperation is an efficient technique to mitigate ICT [177].
In the most aggressive form of multi-cell cooperation, the CSI and the data of
users are fully shared among base stations via high-speed backhaul links. These
base stations then act as a single distributed multi-antenna transmitter that
serves multiple users through beamforming, commonly referred to as cooperative
beamforming or network MIMO. Although network MIMO can completely eliminate

the ICI within the base stations coverage area and even exploit the ICI link, it
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requires substantial signaling overhead, synchronization, and backhaul capacity for
CSI and data sharing and joint transmission [178]. In practice, however, backhaul
will be bandwidth-limited due to the prohibitive costs involved in establishing
high-capacity links. This restricts the amount of information that can be exchanged
among base stations, which in turn determines the level of cooperation and the
performance gains obtained.

In a less complex form of multi-cell cooperation, commonly referred to as
coordinated beamforming in 3GPP LTE Advanced, only the CSI of users, but not
user data, is shared among the base stations to enable joint beamforming design,
whereas the data of each user is transmitted by a single BS. Without the need
for data sharing, coordinated beamforming has considerably reduced signaling
requirements compared to network MIMO. Fig. 2.10 illustrates an example scenario
of multi-cell MU-MIMO systems, where there are three adjacent cells each with one
base station and three users. Also depicted in the figure is an example of how both
intended signal and interference arrive at a user, where the green solid line denotes
the intended signal, and the red dash lines represent the inter-cell interference
caused by base stations in adjacent cells. Coordinated beamforming algorithms
can be implemented to null or mitigate the inter-cell interference.

In [179], distributed MU-MIMO was considered where several access points
are connected to a central server and operate as a large distributed multi-antenna
access point. This ensures that all transmitted signal power serves the purpose
of data transmission, rather than creating interference. The authors proposed a
strategy called AirSync which offers timing and phase synchronization to enable
distributed MU-MIMO, and implemented AirSync as a digital circuit in the field

programmable gate array (FPGA) of the Wireless Open-Access Research Platform
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Figure 2.10: An example scenario of multi-cell MU-MIMO systems, where there
are three adjacent cells each with one base station and three users. Also illustrated
in the figure is an example of how both intended signal and interference arrive at a
user, where the green solid line denotes the intended signal, and the red dash lines
represent the inter-cell interference caused by base stations in adjacent cells.

(WARP) radio platform [179]. It was demonstrated that AirSync was able to realize
the full distributed MU-MIMO multiplexing gain.

Michaloliakos et al. investigated joint user-beam selection for hybrid beam-
forming in asynchronously coordinated multi-cell networks [180], which is similar
to user selection schemes in the context of MU-MIMO and aims to maximize a
utility function of the users’ rates. Two additional novel algorithms for establishing
formal performance bounds were proposed. The first algorithm was a greedy solu-
tion of an associated maximum weight independent set problem with cardinality
constraints, while the second was a greedy solution of an associated maximum
cardinality problem over a set of feasible links. Numerical results revealed that the
hybrid beamforming architecture coupled with the proposed user-beam selection
algorithms achieved users rates which are up to 10 times higher than those achieved
by current uncoordinated deployments [180].

An adaptive multi-cell 3D beamforming strategy was demonstrated in [178],

where the setting is a cellular network with multiple multi-antenna base stations
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and single-antenna users, imperfect CSI, and directional antennas each with a
vertically adjustable beam. The effect of the elevation angle of the base station
antenna pattern on the performance of the considered network was explored, when
employing either a conventional single-cell transmission or a fully cooperative multi-
cell transmission [178]. The major innovation is to divide the coverage area into two
disjoint vertical regions and adapt the multi-cell cooperation approach at the base
stations when serving each region. A fair scheduler is used to share the time slots
between the vertical regions. Simulation results show that the proposed technique
can achieve performance comparable with that of a fully cooperative transmission
but with significantly lower complexity and signaling requirements [178].

In [181], a SLNR-based cascaded precoding algorithm was proposed to suppress
interference in downlink CoMP transmission system. In a CoMP system, cells are
divided into some cooperation clusters, and base stations in the same cluster can
serve the original cell edge UEs cooperatively to enhance the cell edge spectral
efficiency and system throughput. It is worth noting that co-channel interference
denotes the interference at a desired user that is caused by all other users, while
leakage refers to the interference caused by the signal intended for a desired user on
the remaining users [157], namely, leakage measures how much signal power leaks
into the other users. The proposed precoding scheme possesses two stages and
deals with the inter-cell and inner-cell interference step by step. In the first stage,
interferences from different cells are aligned to the orthogonal space of receiving
matrix of the expected cell to mitigate interference to the expected cell. In the
second stage, SLNR precoding is employed to suppress the interferences among
users within the same cell [181]. Numerical results show that the proposed strategy

can improve the system capacity while reducing the BER.
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Chapter 3

Synthesizing Omnidirectional
Received Power and Path Loss

from Directional Measurements

3.1 Introduction

At mmWave frequencies, the increase in free space path loss resulting from the
order of magnitude increase in carrier frequency is conveniently overcome by using
high-gain directional antennas at the base station and/or mobile handset [182],
providing sufficient gain to complete mmWave links over 200 m or so, as shown
in [2] and [183]. MmWave propagation measurements are vital for accurately
characterizing channels and creating statistical channel models, necessary for proper
design of wireless radio-systems and realistic protocols. While electrically-steerable
adaptive antennas will be used in 5G mmWave transceivers [2, 23, 40, 184, 185],

technologies with such antennas are not yet commercially available at most mmWave
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frequencies. In the mean-time, many researchers are using mechanically rotatable
horn antennas to capture channel characteristics at a wide range of mmWave
frequencies [2, 183, 186, 187]. NYU WIRELESS measurements used rotatable horns,
and a method was needed to take the directional measurements in order to synthesize
omnidirectional models for use in comparing results in various standard bodies,
which historically have only used omnidirectional models since omnidirectional
antennas were used at both TX and RX in the conventional UHF /microwave bands
in 4G and prior systems.

To generate omnidirectional path loss models where arbitrary antenna patterns
can be implemented for specific applications, a valid procedure is required to recover
omnidirectional path loss models from directional measurements, where the TX
and RX antennas are typically rotated over many azimuth and elevation angle
combinations to emulate omnidirectional antennas. Omnidirectional path loss
models at 28 GHz and 73 GHz were extracted from directional measurements [188]
by summing up the received powers (in milli-Watts (mW)) at each and every
measured non-overlapping TX and RX antenna pointing angle combination. The
omnidirectional path loss was calculated by subtracting the summed received power

from the transmit power, with the TX and RX antenna gains removed [49, 168]:

PL;;[dB] = P, [dBm] — 10log;o(> 0> ") > " Py 6k, 01, @i, 0n)[mW]) - (3.1)

where PL; ;, P, ., P,

., denote the omnidirectional path loss, omnidirectional trans-
mit power, and received power for an AoD and AoA combination (with the antenna
gains removed) from the i TX to the j*® RX, respectively. ¢,0,¢,9 are the

azimuth AoA, elevation AoA, azimuth AoD, and elevation AoD, respectively. This
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chapter validates the method used in [188] for recovering omnidirectional received

power and path loss.

3.2 Measurement Procedure

In the summers of 2012 and 2013, two outdoor propagation measurement campaigns
were conducted at 28 GHz and 73 GHz, respectively, in downtown Manhattan,
New York, using similar 400 Megachips-per-second (Mcps) spread spectrum slid-
ing correlator channel sounders and directional steerable horn antennas at both
the TX and RX to investigate mmWave channel characteristics in a dense UMi
environment [2, 183, 189]. In the 28 GHz measurements, three TX locations and
27 RX locations were selected to conduct the measurements. Two types of horn
antennas were employed: a 24.5 dBi-gain narrowbeam horn antenna with 10.9°
and 8.6° half-power beamwidths (HPBWS) in the azimuth and elevation planes,
respectively, and a 15 dBi-gain widebeam horn antenna with 28.8° and 30° HPBWs
in the azimuth and elevation planes, respectively. The narrowbeam antenna was
always utilized at the TX locations, and five of the RX locations used both the
narrowbeam and widebeam antennas, including two LOS and three NLOS locations.
For each TX-RX location combination (except the two LOS RX locations), the
RX antenna was swept over the entire azimuth plane sequentially in increments of
one HPBW at elevation angles of 0° and 4+20° about the horizon, so as to measure
contiguous angular snapshots of the channel impulse response over the entire 360°
azimuth plane, while the TX antenna remained at a fixed azimuth and elevation
angle.

In the 73 GHz measurements, there were five TX locations and 27 RX locations
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with antenna heights of 2 m (mobile scenario) and 4.06 m (backhaul scenario),

yielding a total of 36 TX-RX location combinations for the mobile (access) scenario
and 38 combinations for the backhaul scenario. A pair of 27 dBi-gain rotatable
directional horn antennas with a HPBW of 7° in both azimuth and elevation planes
was employed at the TX and RX. For each TX-RX location combination, TX
and RX antenna azimuth sweeps were performed in steps of 8° or 10° at various
elevation angles. Additional measurement procedures and hardware specifications

can be found in [2, 183, 189].

3.3 Power Synthesizing Theory

The method for synthesizing omnidirectional received power introduced in Section

I is now theoretically validated step-by-step. First, assuming omnidirectional
antennas are used at both the TX and RX, if N MPCs arrive at the RX, then the

received signal r(t) can be expressed as [67]:

r(t) =) ane ot — 1) (3.2)

where a,,, ®,, and 7,, are the amplitude, phase, and propagation time delay of the

n™® MPC, respectively. The received power is:

Tmax Tmaz N N
Proy = / () |2dt = / YO aiae T — 7)ot — )t (3.3)
0 0 i=1 k=1

The time delay 7 differs for each MPC, hence the double sum in (3.3) is zero for
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k # i. Thus, the received power can be simplified to:

Tmax N N
Prot = / { a;*0%(t — n)} dt =Y "a (3.4)
0 =1 =1

Next, suppose directional antennas are used at the same TX and RX locations
with antenna gains Gp and Gg in linear units, respectively. For one AoD and AoA
combination, a subset of MPCs shown in (3.2) will arrive at the RX. Assuming M
MPCs reach the RX for an AoD and AoA combination, where the value of M is
dependent on the AoD and AoA combination, then the received signal (rp) for the

specific AoD and AoA combination is:

TD(t) :GTf:GR'amej@mé(t—Tm) (35)

m=1

Note that each MPC in (3.5) corresponds to an MPC in (3.2). Using the same
approach derived in (3.4) from (3.2), the received power for an AoD and AoA

combination is:

M
PD = GTGR Zaﬂ (36)
=1

By performing an exhausive antenna sweep over all possible AoD and AoA combi-
nations without spatial overlap, i.e., individual measurements are separated by one
HPBW in both the azimuth and elevation planes, the sum of received power over

all unique AoD and AoA combinations yields:

N
ZPD = GTGRZCLZQ (37)
=1

which is equivalent to the omnidirectional received power in (3.4) after removing
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the antenna gains. Therefore, the sum of received powers from non-overlapping
angles in the azimuth and elevation planes from directional antenna measurements
results in the omnidirectional received power, after removing antenna gains.

The method for synthesizing omnidirectional received power can also be validated
by considering antenna radiation patterns. The far-field radiation pattern of a horn

antenna can be approximated by [190]:

f(¢,6) = G [sinc® (a - sin(¢)) cos*(¢)] - [sinc® (b - sin(6)) cos®(9)] (3.8)

where ¢ and 6 represent the azimuth and elevation angles with respect to (w.r.t.)
the antenna boresight, respectively, f(¢,6) denotes the radiation power density
at the azimuth angle ¢ and elevation angle 6, G represents the boresight gain of
the antenna, and a and b are functions of the azimuth (AZ) and elevation (EL)

HPBWs of the horn antenna, respectively, i.e.,

HPB HPB 1

sinc? (a : sin(ﬂ)) cos’ (ﬂ) == (3.9)
2 2 2
HPB HPB 1

sinc? (b . sin(#g cos” (#) =3 (3.10)

For instance, if the azimuth HPBW of a horn antenna is 10° (i.e., 0.17 radians),
then a = 5.06. Fig. 3.1 displays the normalized antenna azimuth radiation pattern
for a horn antenna with an azimuth HPBW of 10° at an elevation angle of 0° and at
azimuth angles of 0°, 10°, and -10° w.r.t. the boresight angle, and the normalized
equivalent widebeam antenna pattern by overlapping the narrowbeam antenna
patterns at the three adjacent azimuth angles. It is clear from Fig. 3.1 that the

HPBW in the equivalent antenna pattern is 30°, i.e., three times the 10° HPBW.
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Further, the maximum gain in the normalized equivalent pattern is about 0 dB and
remains constant over the range of -10° to 10°, indicating that if aggregating the
radiation patterns at antenna pointing angles over the entire azimuth plane, i.e.,
from 0° to 360°, the resultant antenna gain will become constant and equal to the
boresight gain of the directional horn antenna over the entire azimuth plane, with
the same outcome true for the elevation plane. The normalized three-dimensional
(3D) patterns of a single antenna and the aggregated nine antennas are illustrated
in Fig. 3.2, where the antenna is assumed to have an azimuth HPBW of 10° and
an elevation HPBW of 8°, with the normalized equivalent pattern obtained by
overlapping the patterns at all the angle combinations of 0°, 10°, and -10° in
the azimuth plane and 0°, 8°, and -8° in the elevation plane. It is evident that
in the single antenna pattern, the maximum gain is concentrated only on the
boresight angle, while in the synthesized pattern the maximum gain remains almost
constant over the entire 20°x16° angular region. Although the antenna patterns
in the simulations are canonical, they are nearly identical to the actual measured
patterns of the antennas used during the measurements. Therefore, the synthesized
directional antenna pattern over the entire 47 steradian sphere after removing the
antenna gain will approximate the pattern of an omnidirectional antenna, indicating
that it is appropriate to acquire the omnidirectional received power by summing
up the powers from directional antennas in all possible non-overlapping directions,

with antenna gains removed.
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Figure 3.1: Normalized antenna pattern in the azimuth plane for a horn antenna
with an azimuth HPBW of 10° at azimuth pointing angles of 0°, 10°, and -10° with
respect to the boresight angle, and the normalized equivalent radiation pattern by
overlapping the patterns at these three adjacent angles [49].
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Figure 3.2: Normalized antenna pattern in both the azimuth and elevation planes
for a horn antenna with an azimuth HPBW of 10° and an elevation HPBW of
8°, pointing at the boresight angle, and the normalized equivalent pattern by
overlapping the patterns at all the angle combinations of 0°, 10°, and -10° in the
azimuth plane and 0°, 8°, and -8° in the elevation plane [49].
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3.4 Power Synthesizing Procedure and Empiri-

cal Results

3.4.1 28 GHz Measurement Data

This subsection is aimed to validate the method for synthesizing the omnidirectional
received power by comparing the measured power obtained from two different
directional horn antennas using the 28 GHz measurements [2] and showing that
the corresponding synthesized omnidirectional powers are independent of antenna
beamwidth. A pointing angle measured with a 30° HPBW widebeam antenna was
selected, and then discretized the measured angle into nine smaller 10° angles. The
power measured with the widebeam antenna is then compared to the sum of the
powers obtained at the nine smaller angles using the narrowbeam antenna. Note
that the 28 GHz measurements considered fixed elevation angles of 0°, and £+20°,
as opposed to +10°. The unavailable £10° elevation angles is therefore substituted
with the available +20° elevation angles.

Three NLOS RX locations, i.e., RX 14, RX 16, and RX 19 from measurements
in New York City [2] were selected to compare the received powers obtained from
widebeam and narrowbeam antennas. The measured data sets were chosen such
that the TX antennas were pointed in the same azimuth and elevation pointing
directions for both narrowbeam and widebeam antenna azimuth sweeps. The RX
elevation angle for the azimuth sweep using the widebeam antenna was 0°, and
the elevations for the narrowbeam antenna sweeps were 0°, -20°, and 20°. Ideally,
adjacent azimuth planes should be separated by one elevation HPBW, but due to

lack of measured data in the £10° elevation angles, the £20° elevation angles were
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examined instead. Table I details the parameters of the selected measurements,
where the azimuth angles are w.r.t. the true north bearing direction, and the
elevation angles are w.r.t. the horizon where positive angles denote angles above
the horizon.

For fair comparison, 9.5 dB was added to the received power found using the
widebeam antenna as shown in Table 3.1, which is the difference in the boresight gain
of the narrowbeam and widebeam antennas, to compensate for the smaller antenna
gain of the widebeam antenna, so that the only difference between the two types
of antennas is the antenna beamwidth. Note that three consecutive 10.9° HPBW
antennas are equivalent to a single 10.9° x 3 = 32.7° HPBW antenna in the azimuth
plane, but since a 32.7° azimuth HPBW antenna was not available, an antenna with
28.8° (close to 32.7°) HPBW in the azimuth plane was used. Also, the elevation
angle increment is not perfectly one HPBW as explained before. Therefore, a slight
difference would be expected in the powers using nine aggregated narrowbeam
antennas as compared to a single widebeam antenna. By using Eq. (3.8) and
integrating over the corresponding HPBWs, it is expected that the received power
using a single widebeam (28.8°/30° azimuth/elevation HPBW) antenna would be
around 3.8 times (i.e., 5.8 dB greater than) that of a single narrowbeam (10.9°/8.6°
azimuth /elevation HPBW) antenna given the same boresight gain.

As shown in Table 3.1, the effective received power by summing up the received
powers from nine narrowbeam antennas agrees well with the power obtained by
one widebeam antenna. For example, when the widebeam antenna is pointed at an
azimuth angle of 242° at RX 19, the effective received power using the widebeam
antenna was -68.7 dBm, while the effective synthesized received power from the

three narrowbeam angles was -67.0 dBm, only 1.7 dB higher. Furthermore, the
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effective received powers over the entire azimuth plane(s) using the widebeam and
narrowbeam antennas match relatively well at each of the three RX locations, with
a maximum difference of 2.9 dB.

Fig. 3.3 is a scatter plot of the 28 GHz effective directional path loss using the
widebeam and narrowbeam antennas at the three RX locations, using the 1 m
close-in free space reference distance path loss model [188]. The discrete widebeam
path loss is obtained using a single widebeam antenna, and the discrete narrowbeam
path loss is synthesized from nine narrowbeam antennas. The “all” widebeam path
loss corresponds to the effective path loss over the entire azimuth plane at a 0°
elevation angle, while the “all” narrowbeam path loss is synthesized from three
azimuth planes at elevation angles of 0° and +20°. The plot clearly shows that the
path loss exponents (PLEs) are both 3.9 for the discrete angle case, and 3.7 for the
entire azimuth plane(s) using widebeam and narrowbeam antennas, i.e., the PLEs
corresponding to different antenna beamwidths in each comparison pair agree very

well with each other.

3.4.2 73 GHz Measurement Data

In the 28 GHz measurements, the measured elevation angles were fixed to 0° and
+20° about the horizon, and the +10° elevation angles were not considered. In the
measurements at 73 GHz [183], however, power delay profiles (PDPs) were acquired
at elevation angles separated by 5° or 8° (close to the 7° HPBW). Therefore, some
insight can be gained in the distribution of received power over elevation angles
separated by about one HPBW using the 73 GHz measurement data.

Table 3.2 lists the percentage of the received power corresponding to the strongest

azimuth plane, as compared to that corresponding to the strongest azimuth plane
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Comparison of Effective Directional Path Loss
Using Widebeam and Narrowbeam Antennas
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Figure 3.3: Comparison of 28 GHz NLOS effective directional path loss using
the widebeam (28.8°/30° azimuth/elevation HPBW) and narrowbeam (10.9°/8.6°
azimuth/elevation HPBW) antennas at three RX locations. The discrete widebeam
path loss is obtained using a single widebeam antenna, and the discrete narrowbeam
path loss is synthesized from nine narrowbeam antennas. The “all” path loss
corresponds to the effective path loss over the entire azimuth plane(s) [49].
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plus the two azimuth planes adjacent to it. The adjacent azimuth planes at the

RX were separated by 5° or 8°, close to one HPBW of the antenna. It can be
observed from Table 3.2 that the received power over the strongest azimuth plane
accounts for the majority (over 70%) of the total received power at the strongest
plus adjacent azimuth planes, with a highest ratio of 95%. Note that the adjacent
azimuth planes are mostly separated by only 5° (less than one HPBW of the
antenna), if the elevation angle increment increases to one HPBW, namely 7°,
even higher contribution is expected from the strongest azimuth plane, i.e., the
percentage of the received power over the strongest azimuth plane will be even
larger. Therefore, it is sufficient to consider the power at the strongest azimuth
plane alone when comparing the received powers using widebeam and narrowbeam

antennas.

3.5 Concluding Remarks

This chapter presented the validation for synthesizing the omnidirectional received
power and path loss from measured data using directional horn antennas by
summing the received powers from each and every measured antenna pointing
angle, including both theoretical analyses and measured results. It was shown that
the received power using nine narrowbeam antennas agrees relatively well with that
using a single widebeam antenna (where the azimuth and elevation HPBWs of the
widebeam antenna are about three times those of the narrowbeam antenna), and
using directional antennas with different beamwidths yields almost identical received
power and path loss synthesized over the whole azimuth plane(s). Besides, the 73

GHz measurement data showed that when considering the total received power
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Table 3.2: Ratio of the received power over the strongest azimuth plane to that
corresponding to the strongest azimuth plane plus the two adjacent azimuth planes
in the 73 GHz measurements in New York City [49, 183].

TX RX T-R . .
. . . Elevation Received
Height | Height Separation Step (°) Power Ratio
(m) | (m) (m)
7 2 128 5 72.9%
7 2 139 5 76.0%
7 2 182 5 71.9%
7 2 190 5 74.5%
7 4.06 27 5 72.0%
7 4.06 40 8 73.9%
7 4.06 74 5 72.1%
7 4.06 107 5 83.1%
7 4.06 128 5 75.3%
7 4.06 145 5 73.8%
7 4.06 182 5 73.2%
17 2 129 5 91.7%
17 2 129 5 76.7%
17 2 168 5 81.0%
17 4.06 118 5 73.9%
17 4.06 118 5 74.4%
17 4.06 127 5 91.2%
17 4.06 129 5 95.0%
17 4.06 129 5 72.8%
17 4.06 181 5 79.6%
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over the strongest azimuth plane and the two adjacent azimuth planes, 72% to 95%
of the received power came from the strongest azimuth plane, thus it is reasonable
to consider the power at the strongest azimuth plane alone when comparing the

received powers with different antenna beamwidths [49].



94

Chapter 4

Prediction Accuracy, Sensitivity,
and Parameter Stability of Path

Loss Models

This chapter investigates three large-scale path loss models that may be used
over the microwave and mmWave frequency bands: the ABG model, the CI
model, and the CIF model. The ABG model is shown to be a simple extension
of the AB model currently used in 3GPP, where a frequency-dependent floating
optimization parameter is added to the AB model. The CI and CIF models are
simpler in form (require fewer parameters) and offer better parameter stability
and accuracy through the use of a physically based close-in reference distance
that replaces the floating model parameters of the ABG model. In this chapter,
systematic comparisons between the parameters, shadow fading standard deviations,
and prediction performance of these three models in the UMa, UMi street canyon

(SC), indoor hotspot (InH) office, and InH shopping mall scenarios are provided,
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using eight sets of measurement data from NYU, two sets from The University of
Texas at Austin (UT Austin), eight sets from Nokia/AalborgUniversity (AAU),

and 12 sets from Qualcomm [2, 50, 54].

4.1 Large-Scale Propagation Path Loss Models

The ABG, CI, and CIF path loss models are multi-frequency statistical (i.e.,
stochastic) models that describe large-scale propagation path loss over distance at
all relevant frequencies in a certain scenario [61, 79]. It will be noted that the CI
and CIF models have a very similar form compared to the existing 3GPP path
loss model (i.e., the floating-intercept, or alpha-beta (AB) model) [191], where one
merely needs to substitute the floating constant (which has been shown to vary
substantially across different measurements, frequencies and scenarios [82, 192])
with a free-space constant that is a function of frequency based on a 1 m standard
free space reference distance. As shown subsequently, this subtle change provides a
frequency-dependent term while yielding greater prediction accuracy and better
parameter stability when using the models outside of the range of the measured
data set from which the models are developed.

Testing the efficacy of a path loss model outside of the range for which measure-
ments are originally collected and used to solve for model parameters is a critical,
but often ignored, test. Testing model accuracy and parameter stability is needed
since engineers will inevitably require propagation models for new applications,
distances, or scenarios not originally contemplated in the original experiments used
to build the path loss model. For future 5G wireless system level and link layer

analysis and simulation in new spectrum bands, where new types of directional
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antennas, umbrella cells, repeater architectures, and new regulations and network
topologies are used [168], it is critical to know that a chosen model can be used in
new scenarios while still exhibiting parameter stability, accuracy, and usefulness
beyond the limited original number of field measurements. This chapter offers such
sensitivity and analysis when comparing the three candidate 5G stochastic path
loss models.

The equation for the ABG model is given by [193]:

PLABG(fa d)[dB] =10alog,, (i) + B + 107log, (L) + X?BG,

1m 1 GHz

where d > 1m (4.1)

where PLABY(f, d) denotes the path loss in dB over frequency and distance, o and
~ are coefficients showing the dependence of path loss on distance and frequency,
respectively, (3 is an optimized offset value for path loss in dB, d is the 3D TX-RX

ABG ;
2% s a

(T-R) separation distance in meters, f is the carrier frequency in GHz, and x
zero-mean Gaussian random variable with a standard deviation ¢ in dB describing
large-scale signal fluctuations (i.e., shadowing) about the mean path loss over
distance and frequency. Note that the ABG model has three model parameters for
determining mean path loss over distance and frequency, as well as the shadowing
standard deviation (a total of four parameters). When used at a single frequency,
the ABG model reverts to the existing 3GPP floating-intercept/AB model with
three parameters with v set to 0 or 2 [54, 114, 194]. The ABG model parameters

a, B3, v, and o are obtained from measured data using the closed-form solutions

that minimize the shadow fading (SF) standard deviation.
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The equation for the CI model is given by (4.2) [67]:

PLYY(f,d)[dB] =FSPL(f, do)[dB] + 10nlog,, (d/do) + x5', where d > dy  (4.2)

where f is also in GHz (for both the CI and CIF models), dy is the close-in free
space reference distance, n denotes the PLE, and x%' is a zero-mean Gaussian
random variable with a standard deviation ¢ in dB. Whereas the ABG model
requires four parameters, the CI model only requires one parameter, the PLE, to
determine the mean path loss with distance and frequency, and uses a total of two
parameters (the PLE n and x$'). A useful property of (4.2) is that 10n describes
path loss in dB in terms of decades of distances beginning at dy (making it very easy
to compute power over distance in one’s mind when dj is set to 1 m [54, 79, 192]).
In (4.2), d is the 3D T-R separation distance, and FSPL(f,dy) denotes the free
space path loss (FSPL) in dB at a T-R separation distance of dy = 1 m at the

carrier frequency f:

FSPL(f, 1 m)[dB] = 20logy, (L:mg)

= 32.4 + 20logy, (ﬁ) (4.3)
where c is the speed of light. Note that the CI model inherently has an intrinsic
frequency dependency of path loss already embedded within the FSPL term. The
PLE model parameter in (4.2) is obtained by first removing the FSPL given by (4.3)
from the path loss on the left side of (4.2) for all measured data points across all
frequencies, and then calculating the single PLE jointly for multiple frequencies, as

detailed in the Appendix and [54]. The CI model in (4.2) can be written in the
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3GPP form as [193]:

PLYY(f,d)[dB] =FSPL(f, 1 m)[dB] + 10nlog,, (d/1 m) + x"

d
=10nlog;, (E) + 32.4 4 20log,, < ) + X9, where d > 1 m

1 GHz

The choice of dy = 1 m as the close-in free space reference distance is shown
here to provide excellent parameter stability and model accuracy for outdoor UMi
and UMa, and indoor channels across a vast range of microwave and mmWave
frequencies, and creates a standardized modeling approach. While the choice of a
close-in reference distance of 1 m may be in the near-field of large antenna arrays,
the error caused by this in practical wireless system design is negligible, and is
more realistic than the ABG model, as shown subsequently and in [54].

A recent path loss model also suitable for multi-frequency modeling follows as a
more general form of the CI model, and is called the CIF model, given by Eq. (4.4)
when dy = 1 m [50, 61]:

PLE™(f,d)[dB] =FSPL(f,1 m)[dB] + 10n (1 + b(f ; J 0)>1og10 (d) + x5,
0

:1071(1 + b<f ; fO))loglo (d) + 32.4 + 20log,, (1—GfHZ) + x5,
0

where d > 1m

(4.4)

where n denotes the distance dependence of path loss (similar to the PLE in the CI
model), and b is a model parameter that captures the amount of linear frequency
dependence of path loss about the weighted average of all frequencies considered in

the model. The parameter fj is the average frequency calculated by (4.5) that is
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an input parameter computed from the measurement set used to form the model,

and serves as the balancing point for the linear frequency dependence of the PLE:

_ 2521 kak

fo=
Zszl Ny

(4.5)

where K is the number of unique frequencies, N, is the number of path loss data

CIF

points corresponding to the k™ frequency fi, and x&

in (4.4) is a zero-mean
Gaussian random variable with a standard deviation ¢ in dB that describes large-
scale shadowing. Note that the calculated fy is rounded to the nearest integer
in GHz in this work. The CIF model reverts to the CI model for the single
frequency case (when fy is equal to the single frequency f) or when b = 0 (i.e.,
when there is no frequency dependence on path loss, besides that which occurs in
the first meter of free space propagation). As shown subsequently, UMa channels
modeled by CIF have a value of b very close to zero, indicating that almost all of
the frequency-dependent effects are incorporated in the first meter of free space
propagation [54, 61].

The CI and CIF models provide a close-in free space anchor point which assures
that the path loss model (regardless of transmit power) always has a physical tie
and continuous relationship to the transmitted power over distance, whereas the
AB and ABG models use a floating constant based on a fit to the data, without
consideration for the close-in free space propagation that always occurs in practice
near an antenna out in the open (this implies that particular measured path
loss values could greatly impact and skew the ABG path loss model parameters,

since there is not a physical anchor to assure that close-in free space transmission

occurs in the first meter of propagation from the TX antenna). The CI and CIF
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models are therefore based on fundamental principles of wireless propagation, dating

back to Friis and Bullington, where the PLE parameter offers insight into path
loss based on the environment, having a PLE value of 2 in free space (as shown
by Friis) and a value of 4 for the asymptotic two-ray ground bounce propagation
model (as shown by Bullington) [67]. Previous UHF (Ultra-High Frequency) and
microwave models used a close-in reference distance of 1 km or 100 m since BS
towers were tall without any nearby obstructions, and inter-site distances were
on the order of many kilometers for those frequency bands [67, 195]. dy = 1 m
is used in 5G path loss models since coverage distances will be shorter at higher
frequencies. Furthermore, with future small cells, BSs are likely to be mounted
closer to obstructions [2, 54]. The CI and CIF dy =1 m reference distance is a
suggested standard that ties the true transmitted power or path loss to a convenient
close-in distance, as suggested in [54]. Standardizing to a reference distance of 1 m
makes comparisons of measurements and models simple, and provides a standard
definition for the PLE, while enabling intuition and rapid computation of path loss.
Now this chapter shows with measured data that the 1 m reference is very effective
for large-scale path loss modeling across a vast range of frequencies.

As discussed in [54], emerging mmWave mobile systems will have very few users
within a few meters of the BS antenna (in fact, no users are likely to be in the near
field, since transmitters will be mounted on a lamppost or ceiling), and users in the
near field will have strong signals or will be power-controlled compared to typical
users much farther from the transmitter such that any path loss error in the near
field (between 1 m and the Fraunhofer distance) will be very minor, and so much
smaller than the dynamic range of signals experienced by users in a commercial

system.
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Table 4.1: Parameters in the CI and Cl-opt path loss models in UMa and UMi
scenarios. Freq. Range denotes frequency range. # of Data Points represents the
number of data points after distance binning and path loss thresholding. Dist.
Range denotes distance range, Cl-opt represents the CI model with an optimized
free space reference distance dy. A, denotes the difference in the SF standard
deviation between the CI and Cl-opt models [50].

Freq. # of Dist.
o A,
Sce. Env. | Range | Data | Range | Model | PLE | do(m)
(dB) | (dB)
(GHz) | Points (m)
Cl-opt | 2.1 6.2 1.7
2 253 60-564 0.0
CI 2.0 1 1.7
Cl-opt | 2.0 0.1 3.1
10 253 60-564 0.0
CI 2.0 1 3.1
Cl-opt | 2.1 14.7 2.0
18 253 60-564 0.0
CI 2.0 1 2.0
LOS
Cl-opt | 2.0 50.0 2.3
28 253 60-564 0.0
CI 2.0 1 2.3
UMa
Cl-opt | 1.7 32.9 3.4
38 20 70-930 0.1
CI 1.9 1 3.5
Cl-opt | 2.0 0.1 2.4
2-38 1032 | 60-930 0.0
CI 2.0 1 2.4
Cl-opt | 3.3 10.0 3.2
2 583 | 74-1238 0.3
CI 2.8 1 3.5
NLOS
Cl-opt | 3.4 4.3 4.0
10 581 | 74-1238 0.1
CI 3.1 1 4.1
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Table 4.1: Parameters in the CI and Cl-opt path loss models in UMa and UMi
scenarios. Freq. Range denotes frequency range. # of Data Points represents the
number of data points after distance binning and path loss thresholding. Dist.
Range denotes distance range, Cl-opt represents the CI model with an optimized
free space reference distance dy. A, denotes the difference in the SF standard
deviation between the CI and Cl-opt models [50].

Freq. # of Dist.
o A,
Sce. Env. | Range | Data | Range | Model | PLE | do(m)
(dB) | (dB)
(GHz) | Points (m)
Cl-opt | 3.2 2.2 4.4
18 468 | 78-1032 0.1
CI 3.0 1 4.5
Cl-opt | 2.6 0.5 4.9
28 225 78-634 0.0
CI 2.7 1 4.9
UMa NLOS
Cl-opt | 2.5 0.1 10.3
38 12 60-376 0.2
CI 2.7 1 10.5
Cl-opt | 3.4 8.1 5.6
2-38 1869 | 60-1238 0.1
CI 2.9 1 5.7
Cl-opt | 3.8 34.2 2.4
28 4 31-54 0.8
CI 2.1 1 3.2
Cl-opt | -0.7 | 46.6 3.9
LOS 73 6 27-54 1.2
CI 2.1 1 5.1
UMi SC
Cl-opt | 0.8 50.0 4.3
28,73 10 27-54 0.1
CI 2.1 1 4.4
Cl-opt | 3.5 8.2 2.9
NLOS 2.9 18 109-235 0.0
CI 2.9 1 2.9
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Table 4.1: Parameters in the CI and Cl-opt path loss models in UMa and UMi
scenarios. Freq. Range denotes frequency range. # of Data Points represents the
number of data points after distance binning and path loss thresholding. Dist.
Range denotes distance range, Cl-opt represents the CI model with an optimized
free space reference distance dy. A, denotes the difference in the SF standard
deviation between the CI and Cl-opt models [50].

Freq. # of Dist.
o A,
Sce. Env. | Range | Data | Range | Model | PLE | do(m)
(dB) | (dB)
(GHz) | Points (m)
Cl-opt | 3.3 0.7 8.6
28 18 61-186 0.0
CI 3.4 1 8.6
Cl-opt | 3.6 5.0 4.9
29 16 109-235 0.0
CI 3.1 1 4.9
UMi SC | NLOS
Cl-opt | 2.9 0.1 7.4
73 30 48-190 0.0
CI 3.4 1 7.4
Cl-opt | 2.8 0.1 7.8
2.9-73 82 48-235 0.2
CI 3.2 1 8.0
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Table 4.2: Parameters in the CI and Cl-opt path loss models in the InH scenario.
Freq. Range denotes frequency range. # of Data Points represents the number
of data points after distance binning and path loss thresholding. Dist. Range
denotes distance range, Cl-opt represents the CI model with an optimized free
space reference distance dy. A, denotes the difference in the SF standard deviation
between the CI and Cl-opt models [50].

Freq. # of | Dist.
o A,
Sce. Env. | Range | Data | Range | Model | PLE | do(m)
(dB) | (dB)
(GHz) | Points | (m)
Cl-opt | 1.8 0.1 5.0
2.9 12 5-49 0.2
CI 1.6 1 5.2
Cl-opt | 1.1 1.1 1.2
28 6 4-21 0.0
CI 1.1 1 1.2
Cl-opt | 1.5 0.9 4.5
LOS 29 12 5-49 0.0
CI 1.5 1 4.5
Cl-opt | 0.4 3.7 1.2
73 6 4-21 1.8
CI 1.3 1 3.0
InH Office
Cl-opt | 1.7 0.1 4.6
2.9-73 36 4-49 0.0
CI 1.5 1 4.6
Cl-opt | 3.9 4.6 5.9
2.9 30 5-67 0.6
CI 3.1 1 6.5
Cl-opt | 3.3 4.4 8.8
NLOS 28 17 4-46 0.3
CI 2.7 1 9.1
Cl-opt | 4.4 4.7 6.4
29 29 5-67 0.8
CI 3.3 1 7.2
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Table 4.2: Parameters in the CI and Cl-opt path loss models in the InH scenario.
Freq. Range denotes frequency range. # of Data Points represents the number
of data points after distance binning and path loss thresholding. Dist. Range
denotes distance range, Cl-opt represents the CI model with an optimized free
space reference distance dy. A, denotes the difference in the SF standard deviation
between the CI and Cl-opt models [50].

Freq. # of | Dist.
o A,
Sce. Env. | Range | Data | Range | Model | PLE | do(m)
(aB) | (dB)
(GHz) | Points | (m)
Cl-opt | 2.8 0.5 9.1
73 15 4-42 0.1
CI 3.0 1 9.2
InH Office | NLOS
Cl-opt | 3.9 3.9 7.9
2.9-73 91 4-67 0.4
CI 3.1 1 8.3
Cl-opt | 1.9 0.1 3.2
2.9 14 19-149 0.0
CI 1.9 1 3.2
Cl-opt | 1.8 7.6 3.1
29 14 19-149 0.0
CI 1.9 1 3.1
LOS
Cl-opt | 1.6 50 3.4
61 14 19-149 0.0
CI 2.0 1 3.4
InH SM
Cl-opt | 1.9 7.0 3.4
2.9-61 42 19-149 0.0
CI 1.9 1 3.4
Cl-opt | 2.1 0.1 4.8
2.9 26 24-229 0.0
CI 2.2 1 4.8
NLOS
Cl-opt | 2.2 0.1 4.2
29 26 24-229 0.0
CI 2.3 1 4.2
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Table 4.2: Parameters in the CI and Cl-opt path loss models in the InH scenario.
Freq. Range denotes frequency range. # of Data Points represents the number
of data points after distance binning and path loss thresholding. Dist. Range
denotes distance range, Cl-opt represents the CI model with an optimized free
space reference distance dy. A, denotes the difference in the SF standard deviation
between the CI and Cl-opt models [50].

Freq. # of | Dist.
Sce. Env. | Range | Data | Range | Model | PLE | do(m)
(GHz) | Points | (m)

Clopt | 23 | 0.1 | 45
61 26 | 24-229 0.0
CT | 25 1 4.5

InH SM | NLOS
Cl-opt | 2.2 0.1 4.8
2.9-61 78 24-229 0.0
CI 2.3 1 4.8

One may argue that a close-in reference distance other than 1 m may be a better
approach to maximize model accuracy of the CI model [196, 197]. The research
group which the author of this technical report belong to, in fact, originally used
dy values greater than 1 m in past research in order to ensure the model would
only be used in the far field of directional antennas [2, 198, 199], but they later
found a 1 m reference was more suitable for use as a standard, due to the fact that
there was very little difference in standard deviation when using a 1 m reference
distance (i.e., model error was not significantly different when using a different
value of dy [54]), and given the fact that very few or any users will be within the
first few meters of the transmitter antenna.

To compare the performance of the CI model between using a 1 m free space
reference distance and an optimized or empirically determined free space refer-

ence distance dy, as proposed in [196, 197], the 30 measurement data sets from



107
Nokia/AAU, UT, NYU, and Qualcomm were used to compare model parameters

and standard deviations. Tables 4.1 and 4.2 list the model parameters in the
1 m CI model as compared to the CI model with an optimized dy (Cl-opt) at
various frequencies ranging from 2 GHz to 73 GHz for the UMa, UMi, and InH
scenarios in both LOS and NLOS environments, where the PLE and dy for CI-opt
were jointly optimized via the MMSE method demonstrated in the Appendix (to
preclude unreasonable dy values caused by the sparsity of some data sets, the range
of dy was set to between 0.1 m and 50 m). All of the scattered path loss data
samples were locally averaged over 2 m distance bins (other binning values can
also be explored, and little difference was found in results using 2, 5, or 10 m local
average bins), in order to remove the small-scale fading effects and to reduce the
difference in the number of data points across measurement campaigns. In addition,
all path loss values weaker than FSPL at 1 m plus 100 dB were not considered for
analysis, based on the reasonable assumption that there would be fewer weaker
measurements at higher frequencies due to the greater path loss in the first meter,
so a frequency-dependent signal threshold was implemented to ensure that the
measured data sets would slightly emphasize more measurements at the higher
frequencies, resulting in a relatively comparable number of points for the different
frequencies from various measurement campaigns. The results of this chapter
were not heavily influenced by the binning or frequency-dependent thresholding,
but these approaches were found to yield comparable coverage distances over the
multiple frequencies based on the particular antennas and transmit powers used.
As shown in Tables 4.1 and 4.2, for both outdoor and indoor scenarios, the SF
between using dy = 1 m and an optimized d, differs by no more than 0.3 dB in

most cases (more than an order of magnitude smaller than the standard deviation).
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Figure 4.1: ABG path loss model in the UMa scenario across different frequencies
and distances in the NLOS environment. Model parameters using all of the displayed
data are given at the top of the graph [50].

CIF Model, n =2.9, b =-0.002, o =5.7 dB
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Figure 4.2: CIF path loss model in the UMa scenario across different frequencies and
distances in the NLOS environment. Model parameters using all of the displayed
data are given at the top of the graph [50].
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Figure 4.3: CI path loss model in the UMa scenario across different frequencies and
distances in the NLOS environment. Model parameters using all of the displayed
data are given at the top of the graph [50].

Note that the only significant differences in error between the dy = 1 m and the
optimized dy value occur when there are very few measurement points, and the PLE
in Cl-opt generally has a physically unreasonable value in these rare cases (e.g., the
PLE is less than 1, indicating much less loss than a metal waveguide; or the PLE is
negative, indicating decrease of path loss with distance; or the PLE is unreasonably
high). The majority of the measurement sets, the 1 m free space reference distance
model x, is always within 0.1 dB of the optimized dy model, illustrating virtually
no difference in standard deviation between the two approaches. Therefore, the 1 m
CI model provides sufficiently accurate fitting results compared to the CI-opt model,
and requires only one model parameter (PLE) to be optimized by the adoption
of a 1 m standard close-in free space reference distance, while the CI-opt model
requires two model parameters (PLE and dj) for modeling the mean path loss over
distance, and sometimes yields unrealistic PLEs and reference distances. For the

remainder of this technical report, the CI model (4.2) is assumed to use dp = 1 m,
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as suggested in [54].

The ABG (4.1), CI (4.2) and CIF (4.4) models with dy = 1 m are a function
of both distance and frequency, where the CI and CIF models have frequency
dependence expressed primarily by the frequency-dependent FSPL term (4.3) in the
first meter of free space propagation. While the ABG model offers some physical
basis in the a term, being based on a 1 m reference distance similar to the n
term in (4.2) and (4.4), it departs from physics when introducing both an offset /3
(which is an optimization parameter that is not physically based), and a frequency
weighting term ~+ that has no proven physical basis, although recent measurements
show that the path loss increases with frequency across the mmWave band in the
indoor office scenario [200] (both the 5 and  parameters are used for curve fitting,
as was done in the WINNER floating-intercept (AB) model) [54, 114, 194]. It is
noteworthy that the ABG model is identical to the CI model if equating « in the
ABG model in (4.1) with the PLE n in the CI model in (4.2), v in (4.1) with the
free space PLE of 2, and 3 in (4.1) with 20logo(47 x 10%/c) in (4.3).

Using the three path loss models described above, and the 30 measurement data
sets over a wide range of microwave and mmWave frequencies (2 to 73 GHz) and
distances (4 to 1238 m), the path loss model parameters were computed for the
three models. The PLE in the CI model, the n and b in the CIF model, and the «,
B, and v parameters in the ABG model were all calculated via the MMSE fit on
all of the path loss data from all measured frequencies and distances for a given
scenario (UMa, UMi, or InH), using closed-form solutions that minimize the SF
standard deviation, as detailed in the Appendix. In order to focus solely on the
comparison of propagation models, LOS and NLOS measurements were separated,

and the probabilities of LOS or NLOS were not included, although such probability
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models as described in [54, 71, 191, 201, 202, 203] may exploit the results of this

work.

Figs. 4.1 - 4.3 show scatter plots of all the data sets optimized for the ABG,
CIF, and CI models in the UMa scenario in the NLOS environment, respectively.
Table 4.3 summarizes the path loss parameters in the ABG, CI, and CIF models
for the UMa, UMi, and InH scenarios in both LOS and NLOS environments. As
shown in Table 4.3, the CI and CIF models each provide a PLE of 2.0, 2.1, 1.5, and
1.9 in the LOS environment for the UMa, UMi SC, InH office and InH shopping
mall (SM) scenarios, respectively, which agrees well with a free space PLE of 2 in
UMa, UMi SC, and InH SM settings, or models the waveguiding effects in the InH
office scenario, respectively. Although the CI and CIF models yield slightly higher
SF standard deviation than the ABG model in most cases, this increased standard
deviation is usually a fraction of a dB and is within standard measurement error
arising from frequency and temperature drift, connector and cable flex variations,
and calibration errors in an actual measurement campaign. Notably, these errors
are often an order of magnitude less than the corresponding actual SF standard
deviations in all three models. It is noteworthy that the CIF model even renders
lower SF standard deviations than the ABG model for the LOS InH office and
NLOS InH SM scenarios, indicating the greater accuracy of CIF compared to ABG
in these settings, even though the CIF model has fewer optimization parameters.
Furthermore, for the UMa and LOS UMi SC scenarios, the CI and CIF models
always yield identical PLEs and standard deviations for the same data set, and
the b parameter in the CIF model is virtually zero. For the NLOS UMi SC, and
InH SM scenarios, b in the CIF model is slightly positive, implying that path loss

increases with frequency beyond the first meter of free space propagation.
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Table 4.4 lists the model parameters in the ABG and CI models at different

frequencies in the NLOS environment for the UMa and UMi scenarios, with the
last line for each scenario showing the parameters for the multi-frequency model.
Note that for single frequencies, v in the ABG model is set to 2, thus reverting to
the AB model used in 3GPP and WINNER II channel models [114, 191, 202], and
the CIF model reverts to the CI model. Fig. 4.4 illustrates a useful example of
the CI and ABG models as compared to ideal free space path loss at 28 GHz for
the UMa NLOS environment, using the parameters for 2 - 38 GHz in Table 4.4.
Fig. 4.4 is useful since it shows how any one of the three path loss models might
be used at a particular single frequency in wireless system design, after the multi-
frequency model had been developed using a wide range of data over a vast range
of frequencies (in this case, the four measurement data sets for the UMa scenario
listed in Table 4.4).

A few key observations can be obtained from these figures and Table 4.4. First,
the a and 8 parameters in the AB model can vary as widely as 2.3 and 49.7 dB
across frequencies, respectively, as shown in Table 4.4. The large variation of «
and $ in the AB model was also observed in [54]. Second, the PLE n in the CI
model varies only marginally for the single frequency case, with a largest variation
of merely 0.5 for all the scenarios. The SF standard deviations for the CI and
ABG models differ by only a fraction of a dB over all frequencies and distances
in most cases, and the difference is less than an order of magnitude of the SF for
either model, making the models virtually identical in accuracy over frequency
and distance. There is a case for UMi where the ABG model has 1.2 dB lower SF
standard deviation than the CI model, but there are only 82 data points in this

case, and recent working using a much larger data set showed only 0.4 dB difference
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(8.2 dB for CI and 7.8 dB for ABG) for the UMi SC NLOS scenario [204], and

this difference is more than an order of magnitude smaller than either standard
deviation.

As shown in Fig. 4.4, the parameters derived from 2 to 38 GHz for the UMa
NLOS environment, when applied at 28 GHz, indicate that the ABG NLOS model
underestimates path loss to be much less than free space when very close to the
transmitter (a nonsensical result!) and predicts much less path loss than CI NLOS
out to ~ 30 m. Perhaps more importantly, the floating-intercept ABG model
overestimates path loss (i.e., underestimates interference) at greater distances
compared with the CI model at far distances [54]. These results are clearly seen
by comparing the path loss vs. distance end-points in Figs. 4.1, 4.3 and 4.4. The
CI model is thus more conservative when analyzing interference-limited systems
at larger distances and more realistic when modeling NLOS signal strengths at
close-in distances.

From the above analysis, the CI model provides more stability and intrinsic
accuracy at distance end-points using fewer parameters (i.e., PLE and x$!) across
wide ranges of frequencies with only a fraction of a decibel higher SF standard
deviation in most cases when compared to the four-parameter ABG model. The CI
model is anchored to FSPL in the first meter, and gives intuitive meaning through
the PLE parameter, since 10n mathematically describes the path loss in dB with
respect to a decade increase of distance beginning at 1 m, making it very easy to
compute power or path loss over distance [50]. Only a very subtle change of a single
constant is needed to the AB/ABG model to implement the simpler CI/CIF model,
i.e., replacing the floating intercept parameter with a FSPL term that is physically

based and is inherently a function of frequency. While Tables 4.3 and 4.4 show
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Figure 4.4: Example comparison of free space, CI and ABG path loss models
at 28 GHz for the UMa NLOS environment using the parameters derived with
measurements from 2 - 38 GHz in Table 4.3. Note how the ABG model estimates
5 dB less signal power (i.e., 5 dB less out-of-cell interference) at 1 km and more
signal power when close to the transmitter as compared to CI [50], as highlighted
by the orange circles.
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how the ABG, CI, and CIF models all provide comparable curve fitting standard

deviations over a wide frequency range, the CI and CIF models offer superior

accuracy and reliability when subject to extensive sensitivity analyses.

4.2 Prediction and Sensitivity Performance

This section investigates the prediction accuracy and sensitivity of the three path
loss models, i.e., ABG, CI and CIF. Because of the vast number of experimental
data points provided by the authors, it was possible to test the efficacy of the path
loss models in situations where they are used outside of the particular frequencies,
locations, or distances. Prediction performance and model sensitivity were tested
by creating path loss models using a subset of the measurements (to obtain the
optimized model parameters) and then testing those resulting models against the
other subset of measurements (which were outside of the data sets used to generate
the original model parameters). This test is needed to establish whether engineers
could use the models with confidence in new scenarios or distances or frequencies
different than what were used to form the original models. If future systems use
more transmit power or have greater range than the measurement systems used to
derive the model parameters, or are to be used at different frequencies than what
were measured to produce the models, a sensitivity analysis such as this is critical
for comparing and selecting path loss models.

The measured data from all experiments for the UMa, UMi SC, and InH office
scenarios shown in Table 4.3 are split into two sets [50]: a measurement set and a
prediction set, where the term measurement set refers to the set of measured data

used to compute the optimum (i.e., minimum SF standard deviation) parameters
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of the path loss model, and the term prediction set refers to a different set of

measured data that is scattered about the distance-dependent mean path loss
model constructed from the measurement set. For a specific path loss model (e.g.,
ABG, CI, or CIF), the SF standard deviation is calculated using the measured data
in the prediction set as distributed about the distance-dependent mean path loss
model constructed from the measurement set. As the measurement set varies with
distance, frequency, or city, as explained below, the optimized model parameters
computed from the measurement set, as well as the SF standard deviation for
the prediction set (i.e., the prediction error), also change. Therefore, two types
of comparisons are simultaneously performed as the measurement set varies: first,
the SF standard deviation for the prediction set about the model formed from the
measurement set is computed and compared for each of the three path loss models
in order to compare the accuracy for each model under identical measurement set
conditions; second, the optimized model parameters from the measurement set are
determined and compared between the three path loss models, to determine the
sensitivity and stability of the model parameters over different sets of measurement
data. Only the NLOS data are used in this prediction performance and sensitivity
study, since NLOS environments offer greater variability, higher SF standard

deviation, and are most likely to produce errors in 5G analysis and simulation.

4.2.1 Prediction in Distance

In this subsection, the total data set of each of the UMa, UMi SC, and InH
office NLOS data of Table 4.3 is used and broken up into a measurement set
and a prediction set based on distance. The prediction set was kept fixed in

this investigation and the measurement sets were varied over distance, where the
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Figure 4.5: Shadow fading standard deviation of the ABG, CI, and CIF path loss
models for prediction in distance when the prediction set is close to the transmitter
in the UMa scenario [50].

optimum model parameters (corresponding to the minimum SF standard deviation)
were computed for each specific measurement set. The measurement sets included
measured data at distances which kept getting further away from the prediction
set.

The first investigation of this experiment is for the case when the prediction
set contains measurement points that are closer to the TX (base station) than the
measurement set. In this case, the prediction set is all the measured data with
distances smaller than or equal to d,,,, = 200 m, and the measurement sets varied
to include all distances greater than d,.. + dq (04 = 0). Fig. 4.5 and Fig. 4.6
show the prediction errors and parameter variations of the ABG, CI, and CIF
models for prediction in distance in the UMa scenario. As can be seen in Fig. 4.5,
the prediction error of the CIF model generally increases with the increase of the

distance between the two data sets. However, remarkably, the CI path loss model
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has a constant SF standard deviation for the prediction set, regardless of how far

away the measurement set gets [50]. On the other hand, the SF standard deviation
of the ABG model over the prediction set varies substantially as d, increases. For
the CI model, the largest difference in the standard deviation of the scattered data
in the prediction set, around the optimized model derived from the measurement
set, is only 0.4 dB across the entire range of d; (from 0 to 600 m), and about 2
dB for the CIF model, while the standard deviation of the ABG model reaches as
high as 10.5 dB when 0, = 150 m, and varies by 4.5 dB across the entire range of
04. This shows how erratic and sensitive the ABG model is to the particular data
used to create the model parameters, and illustrates the heightened sensitivity for
certain situations when using the ABG model — no such problems exist for the
CI or CIF model [50]. The parameter stability of the PLE in the CI model and
the n and b values in the CIF model is much better than the parameters of the
ABG model when varying the distance between the two sets, as seen in Fig. 4.6.
In particular, the a of the ABG model can vary a lot (3.2 to 4.6), which could
have significant effects in system-level simulations, as the level of signal strength or
interference greatly depends on the value of « (i.e., the distance-related parameter).
In addition, the 5 of the ABG model can vary by 39.5 dB [50].

For the UMi scenario, the prediction set uses T-R separation distances smaller
than or equal to 50 m, and the distance is larger than 50 m for the measurement
set; for the InH office scenario, the prediction set corresponds to T-R separation
distances smaller than or equal to 15 m, and the measurement set contains data
with distances larger than 15 m, considering the generally shorter T-R separations
compared to outdoor cases. The prediction results for the UMi SC scenario are

illustrated in Figs. 4.7 and 4.8, while Figs. 4.9 and 4.10 display the prediction
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Figure 4.6: Parameters of the ABG, CI, and CIF path loss models for prediction in
distance when the prediction set is close to the transmitter in the UMa scenario.
Note that the scale for 8 (dB) in the ABG model is to the right [50].

performance for the InH office scenario [50]. As shown by Figs. 4.7 to 4.10, the
prediction error of the ABG model fluctuates significantly and rises dramatically
as the measurement set gets further away from the prediction set, and may become
incredibly high, e.g., over 20 dB. On the other hand, the CI and CIF models yield
low (at most 8.2 dB) and very stable prediction errors across the entire range of
04 for both UMi and InH scenarios, which implies that the CI and CIF models
are both more accurate than the ABG model under varying data sets, and are not
sensitive to the data set used to generate the model parameters. Similar to the
UMa case, the model parameters in the CI and CIF models exhibit little variation,
while the a and 8 in the ABG model vary significantly over the investigated range
of 64 [50].

The second investigation of this experiment is for the case that the measurement
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set contains measured data closer to the TX (base station) than the prediction
set [50]. In this case, the prediction set contains all UMa measurements with
distances larger than or equal to d,,;, = 600 m, and the measurement set varies
with all distances smaller than d,,;;, — d4 (64 = 0). The results for this case in the
UMa scenario are shown in Fig. 4.11 and Fig. 4.12 for the SF standard deviation
on the prediction set and the parameters of the path loss models, respectively, both
as a function of d4. As shown by Fig. 4.11, the prediction errors of both the CI and
CIF path loss models vary very little as the distance between the measurement
set and prediction set increases, while the prediction error of the ABG model on
the prediction set exhibits significant variation as ¢4 increases. Notice that the
prediction errors of both the CI and CIF models vary by up to only 1.4 dB across
the entire range of J; (from 0 to 400 m); in contrast, the prediction error of the
ABG model can be as large as 16.1 dB and the maximum difference in prediction
error reaches 12.5 dB across the entire range of d,. Moreover, the stabilities of
the modeling parameters in the CI and CIF models are much better compared
to those of the ABG model when varying the distance between the two sets, as
illustrated by Fig. 4.12, where the a and 8 of the ABG model vary by 2.2 and
46.6 dB, respectively. This, again, shows the great sensitivity and inaccuracy
(gross errors) of the ABG model to the particular data used to create the model
parameters and the remarkable accuracy and robustness of the CI/CIF models to

various measurement sets [50].

4.2.2 Prediction in Frequency

In this section, the prediction set contains the data for a given frequency and

the measurement set corresponds to all the other frequencies. For example, the
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Figure 4.11: Shadow fading standard deviation of the ABG, CI, and CIF path
loss models for prediction in distance when the measurement set is close to the
transmitter in the UMa scenario [50].
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prediction set could be all data at 2 GHz and the measurement set the data for all
the other frequencies (10, 18, 28, and 38 GHz) for the UMa scenario.

Fig. 4.13 depicts the RMS error for the three path loss models on the prediction
and measurement sets for the frequency shown on the x axis (where the frequency on
the x axis comprises all data in the prediction set). It can be observed from Fig. 4.13
that although all the three models yield varying prediction errors across the entire
frequency range, the variation is the largest for the ABG model. The prediction error
of the ABG model is much greater (about 19 dB) at lower frequencies where legacy
4G systems will work, showing the liability of the ABG model for simultaneous use
in lower frequency and mmWave systems. The CI model shows the most robust
and accurate prediction over all frequencies. The parameters of the three path

loss models for prediction in frequency are shown in Fig. 4.14. It is obvious from
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Fig. 4.14 that the parameters in the CI and CIF models vary much less across
frequencies as compared to the parameters in the ABG model, demonstrating the
liability of the ABG model in terms of the sensitivity analysis of specific frequencies

and measurements used in the data sets [50].

4.2.3 Prediction Across Environments

Fig. 4.13 and Fig. 4.14 also show the prediction performance of the three path
loss models across environments, when considering an arbitrary single frequency,
e.g., focusing on the results associated with 38 GHz. The 2, 10, 18, and 28 GHz
data were measured in the Aalborg UMa environment, while the 38 GHz data were
obtained from the Austin UMa environment, hence prediction results at 38 GHz

actually show how the three path loss models behave when using the Aalborg data
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to predict the Austin data. As seen in Fig. 4.13, the prediction errors for the CI

and CIF models at 38 GHz are slightly smaller than the ABG model, indicating
that all three models yield comparable prediction performance when applied in
different cities [50].

These results, as well as those in [82], show superior prediction ability and robust
sensitivity of the CI path loss model for outdoor scenarios, and the virtue of the CIF
model for indoor settings in the large majority of cases. This advantage is especially
useful for 5G mmWave standardization where an accurate, trustworthy model must
be developed without the benefit of a complete set of measurements across all
frequencies and all environments, especially given the fact that future spectrum

may be allocated in bands different from what was originally measured [50].

4.3 Concluding Remarks

This chapter has provided a comparison of three large-scale propagation path loss
models, i.e., the ABG (four parameters), CI (two parameters), and CIF (three
parameters) models, over the microwave and mmWave frequency bands using 30 sets
of measurement data from 2 GHz to 73 GHz for UMa, UMi, and InH scenarios [50].

First, comparisons were made between the 1-m CI model and the CI model with
an optimized reference distance dy (Cl-opt). Results show that the two-parameter
1-m CI model provides virtually identical accuracy as compared to the three-
parameter Cl-opt model, and the Cl-opt model can sometimes yield unrealistic
PLEs. The data prove that a 1-m free-space reference distance, rather than an
optimized dy, is justified for the CI model [50].

Work here showed that the ABG, CI and CIF models are all very comparable
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in prediction accuracy when large data sets exist, even though the ABG model

requires more model parameters and lacks a physical basis for its floating intercept
value. By contrast, the CI and CIF models are physically tied to the transmitter
power via the utilization of a 1-m close-in free-space reference distance that has
inherent frequency dependency over the entire microwave and mmWave bands.
This allows for comparable accuracy but greater parameter stability using fewer
model parameters, and for easy “in your head” computation of mean path loss at
all distances, by virtue of just a single model parameter (PLE or n) for the CI
model (where 10n is the path loss in dB per decade of distance beyond 1 m) and
two model parameters (n and b) for the CIF model. No change in mathematical
form, and the change of just a single constant is all that is needed to change the
existing 3GPP floating-intercept (AB/ABG) path loss model to the simpler and
more stable CI/CIF models which provide virtually identical accuracy compared to
the four-parameter ABG model over a vast range of frequencies — from today’s
cellular to future mmWave bands. This chapter showed that the AB and ABG
models have parameter values that vary greatly across different frequency and
distance ranges, while reducing the SF standard deviation by only a fraction of a
dB in most cases compared to the physically-based CI and CIF models that use
fewer model parameters. The single greatest difference between standard deviations
for all three models over all scenarios was found to be 1.2 dB for the UMi scenario,
where only 82 data points were available. However, a recent study with a much
richer data set [204] showed only 0.4 dB difference between the ABG and CI models
in UMi [50].

This chapter showed, by way of example at 28 GHz, that the ABG NLOS

model has inherent inaccuracy at both small (< 30 m) and large (several hundred
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meters) distances, and predicts less than free space loss when close to the TX

while underestimating interference at large distances when used at an arbitrary
frequency as compared to CI. Hence, the ABG model will lead to overly optimistic
capacity simulations. Especially for future small cell deployments, where dozens of
neighboring BSs could produce interference, the simulation results would be vastly
different between the ABG and CI/CIF models [50].

A key contribution of this chapter was a sensitivity analysis that showed the CI
and CIF models are superior to the ABG model in both stability performance and
prediction accuracy (i.e., SF standard deviation) over a vast frequency range, when
using the model to predict path loss at different distances and frequencies relative
to the set of data from which the parameters of the path loss models were originally
determined. Thus, for unexpected scenarios or for situations where a path loss
model may be used at different distances or frequencies than the measurements
used to create the original model, the sensitivity analysis in this chapter shows the
CI and CIF models are more robust, accurate, and reliable as compared to the
ABG model [50].

Finally, the CI model was shown to be most suitable for outdoor environments
because of its accuracy, simplicity, and superior sensitivity performance due to
its physical close-in free space reference point, given the fact that measured path
loss exhibits little dependence on frequency in outdoor environments beyond the
first meter of free space propagation (captured in the FSPL term). On the other
hand, the CIF model is well suited for indoor environments, since it provides a
smaller standard deviation than the ABG model in many cases even with fewer
model parameters, and has superior accuracy when scrutinized with the sensitivity

analysis [50].
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Chapter 5

5G Channel Simulator —

NYUSIM

5.1 NYUSIM Overview

NYU WIRELESS conducted mmWave measurements from 2012 through 2017,
having acquired a total of over 1 Terabytes of data, at frequencies from 28 to 73
GHz in various outdoor environments in UMi, UMa, and RMa environments. The
measurements and analysis done in [2, 48, 49, 50, 51, 52, 54, 59, 61, 205, 206, 207,
208] led to this NYUSIM channel simulator.

NYUSIM performs drop-based Monte Carlo simulation to generate a CIR at
each drop (i.e., user location) assuming no user mobility. Channels for different user
locations are assumed to be independent, justified by small correlation distances
(up to about 10 centimeters) found in measurements [62]. NYUSIM provides an
accurate rendering of actual CIRs in both time and space, as well as realistic signal

levels that were measured, and may be utilized to support realistic physical layer
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and link layer simulations such as those conducted in [48, 106, 209, 210]. The

models and simulation approach in NYUSIM involves the research of more than
a dozen graduate and undergraduate students, and as of late 2017, over 10,000
downloads of NYUSIM have been recorded. NYUSIM is applicable for a wide
range of carrier frequencies from 500 MHz to 100 GHz, and RF bandwidths from 0
(continuous wave (CW)) to 800 MHz.

It is worth noting that in the SGPP TR 38.901 Release 14 channel model for
frequencies above 6 GHz [66], the number of clusters is unrealistically large. For
example, in the UMi street canyon scenario, the number of clusters in the LOS
environment is as high as 12, and 19 in the NLOS environment, which is not
supported by the real-world measurements at mmWave bands [2, 52, 54, 205]. In
contrast, in the SSCM implemented in NYUSIM [52], the number of time clusters
ranges from 1 to 6, and the mean number of spatial lobes is about 2 and is upper-
bounded by 5, which are obtained from field observations and are much smaller than
those in the SGPP channel model [48, 51, 66, 208]. The impractical number of
clusters in the 3GPP channel model is likely to result in a higher rank of mmWave
channels, unrealistic eigen-channel distributions, and thereby inaccurate spectral

efficiency prediction for 5G mmWave channels [48, 208].

5.2 Channel Model Implemented in NYUSIM

The broadband SSCM [52] developed by NYU WIRELESS is used in NYUSIM
with some important extensions such as including MIMO antenna arrays, adding
atmospheric attenuation into path loss, adding more propagation scenarios, gener-

ating directional PDPs using accurate directional antenna patterns, etc., to extend
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the SSCM to the NYUSIM channel model and a standalone channel simulation

software [51]. The SSCM is introduced in [52] and Section 2.4.10 of this technical

report and key extensions are detailed below.

5.3 Extensions of SSCM to NYUSIM

5.3.1 Path Loss Model and Additional Propagation Scenar-
ios

The CI path loss model with a 1 m anchor point, with an extra attenuation term

due to various atmospheric attenuation factors [211], is employed in NYUSIM,

which is expressed as [50, 54, 168]:

PLCY(f, d)[dB] =FSPL(, do)[dB] + 10nlog;, (g) + AT[dB] + x 7,
0

where d > dy m (5.1)

where dy denotes the free space reference distance in meters, which is set to 1 m in
the NYUSIM channel model [50]. Users can change dy to some value other than 1
m in NYUSIM_MainCode.m, but dy should not exceed 5 m to guarantee free space
propagation within dy. AT is the attenuation term induced by the atmosphere,

which is characterized by:
AT[dB] = a[dB/m] x d[m] (5.2)

where « is the attenuation factor in dB/m for the frequency range of 1 GHz to 100

GHz, which includes the collective attenuation effects of dry air (including oxygen),
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Figure 5.1: Propagation attenuation due to dry air, vapor, haze, and rain at
mmWave frequencies, with a barometric pressure of 1013.25 mbar, a relative
humidity of 80%, a temperature of 20°C, and a rain rate of 5 mm/hr [211].

water vapor, rain, and haze [211]. d is the 3D T-R separation distance as in (5.1).

Fig. 5.1 illustrates example propagation attenuation values due to dry air,
vapor, haze, and rain at mmWave frequencies from 1 GHz to 100 GHz, with a
barometric pressure of 1013.25 mbar, a relative humidity of 80%, a temperature
of 20°C, and a rain rate of 5 mm/hr, while the collective attenuation effects of
these four main natural absorbers are displayed in Fig. 5.2. These results were
obtained and reproduced from five reported controlled experiments on atmospheric
attenuation [211].

The SSCM is applicable to the UMi scenario, while in NYUSIM, the scenario is
extended to UMa and RMa with different PLEs and /or TCSL statistics as compared
to the UMIi scenario. In the latest version (Version 1.6) of NYUSIM, the PLE and

shadow fading standard deviations for UMi, UMa, and RMa scenarios are displayed



135

0.018

0.016 -

o o
2 2
S

o
e

0.008 -

Collective Attenuation

£ 0.006
@

o
~ 0,004

0.002 -

10 20 3 40 50 60 70 8 90 100
f (GHz)

Figure 5.2: Collective attenuation effects of dry air, vapor, haze, and rain at
mmWave frequencies, with a barometric pressure of 1013.25 mbar, a relative
humidity of 80%, a temperature of 20°C, and a rain rate of 5 mm/hr [211].

in Table 5.1. The CI path loss model is employed for UMi and UMa scenarios,
while for the RMa scenario, the CIH model (CI model with a height-dependent
PLE) is adopted, as given by Eqs. (21) and (22) in [59]. The RMa PLE values in
Table 5.1 are for a base station height of 35 m. Note that although the channel
parameters for the UMi scenario are also used for the UMa and RMa (except for
the path loss model parameters) scenarios in NYUSIM, users can adjust the UMa
and RMa channel parameters in the source code according to their own needs.
Furthermore, for the RMa scenario, the number of TCs and the number of SLs are
both set to one, and the maximum number of MPCs is set to two, based on our
RMa mmWave field measurements [59]. The BS height is only used for RMa in the

CIH path loss model but not other scenarios.

5.3.2 MIMO Antenna Arrays at Both TX and RX

In NYUSIM, antenna arrays, such as uniform linear arrays (ULAs) and uniform

rectangular arrays (URAs), are allowed to be equipped at both the BS and UE.
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The entries in the MIMO channel matrix H are obtained by extending the om-

nidirectional CIR over the antenna array manifold at the TX and/or RX using
Egs. (2.8)- (2.11). Assuming the RX is equipped with a ULA with eight antenna
elements with half-wavelength spacing at a carrier frequency of 28 GHz, Fig. 5.3
illustrates the downlink received PDPs at each RX antenna element (i.e., small-scale
PDPs) for various RF bandwidths, i.e., 800 MHz, 100 MHz, and 0 MHz (CW),
generated using NYUSIM. Due to the high temporal resolution at an 800 MHz RF
bandwidth, the magnitude of small-scale MPCs remain almost constant over several
wavelengths (see Fig. 5.3(a)). When the RF bandwidth decreases, however, a delay
bin may contain a number of unresolvable MPCs whose phases and magnitudes
add up in a vectorial manner, thus the overall magnitude of a delay bin usually

vary over a small-scale local area, as shown in Figs. 5.3(b) and 5.3(c).

5.3.3 Directional PDPs with Accurate Directional Antenna

Patterns

5G mmWave systems are expected to use antenna arrays with directional radiation
patterns, thus directional PDPs are of great importance and research interest. To

generate directional PDPs at arbitrary TX-RX pointing angle combination for

Table 5.1: PLEs and shadow fading standard deviations for different scenarios in
NYUSIM [50]. The RMa PLEs are for a base station height of 35 m [59].

‘ Scenario ‘ PLE ‘ Shadow Fading Standard Deviation (dB) ‘

. LOS 2 4.0

UMi
NLOS 3.2 7.0
LOS 2 4.0

UMa
NLOS 2.9 7.0
LOS 2.31 1.7

RMa
NLOS | 3.07 6.7
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Figure 5.3: Small-scale PDPs at each RX antenna element with half-wavelength
spacing for (a) 800 MHz, (b) 100 MHz, and (¢) 0 MHz RF bandwidth.
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Figure 5.4: Example antenna radiation patterns based on (5.3).

user-defined azimuth and elevation antenna HPBWs based on the omnidirectional
PDPs produced by NYUSIM, the MPC power levels are weighted by a desired
antenna pattern, such that the MPCs closest to a desired direction are amplified,
while those farthest away are set to 30 dB down relative to the strongest MPC [66].
In NYUSIM, an antenna pattern emulating the horn antenna pattern used in the

mmWave field measurements [2, 54] is used and is approximated as follows:

1000

41253 1

where Gy = m—eg;, n = 0.7, sinc? (a sin <¢T)> (%) =3
1
2

0 0
. 9 o 3dB 3dB | _
sinc (b sin (—2 >> cos (—2 )

where the term ﬁ% is set according to the side-lobe level defined in the 3GPP

G(¢,0) = max (Gosinc2 (a, . sin(é)) cos?(¢)sinc? (b sin( ) )) cos?(6), &)

(5.3)

channel model [66]. The corresponding example radiation patterns are illustrated
in Fig. 5.4, which match the gains and patterns of the horn antennas used in field

measurements [2].
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5.3.4 Range Extension
Extensive mmWave propagation measurements conducted by NYU WIRELESS
have shown that in dense urban environments, mmWave signals can cover around
200 m cell radius even under NLOS conditions [2, 54, 168], and is likely to reach
500 m in lightly populated urban and suburban areas. Furthermore, recent RMa
propagation measurements at 73 GHz demonstrated over 10 km coverage range in
clear weather [59]. To make NYUSIM cater for more users and wider applications,
the maximum allowable T-R separation distance is extended from 500 m to 1 km
in NYUSIM v1.6, by removing all the lower bounds on received power (including
cluster power, subpath power, and lobe power), or equivalently, upper bounds on
path loss, assuming there exits such a virtual receiver that can detect very low
received power.

For LOS environments, calculated path loss beyond 500 m is still accurate using
the NYUSIM path loss models (e.g., CI and CIH [50, 59]) since they are applicable
to over 10 km distances. For NLOS environments, however, the NLOS path loss
models employed in NYUSIM may not be accurate for distances larger than 500
m since they were developed for ranges within 500 m [50], thus caution should be
given when setting the distance beyond 500 m for UMi or UMa NLOS scenarios.
The dynamic range for multipath components in the extended range is extended to

220 dB from the default value of 190 dB used for distances no larger than 500 m.
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Millimeter-Wave Channel Simulator WIRELESS

1. To begin the simulator, click Start

2. Set your input parameters below

3. Select a folder to save files Start
4. Click Run

5. To run another simulation, click Reset, and repeat Steps 2-4
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Figure 5.5: GUI of NYUSIM.
5.4 Graphical User Interface and Simulator Ba-
sics

Fig. 5.5 shows the graphical user interface (GUI) of NYUSIM. The simulator
performs Monte Carlo simulations, generating certain numbers of samples of CIRs
at specific T-R separation distances, where the number of samples and the range of
T-R separation distances are to be specified by users, as explained in the following
subsection. It takes about 22 minutes to generate and save 100 CIRs and all the
output files (five .png files, seven sets of .txt files and seven .mat files for each CIR

simulation run as detailed in Section 2.2) on a PC server with two processors (2.40

GHz and 2.39 GHz) and 96.0 GB RAM.
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5.4.1 Input Parameters

There are 30 input parameters to the channel simulator, which are grouped into

two main categories: Channel Parameters and Antenna Properties, as shown on

the GUI in Fig. 5.5. The panel Channel Parameters contains 18 fundamental input

parameters about the propagation channel, as listed and explained below:

1. Distance Range Option: a selectable parameter denoting the distance range.

Two options, ”Standard (10-500 m)”, and ”Extended (10-10,000 m)”, are
applicable. The default setting is ”Standard (10-500 m)”. For the distance
range no larger than 500 m, the dynamic range (i.e., largest possible path loss)
is set to 190 dB in NYUSIM based on field measurement results [2, 50, 54],
while for the distance range beyond 500 m, the dynamic range is set to 220
dB.

. Frequency (GHz): an editable parameter denoting the carrier frequency in
GHz. The default value is 28 (GHz), and it can be varied from 0.5 to 100

(GHz) with at most one decimal point.

. RF Bandwidth (MHz): an editable parameter denoting the RF bandwidth of
the transmitted signal in MHz. The default value is 800 MHz, and it can be
varied from 0 to 800 MHz. As the simulator was developed from real-world

measurements obtained with an RF bandwidth of 800 MHz, it can only scale

down from 800 MHz.

. Scenario: a selectable parameter denoting the scenario. Three options, “UMi”,
“UMa”, and “RMa”, are applicable. The channel parameters for the UMi

scenario are also used for the UMa and RMa scenarios in this simulator,
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except that the RMa scenario has its own path loss model parameters. The

default option is “UMi”.

. Environment: a selectable parameter denoting the environment, either LOS

or NLOS. The default setting is LOS.

. Lower Bound of T-R Separation Distance (m): an editable parameter denoting
the smallest distance between the TX and RX in meters with at most one
decimal place. The default value is 10 m, and it can be varied from 10 m to
500 m for the standard range (verified by extensive measurements by NYU),
and 10 m to 10 km for the extended range, but no more than the upper

bound of the T-R separation distance.

. Upper Bound of T-R Separation Distance (m): an editable parameter denoting
the largest distance between the TX and RX in meters with at most one
decimal place. The default value is 500 m, and it can be varied from 10 m to
500 m for the standard range (verified by extensive measurements by NYU),
and 10 m to 10 km for the extended range, but no less than the lower bound

of the T-R separation distance.

. TX Power (dBm): an editable parameter denoting the transmit power in
dBm. The default value is 30 (dBm), and can be set to any value ranging
from 0 to 50 (dBm).

. Base Station Height (m): an editable parameter denoting the base station
height in m. The default value is 35 (m) [66], and can be set to any value
ranging from 10 to 150 (m) [59]. This base station height is only applicable

to RMa modeling and is ignored for other scenarios.
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Barometric Pressure: an editable parameter denoting the barometric pressure

in mbar used in evaluating propagation path loss induced by dry air. The
default and typical value is 1013.25 mbar (millibar) (i.e., nominal for sea

level), and may range from 107° to 1013.25 (mbar) [211].

Humidity: an editable parameter denoting the relative humidity in percentage
used in evaluating propagation path loss induced by vapor. The default value

is 50 (%), and can be set to any number between 0 and 100 (%).

Temperature: an editable parameter denoting the temperature in degrees
Celsius used in evaluating propagation path loss induced by haze/fog. The

default and typical value is 20 (°C), and may range from -100 to 50 (°C) [211].

Rain Rate: an editable parameter denoting the rain rate in mm/hr used in
evaluating propagation path loss induced by rain. The default value is 0

(mm/hr), and the typical range is 0 to 150 (mm/hr) [2].

Polarization: a selectable parameter denoting the polarization relation be-
tween the TX and RX antennas or antenna arrays. The default setting is
Co-Pol (co-polarization), and can be changed to X-Pol (cross-polarization).
The cross-polarization discrimination (XPD) can vary from 5 dB to 27
dB [212, 213, 214], depending on the frequency and environment. In this
simulator, for Co-Pol, no extra loss will be added to the path loss, while an
extra 25 dB loss will be added to the path loss for X-Pol due to polarization
mismatch based on the measurement results in [214]. For more detailed

background, please refer to [214].

Foliage Loss: a selectable parameter indicating whether or not foliage loss
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will be considered in the simulation. The default setting is No (which implies
foliage loss will not be considered), and can be changed to Yes (which means

foliage loss will be considered).

16. Distance Within Foliage: an editable parameter representing the distance in
meters that the transmitted signal travels within foliage. The default value is
0, and can be set to any non-negative number no larger than the lower bound

of the T-R separation distance.

17. Foliage Attenuation: an editable parameter denoting the propagation loss
induced by foliage in dB/m. The default value is 0.4 (dB/m) based on the
measurement results in [214], and can be set to any value between 0 and 10

(dB/m). For more detailed background, please refer to [214].

18. Number of RX Locations: an editable parameter denoting the number of RX
locations. It can be any positive integer number. The default value is 1, and

can be set to any integer from 1 to 10,000.

The panel Antenna Properties contains 12 input parameters related to the TX

and RX antenna arrays, as listed and explained below:

1. TX Array Type: a selectable parameter denoting the TX antenna array type.
The default setting is ULA, and can be changed to URA.

2. RX Array Type: a selectable parameter denoting the RX antenna array type.
The default setting is ULA, and can be changed to URA.

3. Number of TX Antenna Elements N;: an editable parameter denoting the
total number of TX antenna elements in the array. The default value is 1,

and can be set to any integer from 1 to 128.
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4. Number of RX Antenna Elements N,: an editable parameter denoting the

total number of RX antenna elements in the array. The default value is 1,

and can be set to any integer from 1 to 64.

5. TX Antenna Spacing (in wavelength): an editable parameter denoting the
spacing between adjacent TX antennas in the array in terms of the carrier
wavelength. The default value is 0.5, and can be set to any positive number
with up to one decimal place from 0.1 to 100. Note that larger antenna spacing
leads to lower spatial correlation hence higher achievable rate [210]. Also, no
antenna mutual coupling considered for simplicity, likely to result in more
optimistic achievable rate for closely-spaced (e.g., less than 0.5 wavelength

spacing) antennas [14].

6. RX Antenna Spacing (in wavelength): an editable parameter denoting the
spacing between adjacent RX antennas in the array in terms of the carrier
wavelength. The default value is 0.5, and can be set to any positive number

with up to one decimal place from 0.1 to 100.

7. Number of TX Antenna Elements Per Row W;: an editable parameter
denoting the number of TX antennas in one dimension when the TX Array
Type is ULA or URA, which should divide the number of TX antenna elements.

The default value is 1.

8. Number of RX Antenna Elements Per Row W,: an editable parameter
denoting the number of RX antennas in one dimension when the RX Array
Type is ULA or URA, which should divide the number of RX antenna elements.

The default value is 1.



146
9. TX Antenna Azimuth HPBW (degrees): an editable parameter denoting the

azimuth HPBW of the TX antenna (array) in degrees. The default value is
10°, and can be set to any value from 7° to 360° (since the smallest azimuth

HPBW of the antennas used in the measurements for the simulator was 7°).

10. TX Antenna Elevation HPBW (degrees): an editable parameter denoting the
elevation HPBW of the TX antenna (array) in degrees. The default value is
10°, and can be set to any value from 7° to 45° (since the smallest elevation

HPBW of the antennas used in the measurements for the simulator was 7°).

11. RX Antenna Azimuth HPBW (degrees): an editable parameter denoting the
azimuth HPBW of the RX antenna (array) in degrees. The default value is

10°, and can be set to any value from 7° to 360°.

12. RX Antenna Elevation HPBW (degrees): an editable parameter denoting the
elevation HPBW of the RX antenna (array) in degrees. The default value is

10°, and can be set to any value from 7° to 45°.

It is worth noting that the HPBWs are only used for generating directional
PDPs per users’ requests. The HPBW in the input parameters is for the entire
antenna array, instead of for each antenna element, when the number of antenna
elements is more than one at the TX and/or RX. Conventionally, the HPBW of an
antenna array is a function of the number of antenna elements and the antenna
spacing, but in this simulator these three parameters (i.e., the HPBW, number
of antenna elements, and antenna spacing) can be independently specified by the
user, since there may be a wide range of beamforming approaches (e.g., digital,
analog, hybrid), in all of which different individual antenna element types (e.g.,

patch antennas, vertical antennas, horns) may be used. To make the simulator as
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general as possible, the number of individual antenna elements is specified (without
specifying the gain or combining losses thereof) and the total array HPBW. Note
that the antenna pattern and implementation details are only very loosely defined
to specify the gain in the particular pointing (maximum gain) direction.

Since some antenna elements may have more gain or loss depending on the
specific array type (e.g., ULA); that is, someone may choose to fabricate their
individual array with more individual antenna element gain than another person
will, and losses vary with fabrication process (e.g., on chip antenna elements have
more loss when a lens is not used than if a lens is used ). Instead of dealing with the
myriad antenna fab and connection details needed to make an array — there are
numerous variables — the total HPBW and the number of elements are allowed to
be specified, without specifying the individual antenna element gain. For example,
assuming there are four elements in an antenna array, where each element has 6 dB
gain because they are patch or Yagi/directional or horn antennas for each element,
then this array can have the same overall HPBW as a 16 element array with unity
gain dipole or vertical elements.

Without specifying the specific antenna elements and their interconnected
characteristics, only the HPBW is specified while the beam pattern is left undefined.
Consequently, one has the freedom to implement an antenna pattern of their choice
for system simulations, which may include interference from signals outside of
the main gain direction. Besides the antenna pattern in (5.3), below are some
other heuristic approaches of constructing one’s own antenna pattern based on the
specified HPBW, where the antenna gains in the following equations are all relative

to an isotropic antenna.
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e The antenna pattern employed in [52] has the following form:

_ G 41n(2) 4In(2) 41253n

G(op,0 = max(Gpe %’ 662,—0,Wherea:—, = , Go= —

() (Go 100) S4B ’ s ’ ¢3aB9348
(5.4)

where (¢, 0) denote the azimuth and elevation angle offsets from the boresight
direction in degrees, Gy is the maximum directive gain (boresight gain) in
linear units, (Psqp, G34p) represent the azimuth and elevation HPBWs in
degrees, (o, ) are parameters that depend on the HPBW values, and n =

0.7 is a typical average antenna efficiency.

e The radiation pattern of a sectored cell site antenna was employed in [215],

where the azimuthal radiation pattern is modeled as a cardioid given by [215]
, m
r(0) = afl + sin(0 + 5)] (5.5)

where 7 is the gain of the antenna at azimuth angle 6 from its maximum lobe
and is a scaling factor. The elevation radiation pattern is an ellipse with the

base station at a focus point [215]:

.T2 y2
St =1 (5.6)

e A sectored antenna pattern model was introduced in [216], where constant

directivity gains are assumed for the main lobe and the side lobe.
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5.4.2 Output Folder Selection

To the right of the above two category panels (channel parameters and antenna
properties) on the GUI, there is an option named “Select a Folder to Save Files”.
This option allows users to select a folder to save the output files (e.g., figures, data
files) from the simulator. The default path is the disk that contains the current
running folder. Users can select a folder inside the default path by clicking on the

desired paths/folders.

5.4.3 Output File Type Selection

To the right of the folder selection option on the GUI, there is an option named
“Output File Type”. This option allows users to select a file type for the output
data files from the simulator. The default type is Text File, and can be switched to
MAT File, and Both Text and MAT File.

5.4.4 Operation of the GUI

Five basic steps, as shown on the top left panel on the GUI, need to be executed

to run the channel simulator:
1. To begin (reset) the simulator, click Start (Reset)
2. Set your input parameters below
3. Select a folder to save files
4. Click Run

5. To run another simulation, click Reset, and repeat Steps 2-4
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The meanings of these steps are detailed as follows. When opening the GUI for

the first time, users shall click on the yellow button “Start” to initiate the simulator
and enable the input of the GUI. Next, users can set and/or select the 30 input
parameters according to their own needs; the simulator will execute the default
values for each parameter if there is no input from the user. Then, users shall
select a folder to save all the output files by clicking on the desired paths/folders
under the option “Select a Folder to Save Files”. Finally, users shall click on the
light green button “Run” to run the simulations. While the simulator is running, a
progress bar will pop up at the bottom left of the GUI, which informs users of the
progress of the simulations. After the simulation is complete, the progress bar will
disappear automatically, and the five figures generated from the first simulation
run will pop up on the screen. To initiate another set of simulation runs (e.g.,
with different input parameter values), users shall click on the dark green button
“Reset”, after which all the input parameters from the previous simulation run will
be set as the default input values. The simulator can be closed at any time by
clicking the red button “Exit” on the bottom right of the GUI.

If the input parameter exceeds the predefined range shown on the NYUSIM
GUI or is not reasonable/logical, an error message will pop up to let the user either
reset the parameter on GUI or modify the NYUSIM source code without using the
GUI to meet users’ own needs. For example, if the input number of TX antenna
elements per row W, is larger than the input number of TX antenna elements V;, a
corresponding error message will pop up. Users shall click ”OK” on the error bar,
then click the dark green button "Reset” on the GUI to reset the input parameter,

and the following steps are identical to those described above.
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5.5 QOutput Files

5.5.1 Output Figures

For each simulation run, five figures will be generated and stored that are based on
the particular results of the simulation that is being run, and an additional figure
of path loss scatter plot will be generated and stored after N (N > 1) continuous
simulation runs with the same input parameters are complete. Note that the T-R
separation distance is not an input parameter, but, instead, the lower bound and
upper bound of the T-R separation distance are input parameters, such that the
actual T-R separation distance will vary automatically among different simulation
runs. Regardless of the number of simulation runs (RX locations), the five figures
generated from the first simulation run, as well as the last figure generated for
N (N > 1) continuous simulation runs with the same input parameters, will pop

up on the screen for visual purposes. The contents of those figures are as follows:
e 3D AoD power spectrum, as illustrated in Fig. 5.6.
e 3D AoA power spectrum, as shown in Fig. 5.7.

e A sample omnidirectional PDP, as displayed in Fig. 5.8. Some fundamental
information such as the frequency, environment, T-R separation distance,
RMS delay spread, omnidirectional received power, omnidirectional path
loss, and PLE [2, 54] is displayed on the PDP plot. The red solid line on
the PDP denotes the noise threshold (i.e., the minimum received power of
each resolvable multipath component) determined by the transmit power,
dynamic range of the measurement system (180 dB), and a 10 dB SNR, i.e.,

the threshold equals the transmit power in logarithmic scale minus 170 dB.
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e A sample directional PDP with strongest power, where directional antenna

gain patterns are implemented at the TX and/or RX, as depicted in Fig. 5.9.
This figure is generated by allowing users to implement arbitrary directional
antenna patterns (gains and HPBWSs) in an omnidirectional PDP, since
directional antennas/antenna arrays will be utilized at the TX and/or the RX
in a realistic mmWave communication system to provide gains to compensate
for the higher free space path loss at mmWave frequencies. To obtain the
directional PDP with the strongest received power, NYUSIM searches for
the best pointing angle out of all possible pointing angles, using the specified
antenna details (i.e., azimuth and elevation HPBWs of TX and RX antennas)
after first generating the omnidirectional PDP, such that the pointing angle of
the TX and RX are found that gives the strongest received power. The TX/RX
antenna gain pattern is calculated by NYUSIM using Eq. (5.4) by employing
the azimuth and elevation HPBWs of TX and RX antennas specified by the
user on the GUI. This feature makes the channel simulator more valuable as it
shows how a PDP will look like in a channel with directional antennas/antenna
arrays used at the communication link end. On the directional PDP figure,
relevant channel and antenna parameters, such as the frequency, environment,
T-R separation distance, directional RMS delay spread, directional received
power, directional path loss, directional PLE, and TX and RX antenna
HPBWs and gains, are also displayed, where the directional path loss equals
the transmit power plus TX and RX antenna gains, minus the directional

received power [49, 54, 61].

e A series of PDPs over each receive antenna element obtained using Eq. (3)

of [87], as shown in Fig. 5.10, where the antenna array type, number of
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antenna elements, and antenna element spacing are specified on the GUI by

the user.

A path loss scatter plot entitled ”PathLossPlot” generated after N (N > 1)
continuous simulation runs with the same input parameters, as illustrated in
Fig. 5.11. This figure shows omnidirectional path loss and directional path
loss values for over the entire distance range generated from the N (N > 1)
continuous simulation runs, along with the fitted PLE and shadow fading
standard deviation using the MMSE method [50, 61]. In the legend of the
figure "PathLossPlot”, n denotes the PLE, ¢ is the shadow fading standard
deviation, "omni” denotes omnidirectional, ”dir” represents directional, and
"dir-best” means the direction with the strongest received power. For produc-
ing the directional path loss at each RX location, NYUSIM searches for all
possible pointing angles in increments of the azimuth and elevation HPBWs
of the TX/RX antenna specified by the user on the GUI after first generating
the omnidirectional PDP. The TX/RX antenna gain pattern is calculated by
NYUSIM using Eq. (5.4) based on the azimuth and elevation HPBWs of TX
and RX antennas specified by the user on the GUI. The directional path loss
is equal to the transmit power plus the TX and RX antenna gains, minus
the directional received power [2, 54, 217, 218|. For generating Fig. 5.11, the
antenna azimuth and elevation HPBWs are set to 10.9° and 8.6°, respectively,
at both the TX and the RX, to match the antenna HPBWs used in the 28
GHz measurements [2, 54]. The simulated PLE and shadow fading standard
deviation values agree well with the measured results presented in Table V
and Table VIII of [54]. Directional path loss and directional PLE will always

be larger (i.e., a directional channel is more lossy) than the omnidirectional
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3-D AOD Power Spectrum - 28 GHz, UMi NLOS, 450.0 m T-R Separation

I -143 dBm
I -133 dBm
-123 dBm

Figure 5.6: Example of a 3D AOD power spectrum generated from NYUSIM. Top
view of azimuth plane.

case, because the directional antenna will spatially filter out many multipath
components due to its directional pattern, such that the RX receives fewer
multipath components hence less energy, thereby the directional path loss is

higher after removing the antenna gain effect from the received power [54, 61].

If the generated path loss in a simulation run exceeds the corresponding dynamic
range, i.e., if there are no detectable multipath components, then it will be shown on
the output figures that ”No Detectable Multipath Components above the Threshold
of XXX dBm”, where the threshold value equals the transmit power in dBm minus
the dynamic range in dB for that simulation run, such as -190 dBm. Note that no
path loss data points will be shown on the path loss scatter plot as long as there
are no detectable multipath components in the omnidirectional PDP, regardless of
the directional PDP. Users may modify this in "NYUSIM_MainCode.m” per their

own needs.
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3-D AOA Power Spectrum - 28 GHz, UMi NLOS, 450.0 m T-R Separation

I -143 dBm
I -133 dBm
-123 dBm

Figure 5.7: Example of a 3D AOA power spectrum generated from NYUSIM. Top
view of azimuth plane.
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Figure 5.8: Example of an omnidirectional PDP generated from NYUSIM.
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Directional PDP with Strongest Power

28 GHz UMi NLOS
450.0 m T-R Separation
o =25ns

T
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Figure 5.9: Example of an directional PDP with the strongest received power
generated from NYUSIM. ” Ant.” denotes antenna.
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Figure 5.10: Example of the PDPs over different receive antenna elements generated

from NYUSIM.
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Figure 5.11: Example of a scatter plot showing the omnidirectional and directional
path loss values generated from NYUSIM with 100 simulation runs for the 28 GHz
UMi LOS scenario.n denotes the pass loss exponent (PLE), o is the shadow fading
standard deviation, "omni” denotes omnidirectional, ”dir” represents directional,
”dir-best” means the direction with the strongest received power, ” Ant.” denotes
antenna, ”AZ” and "EL” stand for azimuth and elevation, respectively.
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5.5.2 Output Data Files
For each simulation run, five sets of .txt files and five corresponding .mat files are
generated, namely, “AODLobePowerSpectrumn_Lobez.txt”,
“AODLobePowerSpectrumn.mat”, “AOALobePowerSpectrumn_Lobex.txt”,
“AOALobePowerSpectrumn.mat”, “OmniPDPn.txt”, “OmniPDPn.mat”,
“Directional PDPn.txt”, “DirectionalPDPn.mat”, “SmallScalePDPn.txt”,
and “SmallScalePDPn.mat”, where n denotes the n'® RX location (i.e., n'" sim-
ulation run), and z represents the 2" spatial lobe. After N (N > 1) continuous
simulation runs with the same input parameters are complete, another three .txt files
and three corresponding .mat files are produced, i.e., "BasicParameters.txt”, ” Basic-
Parameters.mat”, ”OmniPDPInfo.txt”, ”OmniPDPInfo.mat”, ”DirPDPInfo.txt”,
and "DirPDPInfo.mat”.

Each text file “AODLobePowerSpectrumn_Lobex” is associated with the output
figure of 3D AoD power spectrum, and contains five parameters (columns) of

each resolvable multipath component in an AoD spatial lobe, which are listed and

explained below.

1. pathDelay (ns): an array containing the absolute propagation time delays of

all resolvable multipath components in nanoseconds (ns).

2. pathPower (mWatts): an array containing the received powers of all resolvable

multipath components in mWatts.

3. pathPhase (rad): an array containing the phases of all resolvable multipath

components in radians.

4. AOD (degree): an array containing the azimuth AoDs of all resolvable

multipath components in degrees.
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5. ZOD (degree): an array containing the zenith angles of departure (ZoDs) of

all resolvable multipath components in degrees.

Note that inside the corresponding .mat file “AODLobePowerSpectrumn” is a
structure containing the lobe matrices, each of which is composed of five columns as
described above. Each text file “AOALobePowerSpectrumn_Lobex” is associated
with the output figure of 3D AoA power spectrum, and contains five parameters
(columns) of each resolvable multipath component in an AoA spatial lobe, which

are listed and explained below.

1. pathDelay (ns): an array containing the absolute propagation time delays of

all resolvable multipath components in nanoseconds (ns).

2. pathPower (mWatts): an array containing the received powers of all resolvable

multipath components in mWatts.

3. pathPhase (rad): an array containing the phases of all resolvable multipath

components in radians.

4. AOA (degree): an array containing the azimuth AoAs of all resolvable multi-

path components in degrees.

5. ZOA (degree): an array containing the zenith angles of arrival (ZoAs) of all

resolvable multipath components in degrees.

Note that inside the corresponding .mat file “AOALobePowerSpectrumn” is a
structure containing the lobe matrices, each of which is composed of five columns
as described above. Each .txt and .mat file “OmniPDPn” is associated with
the output figure of omnidirectional PDP, and contains two columns: the first

column denotes the propagation time delay in nanoseconds, and the second column
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represents the received power in dBm. Each .txt and .mat file “DirectionalPDPn” is

associated with the output figure of omnidirectional PDP with directional antenna
gain patterns implemented, and contains two columns: the first column denotes
the propagation time delay in nanoseconds, and the second column represents the
received power in dBm. Each .txt and .mat file “SmallScalePDPn” is associated
with the output figure of the series of omnidirectional PDPs over RX antenna
elements, and contains three columns: the first column denotes the receiver antenna
separation in terms of number of wavelengths, the second column is the propagation
time delay in nanoseconds, and the third column represents the received power in
dBm. Note that the noise power is set to -150 dBm for visual purpose. The text
file ”BasicParameters.txt” and the .mat file ”BasicParameters.mat” subsume all
the input parameter values as shown on the GUI when running the simulation.
The text file ”OmniPDPInfo.txt” and the .mat file ”OmniPDPInfo.mat” contain
five columns where each column represents a key parameter for each of the N
omnidirectional PDPs from N continuous simulation runs. The parameters are

listed and explained below.
1. T-R Separation Distance (m)
2. Received Power (dBm): omnidirectional received power in dBm
3. Path Loss (dB): omnidirectional path loss in dB

4. RMS Delay Spread (ns): omnidirectional RMS delay spread in nanosecond

(ns)

5. Ricean K-factor (dB): ratio of the strongest power of the multipath component

(the first arriving multipath component in LOS) to the sum of powers of the
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other multipath components [205], converted from linear to the dB scale.

The text file ”DirPDPInfo.txt” and the .mat file "DirPDPInfo.mat” contain 11
columns where each column represents a key parameter for each of the directional
PDPs from N continuous simulation runs, where the same kind of parameters from
each simulation run are cascaded in the same column. The parameters are listed

and explained below.
1. Simulation run number
2. T-R Separation Distance (m)

3. Time Delay (ns): absolute propagation time delay of each resolvable multipath

component in ns

4. Received Power (dBm): received power of each resolvable multipath compo-

nent in dBm without antenna gains
5. Phase (rad): phase of each resolvable multipath component in radians

6. Azimuth AoD (degree): azimuth AoD of each resolvable multipath component

in degrees

7. Elevation AoD (degree): elevation AoD of each resolvable multipath compo-

nent in degrees

8. Azimuth AoA (degree): azimuth AoA of each resolvable multipath component

in degrees

9. Elevation AoA (degree): elevation AoA of each resolvable multipath compo-

nent in degrees
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10. Path Loss (dB): directional path loss obtained by aligning the TX/RX antenna

boresight on the AoD/AoA of each resolvable multipath component. The
directional path loss equal the transmit power plus the TX/RX antenna

boresight gains, minus directional received power.

11. RMS Delay Spread (ns): directional RMS delay spread in ns for each direc-
tional PDP

5.6 Applications of NYUSIM

The output figure and data files generated from NYUSIM can be used in various
ways based on users’ needs, e.g., to simulate channel impulse responses for mmWave

systems, to investigate MIMO performance, etc.

5.6.1 MIMO Channel Condition Number

First, an example of how to obtain the condition number of a MIMO channel by
making use of the output data files ” BasicParameters.mat” and ”DirPDPInfo.mat”
is shown, assuming OFDM modulation is utilized.

The condition number is defined as the ratio of the largest to smallest singular
value in the singular value decomposition of a matrix, and is a metric to characterize
the quality of MIMO channels in the context of wireless communications [16, 168,
219, 220]. The condition number will be high (e.g., over 20 dB) if the minimum
singular value is close to zero, and will be 0 dB if singular values are equal. Physically,
a small condition number value (e.g., below 20 dB) indicates good orthogonality
of different sub-channels (a sub-channel usually has a distinct spatial direction),

and the channel gains are comparable in different spatial directions. The rank of a
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matrix is the dimension of the vector space generated (or spanned) by its columns

(or rows) [221], and it determines how many data streams can be multiplexed
over the channel in the context of MIMO communications [24, 219, 222]. The
condition number is related to the rank of a matrix: a low condition number usually
corresponds to a high rank and vice versa; the matrix has full rank (the highest
rank) when the condition number is equal or close to 0 dB (the lowest theoretical
condition number).

Let’s look at the condition number of a MIMO channel matrix for a single
narrowband sub-carrier in an OFDM system. The output data files ”BasicParame-
ters.mat” and ”DirPDPInfo.mat” contain paramount parameters of each resolvable
multipath component, which will be useful in generating the MIMO channel coeffi-
cient for an OFDM sub-carrier. Take ULAs at both the transmitter and receiver for
example, the equation for generating such a channel coefficient is provided below,
which is adapted from Eq.(2) in [166]:

hmk(f) — E am7k7p6]¢'m,k,p6_]27rf7'm,k,pe_JQTFdTmSln(¢m,k,p)6_J27rdeSln(@m,k,p) (5.7)

’

p

where h,, ;(f) denotes the MIMO channel coefficient between the m'™ transmit
antenna and the k" receive antenna for the sub-carrier f, p represents the p”
resolvable multipath component, « is the amplitude of the channel gain, ® denotes
the phase of the multipath component, 7 represents the time delay, dr and dg are
the antenna element spacing at the transmitter and receiver, respectively, while ¢
and ¢ denote the azimuth angle of departure and angle of arrival, respectively. All

of the above parameters can be extracted from the files ” BasicParameters.mat” and

"DirPDPInfo.mat”. For each sub-carrier f in a MIMO-OFDM system, there exists
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an NV; x N, channel matrix H whose elements are h,, (f), where m = 1,...; N; and

k=1,...,N,. The condition number of H can be obtained consequently.
Using the above mentioned approach, and the input parameters on the NYUSIM

GUI with the following values:
e Frequency: 28 GHz
e RF bandwidth: 800 MHz
e Scenario: UMi
e Environment: LOS
e Lower Bound of T-R Separation Distance: 100 m
e Upper Bound of T-R Separation Distance: 100 m
e TX Power: 30 dBm
e Base Station Height: 35 m
e Barometric Pressure: 1013.25 mbar
e Humidity: 50%
e Temperature: 20°C
e Rain Rate: 0 mm/hr
e Polarization: Co-Pol
e Foliage Loss: No

e Number of RX Locations: 100
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e TX Array Type: ULA

e RX Array Type: ULA

e Number of TX Antenna Elements N;: 2

e Number of RX Antenna Elements N,: 2

e TX Antenna Spacing: 0.5 wavelength

e RX Antenna Spacing: 0.5 wavelength

e Number of TX Antenna Elements Per Row W;: 2
e Number of RX Antenna Elements Per Row W,: 2
e TX Antenna Azimuth HPBW: 10°

e TX Antenna Elevation HPBW: 10°

e RX Antenna Azimuth HPBW: 10°

e RX Antenna Elevation HPBW: 10°

and assuming the frequency interval between adjacent sub-carriers is 500 kHz,
which corresponds to 800 MHz/500 kHz = 1600 sub-carriers, 100 simulation runs
(i.e., set the number of RX locations to 100) are performed to emulate 100 random
MIMO channel realizations with the input parameters described above. Then the
following changes are made to the four input parameters below with all the other

input parameter values remaining the same:
e Number of TX Antenna Elements N;: 3

e Number of RX Antenna Elements N,: 3
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e Number of TX Antenna Elements Per Row W;: 3

e Number of RX Antenna Elements Per Row W,: 3

Fig. 5.12 illustrates the empirical CDF of the condition number of channel
matrices for OFDM sub-carriers with the above two sets of input parameters in
one of the 100 simulation runs. The empirical CDF of the corresponding rank of
the channel matrices are plotted in Fig. 5.13, where the rank here is defined as
the number of singular values of the channel matrix that are larger than o,,/1000,
where o, is the maximum singular value of the channel matrix. By this definition
of rank, the singular values that are 30 dB smaller than the maximum singular
value are essentially ignored, which is physically reasonable since the singular value
is a measure of the channel gain along its corresponding singular vector and it
makes little sense to consider the direction with an extremely small channel gain.
It is apparent from Fig. 5.12 that the condition numbers of the individual OFDM
sub-carriers for a 3 x 3 MIMO channel is about 18 dB larger compared to the 2 x 2
case on average, and the relatively large condition number of the 3 x 3 channel
matrix may stem from the fact that the matrix is rank deficient, as evident from
Fig. 5.13, in which about 96% of the channel matrices have a rank of 2 instead of 3
(full rank).

Based on the results from the 100 random simulation runs, it is found that
the average median value of the condition numbers of the channel matrices for
individual sub-carriers over the 100 simulation runs is around 13 dB (i.e., the
difference in dB between the largest and smallest singular value of the channel
matrix is 13 dB), and the average matrix rank is 2. When the numbers of TX

and RX antenna elements are both changed to 3, the average median value of the
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Figure 5.12: Empirical CDF of the condition number of channel matrices for OFDM
sub-carriers with different transmit and receive antenna elements N; and N, for
MIMO-OFDM channels in one simulation run.
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condition number increase to 31 dB, with a mean rank of roughly 2, indicating

that two spatial streams can be sent simultaneously using the spatial multiplexing
technique in this case.

The MATLAB code for extracting channel coefficients based on Eq. (5.7),
generating the channel matrix for each sub-carrier frequency, and calculating the
condition number and rank in the example above is contained in the package named

“Application Example Code” available on the NYUSIM downloading website.

5.6.2 MIMO Channel Spectral Efficiency

Chapters 6 and 8 will demonstrate MIMO channel spectral efficiencies obtained
using NYUSIM, and will compare with the results obtained using the 3GPP channel

model.

5.7 Concluding Remarks

This chapter presented the development of an open-source channel software simu-
lator, NYUSIM, developed from extensive broadband propagation measurements
at mmWave frequencies. NYUSIM recreates wideband PDPs/CIRs and channel
statistics for a variety of carrier frequencies, RF bandwidths, antenna beamwidths,
environment scenarios, and atmospheric conditions, and is equipped with a GUI
that makes the simulator more user-friendly. Over 10,000 downloads have already
been logged by major corporations and universities worldwide. Simulated results
from NYUSIM match well with the measured data. NYUSIM can be employed to
perform various other types of analysis and is useful for 5G communication system

development and deployment.
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Chapter 6

Investigation and Comparison of
3GPP and NYUSIM Channel
Models for Impact on System

Performance

As shown in Chapters 2 and 5, the extensive measurements in NYC showed there
are major difference in the temporal and spatial statistics used by 3GPP and those
found in the field by NYU WIRELESS. Hence, it is important to quantify how
different channel models would impact the analysis or simulation of wireless systems
for 5G networks. This chapter provides a summary of the key parameters of the
3GPP TR 38.901 Release 14 [66] and NYUSIM [51] channel models, examples of
methodologies /simulations/calculations on how to apply the channel models to
evaluate 5G mmWave channel performance, and demonstration of the wide-ranging

results produced. The most remarking results are as follows:
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e In the case of cell range prediction, the different large-scale path loss models
and shadow fading values in the 3GPP and NYUSIM channel models lead to
a noticeable difference on the cell range evaluation given a certain cell-edge

SNR.

e In terms of the eigenvalue properties of the channel, one model predicts
significantly more dominant eigen modes than the other. This implies that
the spatial degrees of freedom predicted by both channel models are quite
different, hence resulting in different numbers of available spatial streams to

be multiplexed.

e In terms of spectrum efficiency, the performance of a single-cell single-user is
a base case. Which channel model predicts higher spectral efficiency depends
on the number of transmitted data streams, and NYUSIM predicts a much
higher occurrence of peak rates than the 3GPP model when the number of

data streams is small (e.g., no more than four).

e Extending the single-cell case to a multi-cell multi-user case, a new HBF
algorithm is proposed. It will be shown that the median values of per-
user spectrum efficiency is roughly half for the 3GPP model relative to the
NYUSIM model when there are a relatively small number of RF chains at
each BS.
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6.1 Recommended Parameter Values

6.1.1 LOS Probability Model

LOS probability denotes the probability that a given user terminal (UT) or UE is
in a LOS condition with respect to the BS. LOS probability models in 3GPP [66]
and NYUSIM [51, 223] channel models for UMi and UMa scenarios are summarized

in Tables 6.1 and 6.2, respectively. More information is detailed below.

6.1.1.1 LOS Probability Model in the 3GPP Channel Model

The LOS probability models for various scenarios in 3GPP are provided in Table
7.4.2-1 in [66]. The LOS probability model is a function of the two-dimensional
(2D) T-R separation distance, and sometimes a function of the TX and RX heights.
It is inherited and modified from the previous LOS probability model derived for
sub-6 GHz bands by 3GPP [225].

6.1.1.2 LOS Probability Model in NYUSIM

The NYUSIM LOS probability model has a similar form to the one in the 3GPP
channel model, but with the entire formula (i.e., the second equation in Table 7.4.2-1
in [66]) squared and the parameter values updated based statistical modeling from
a high resolution ray-tracing approach now described. For a given TX location in
Manhattan, a circle was discretized in 100 evenly-spaced points on the circumference
around the TX location and overlaid on an aerial building map. For each position
along the circle external to a building or obstruction, ray-tracing was used to
draw a line from the RX to the TX. If that line to the TX penetrated through at

least one building, the corresponding initial position at radius R on the circle was
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denoted as an NLOS position, otherwise it was denoted as a LOS position. This

was repeated for all positions along the circle circumference, and the ratio of the
number of LOS positions to the total number of positions along the circle provided
the LOS probability. This was performed over radii ranging from 10 m to 200 m,
in increments of 1 m [52], and for four TX locations.

Fig. 6.1 illustrates the LOS probability models in the 3GPP and NYUSIM
channel models in UMi and UMa scenarios for a UE height of 1.5 m. As shown
by Fig. 6.1, the 3GPP LOS probability model has clearly a non-zero tail at
large distances (several hundred meters), which is not likely to be true in urban
environments where numerous tall buildings exist, while NYUSIM shows essentially
zero probability at large distances in urban areas which is different from the 3GPP
model. On the other hand, for T-R separation distances smaller than about 120
m (for UMi) or 160 m (for UMa), NYUSIM predicts a larger LOS probability
compared to 3GPP. Through 1000 random channel simulation runs for the UMi
street canyon scenario over distances from 10 m to about 300 m (where cell size
was based on the condition that 95% of the area within a cell has an SNR > 5 dB,
detailed in Section V-B), the simulated LOS probability is 9.1% and 17.2% using
3GPP and NYUSIM models, respectively. The difference in the LOS probability
impacts spectral efficiency, since LOS facilitates stronger mmWave propagation
(i.e., larger SNR) compared to the NLOS condition due to more severe diffraction

loss at mmWave frequencies than at sub-6 GHz.

6.1.2 Large-Scale Path Loss Model

For a communication link with TX power Pr, the received power Pg [dBm] =

Pt [dBm] + Gt [dB] + Gg [dB] - PL [dB] [168], where Gt and Ggr are the TX
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Figure 6.1: Comparison of LOS probability models in the 3GPP channel model [66]
and NYUSIM [51] in UMi and UMa scenarios for a UE height of 1.5 m.

and RX antenna gain corresponding to Fi, and F,, in Eq. (2.6) at a specific angle,
respectively, and PL denotes the large-scale path loss. Large-scale path loss models
in 3GPP and NYUSIM are listed and compared in Table 6.3 and Table 6.4. for the

UMi and UMa scenarios, respectively.

6.1.2.1 Large-Scale Path Loss Model in the 3GPP Channel Model

It is clear from Table 6.3 that in the UMi street canyon LOS scenario, the CI path
loss model is utilized for dsp smaller than the breakpoint distance dgp. After the
breakpoint distance, a new term involving the BS and UE heights is added to the
CI model, where the BS height is set to 10 m, and the UE height ranges from 1.5
m to 22.5 m. In the UMi street canyon NLOS scenario, the ABG path loss model
is adopted with a term accounting for the UE height added to it, while the CI
model is listed as an optional path loss model. Similar situations exist in the UMa

scenario, except that the BS height is changed to 25 m.
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Figure 6.2: Path loss models in the 3GPP channel model and NYUSIM in UMi
LOS and NLOS scenarios for a BS height of 10 m and a UE height of 1.5 m. ”Opt”
denotes the optional NLOS CI path loss model in the 3GPP channel model.

6.1.2.2 Large-Scale Path Loss Model in NYUSIM

In both UMi and UMa scenarios, the single-slope CI model is employed in NYUSIM,
since breakpoints were never observed in outdoor measurements in Manhattan or
Austin.

Fig. 6.2 illustrates the path loss models in the 3GPP channel model and NYUSIM
in UMi LOS and NLOS scenarios for a BS height of 10 m and a UE height of
1.5 m. Fig. 6.2 shows that for the UMi LOS scenario, the 3GPP ABG model
predicts larger path loss as compared to the NYUSIM CI model, and there exists an
extremely large breakpoint distance of 1.68 km which well exceeds typical UMi cell
sizes hence reverting the double-slope model to a single-slope model. For the NLOS
environment, the 3GPP ABG model predicts less mean path loss for T-R separation
distances smaller than 296 m when compared with the NYUSIM CI model. On the
other hand, the 3GPP optional NLOS CI model matches the NYUSIM NLOS CI

model very well.
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6.1.3 Outdoor-to-Indoor (O2I) Penetration Loss Model

6.1.3.1 O2I Penetration Loss Model in the 3GPP Channel Model

In the 3GPP channel model, the overall path loss (especially for indoor users)
mainly consists of three parts: outdoor path loss, O2I penetration loss, and indoor

path loss, which can be modeled as [66]:
PL [dB] = PL; + PLy, + PL;, + N(0,0%) (6.1)

where PL, is the basic outdoor path loss, PL;, is the building penetration loss
through the external wall, PL;, is the indoor loss which depends on the depth
into the building, and op is the standard deviation for the penetration loss. The

building penetration loss PL;,, has the following form:

N L terial;
PLy, [dB] = PLy,; — 10logy » (pi X107 10 - “) (6.2)
=1

where PL,,; is an additional loss added to the external wall loss to account for
non-perpendicular incidence, which is 5 dB in the 3GPP channel model. Lyaterial;, =
Amaterial; + Dmaterial; * fc 1S the penetration loss of material 7, f. is the frequency in
GHz, p; is the proportion of the i-th material, where > p; = 1, and N is the number
of materials. Penetration loss of several materials and the O2I penetration loss
models are given in Tables 6.5 and 6.6, respectively.

Two variants of the O2I penetration model are provided: a low-loss and a
high-loss model. The composition of low and high loss is a simulation parameter to
be determined by channel model users, and is dependent on the use of metal-coated

glass in buildings and the deployment scenarios [66]. Both low-loss and high-loss
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Table 6.5: O2I penetration loss of different materials [66]

Material Penetration loss [dB]
Standard multi-pane glass Lglass =24 0.2f.
IRR glass LirRglass = 23 + 0.3 f,
Concrete Leoncrete = 5+ 4 fe
Wood Lyood = 4.854+0.12f,

Table 6.6: O2I penetration loss parameters [47, 66, 226]

tandard
Path loss through external wall: S al.l E:lr
PL,, [dB] deviation
fw op [dB]
. LIOHV(V)QZTS 5 — 10log, (0.3 - 10~ Lstass/10 4 (7 . 10~ Leoncrete/10) 44
H;ﬁg;;ss 5 — 10l0g (0.7 - 10~ Lisrsinss/10 4 0.3 10~ Leoncrete/10) 6.5
NYUSIM L;‘Z;ZTS 10log,o (5 + 0.032) 4.0
parabolic
High-1
model ;IgmdeOlSS 10log;(10 +5£7) 6.0

models in the 3GPP channel model in Table 6.6 are applicable to UMa and UMi
street canyon scenarios, whereas only the low-loss model is applicable to RMa [66].
6.1.3.2 O2I Penetration Loss Model in NYUSIM

In NYUSIM, a very succinct parabolic model with a good fit for predicting building
penetration loss (BPL) of either high loss or low loss buildings was provided in

[226] as:

BPL [dB] = 10log,o(A + B - f?) (6.3)

where f, is in GHz, A =5, and B = 0.03 for low loss buildings, and A = 10 and

B =5 for high loss buildings, as shown in Table 6.6.
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6.1.4 Cluster Definition
The cluster definition and clustering algorithm may vary in different channel

models [227]. This subsection introduces the cluster definition and clustering

algorithm in the 3GPP and NYUSIM channel models.

6.1.4.1 Cluster Definition in the 3GPP Channel Model

In the 3GPP channel model [66], clusters are characterized by a joint delay-
angle probability density function, such that a group of traveling MPCs must
depart and arrive from a unique AoD-AoA combination centered around a mean
propagation delay [52, 66]. High-resolution parameter extraction algorithms, e.g.,
SAGE (space-alternating generalized expectation-maximization) and KPowerMeans
algorithms [228, 229] that have high computational complexity, are often employed

to obtain cluster characteristics.

6.1.4.2 Cluster Definition in NYUSIM

NYUSIM uses TCSL concepts to describe multipath behavior for omnidirectional

and directional CIRs [51, 52, 223], as presented in Section 2.4.10.

6.1.5 Large-Scale Parameters
6.1.5.1 Large-Scale Parameters in the 3GPP Channel Model

In the 3GPP channel model [66], LSPs mainly include DS, angular spreads (ASA,
ASD, ZSA, ZSD), Ricean K-factor (K) and SF taking into account cross corre-
lation [66]. These LSPs act as fundamental channel modeling parameters and

play a key role in generating other relevant channel modeling parameters such as
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small-scale parameters (SSPs). The most important LSPs and their statistics in
the 3GPP channel model are provided in Table 6.7 and Table 6.8 for UMi and UMa

scenarios, respectively.

6.1.5.2 Large-Scale Parameters in NYUSIM

Tables 6.7 and 6.8 show the LSPs and their statistics at various mmWave frequencies
in NYUSIM [205]. In addition to the statistics of LSPs in the log scale as given in
the 3GPP model, NYUSIM also provides the statistics in their regular units, such
as nanoseconds for delay spread, and degrees for angular spreads, which is more

intuitive [205].

6.1.6 Small-Scale Parameters
6.1.6.1 Small-Scale Parameters in the 3GPP Channel Model

SSPs in the 3GPP channel model mainly contain the following parameters: cluster
excess delays, cluster powers, and cluster arrival angles and departure angles for
both azimuth and elevation. Key channel modeling parameters for generating SSPs
in UMi street canyon and UMa scenarios are listed in Table 6.9 and Table 6.10,

respectively.

6.1.6.2 Small-Scale Parameters in NYUSIM

Since the cluster definitions in the 3GPP channel model [66] and NYUSIM [52] are
discrepant, SSPs in NYUSIM are also a little different from those in the 3GPP
channel model. In NYUSIM, SSPs include time cluster excess delays, time cluster

powers, and mean AoD and AoA azimuth and elevation angles for each spatial lobe.
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Table 6.7: Large-scale parameters in the UMi scenario for frequencies from 0.5 GHz
to 100 GHz [52, 66, 205]. Note: For 3GPP UMi and frequencies below 2 GHz, use
fe = 2 when determining the values of the frequency-dependent LSP values [66].

Parameter Name LOS NLOS
Delay spread (DS) meps | ~O2AoE(LH fe) = | —02dlogioll + fe) -
lgDS=log,(DS [s] /15) O1eDS 0.38 0.16l0g o (1 + fo) +0.28
AoD spread (ASD) H1gASD —0.0510g1102(11 )+ —0.2310g11%(31 )+
1gASD = log;(ASD [°] /1° : :
gAS 0g10(ASD [} /1°) TlgASD 0.41 0.11log,o(1+ fo) +0.33
3GPP [66] AoA spread (ASA) HigASA —0.0810g1107(31 + i)+ —0.0810g11%(11 )+
1ASA = log;o(ASA [°] /1° : :
& og10( °]/1%) OleAsa | 0.014log,o(1+f.)+0.28 | 0.05log,o(1 + fo) + 0.3
ZoA spread (ZSA) gzsa | —0.1logyo (14 f)+0.73 —0.04log01%(21 +fe)+
J— o o N
1gZSA = log,(ZSA [°] /1°) —0.04log o (1 + fo) + | —0.07logyo(1 + fo) +
T1gZSA 0.34 0.41
Shadow fading (SF) [dB] OSF see Table 6.3 see Table 6.3
B 9 N/A
K-factor (K) [dB] o = N/A
o 9 8
XPR [dB] £ 5 5
med 175 28 GHz: 29.9
Delay spread (DS) [ns] ;g gﬁz j;lf
o [ns] 26.6 73 GHz: 45.9
28 GHz: -7.64
m -7.71
73 GHz: -7.53
IgDS= log,(DS [s] /1s) 58 Gz 050
7 0-34 73 GHz: 0.51
28 GHz: 30.9
med [%] 18.5 73 GHz: 26.0
AoD spread (ASD) 58 GHZ: 33'7
o . 33.
w 0] 32.3 73 GHz: 29.0
28 GHz: 1.38
" 1.28 ‘
73 GHz: 1.34
1gASD = log;o(ASD [°] /1°) 58 Gz 041
7 0-50 73 GHz: 0.39
28 GHz: 22.0
med [7] 50.9 73 GHz: 37.1
AoA spread (ASA) 58 GHZ: 22'0
o : 22,
NYUSIM [l 56.9 73 GHz: 37.1
[52, 205] 28 GHz: 1.39
i 1.69
73 GHz: 1.50
IgASA = log;o(ASA [°] /1°) 58 Gz 039
7 0.27 73 GHz: 0.20
28 GHz: 6.1
med [7] 4.0 73 GHz: 3.5
ZoA spread (ZSA) 38 GHZ: 6'2
o . 6.
w[°] 4.0 73 GHz: 3.8
28 GHz: 0.72
" 0.60 i
73 GHz: 0.55
1gZSA = log,¢(ZSA [°] /1°) 58 Gz 030
7 0-09 73 GHz: 0.15
Shadow fading (SF) [dB] OSF see Table 6.3 see Table 6.3
M 94 28 GHz: -0.4
K .
73 GHz: 1.5
K-factor (K) [dB] 38 Clig 13
IK 2:0 73 GHz: 6.8
o 9 8
XPR [dB] > 3 3
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Table 6.8: Large-scale parameters in the UMa scenario for frequencies from 0.5 GHz
to 100 GHz [52, 66, 205]. Note: For 3GPP UMa and frequencies below 6 GHz, use
fe = 6 when determining the values of the frequency-dependent LSP values [66].

Parameter Name

LOS

NLOS

Delay spread (DS)

HlgDS

—0.096310g 10 (o) —

—0.204log o (f.) — 6.28

6.955
IgDS= log((DS [s] /1s) TS 0.66 539
AoD spread (ASD) figasp | 0.1114log,o(fo) + 1.06 | —0.1144log o(fo) + 1.5
1gASD = log;,(ASD [°] /1°) T12ASD 0.28 0.28
AoA spread (ASA) Mg ASA 1.81 —0.27log ;o (fc) + 2.08
— o o
3GPP [66] IgASA = log;((ASA [°] /1°) OlgASA 0.20 — 32Sé)l.oll o
ZoA spread (ZSA) HigZSA 0.95 ) 1 51%0 Je
— o o N
1gZSA = log,(ZSA [°] /1°) TzoA 016 016
Shadow fading (SF) [dB] OSF see Table 6.4 see Table 6.4
K 9 N/A
K-factor (K) [dB] o 3E N/A
o 8 7
XPR [dB] . ) .
med 175 28 GHz: 29.9
[ns] ’ 73 GHz: 44.8
Delay spread (DS) ] e 58 Gilz: 121
a ! 73 GHz: 45.9
28 GHz: -7.64
o -7.71
73 GHz: -7.53
lgDS= log;(DS [s] /1s) -~ 58 Gz 0.50
7 ' 73 GHz: 0.51
| e mon: %
AoD spread (ASD) . s 58 Gilz 337
a ‘ 73 GHz: 29.0
28 GHz: 1.38
o 1.28
73 GHz: 1.34
p— o o
1gASD = log;((ASD [°] /1°) - 58 Giz 0.1
i ' 73 GHz: 0.39
|
AoA spread (ASA) - oo 58 Gz 22.0
NYUSIM a ' 73 GHz: 37.1
[52, 205] 28 GHz: 1.39
o 1.69
73 GHz: 1.50
— o o
IgASA = log;o(ASA [°] /1°) - 58 Gz 0.39
i ‘ 73 GHz: 0.20
] mons 31
ZoA spread (ZSA) - p 38 Gz 6.2
a ‘ 73 GHz: 3.8
28 GHz: 0.72
“ 0.60 ‘
73 GHz: 0.55
— o o]
1ZSA = logy0(ZSA [7] /1°) 0.00 28 GHz: 0.30
7 ' 73 GHz: 0.15
Shadow fading (SF) [dB] OSF see Table 6.4 see Table 6.4
" 9.4 28 GHz: -0.4
K .
73 GHz: 1.5
K-factor (K) [dB] . 38 Glig 13
7K ' 73 GHz: 6.8
I 8 7
XPR [dB] i ) .
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Table 6.9: Key channel modeling parameters used for generating small-scale param-
eters in the UMi scenario for frequencies from 0.5 GHz to 100 GHz [52, 66, 205].
Note: For 3GPP UMi and frequencies below 2 GHz, use f. = 2 when determining
the values of the frequency-dependent LSP values [66].

(arrival)

Poisson(1.8)

Parameter Name LOS NLOS
Number of clusters 12 19
Number of rays per cluster 20 20
Cluster DS [ns] 5 11
3GPP [66] Cluster ASD [°] 3 10
Cluster ASA [°] 17 22
Cluster ZSA [°] 7 7
Per cluster shadowing std [dB] 3 3
Number of time clusters Discrete Uniform [1, 6]
Number of subpaths per time Discrete Uniform [1, 30]
cluster ’
Number of spatial lobes . .
NYUSIM (departure) Poisson(1.9) Poisson(1.5)
[52, 205] Number of spatial lobes

Poisson(2.1)

RMS lobe azimuth spread

(departure) [°] 8:5 1.0
RMS lobe elevation spread 95 3.0
(departure) [°] ' '
RMS lobe azimuth spread
(arrival) [°] 105 5
RMS lobe elevation spread
(arrival) [°] 1.5 6.0
Per cluster shadowing std [dB] 1 3
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Table 6.10: Key channel modeling parameters used for generating small-scale
parameters in the UMa scenario for frequencies from 0.5 GHz to 100 GHz [52,
66, 205]. Note: For 3GPP UMa and frequencies below 6 GHz, use f. = 6 when
determining the values of the frequency-dependent LSP values [66].

Parameter Name LOS NLOS
Number of clusters 12 20
Number of rays per cluster 20 20
max(0.25, - max(0.25, -
3GPP [66] Cluster DS [ns] 3.4084log10( f.)+6.5622)| 3.4084log10(f.)+6.5622)
Cluster ASD [°] 5 2
Cluster ASA [°] 11 15
Cluster ZSA [°] 7 7
Per cluster shadowing std [dB] 3 3
Number of time clusters Discrete Uniform [1, 6]
Number of subpaths per time Discrete Uniform [1, 30]
cluster ’
Number of spatial lobes . .
NYUSIM (departure) Poisson(1.9) Poisson(1.5)
[52, 205] Number of spatial lobes Poisson(1.8) Poisson(2.1)
(arrival) ’ '
RMS lobe azimuth spread
(departure) [°] 8:5 1.0
RMS lobe elevation spread 25 3.0
(departure) [°] ’ ’
RMS lobe azimuth spread
(arrival) [°] 10.5 w5
RMS lobe elevation spread
(arrival) [°] 115 6.0
Per cluster shadowing std [dB] 1 3
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Table 6.11: Cross-correlation coefficients in the UMi scenario for frequencies from
0.5 GHz to 100 GHz [52, 66, 205]. Note: For 3GPP UMi and frequencies below
2 GHz, use f. = 2 when determining the values of the frequency-dependent LSP
values [66].

Parameter Name LOS NLOS
ASD vs DS 0.5 0
ASA vs DS 0.8 0.4
ASA vs SF 0.4 -0.4
ASD vs SF -0.5 0
DS vs SF 04 -0.7
ASD vs ASA 0.4 0
ASD vs K 0.2 N/A
ASA vs K 0.3 N/A
DS vs K 0.7 N/A
SF vs K 0.5 N/A
3GPP [66] ZSD vs SF 0 0
ZSA vs SF 0 0
ZSD vs K 0 N/A
ZSA vs K 0 N/A
ZSD vs DS 0 0.5
7ZSA vs DS 0.2 0
ZSD vs ASD 05 0.5
ZSA vs ASD 0.3 0.5
ZSD vs ASA 0 0
ZSA vs ASA 0 02
ZSD vs ZSA 0 0
28 GHz: -0.051
ASD vs DS 0.32 73 GHz: 0.021
28 GHz: 0.153
ASA vs DS 0.49 73 GHz: 0.264
28 GHz: -0.637
ASA vs SF 0.54 73 GHz: 0.044
28 GHz: 0.051
ASD vs SF -0.04 73 GHz: 0.008
28 GHz: -0.508
DS vs SF 0.35 73 GHz: -0.187
28 GHz: 0.405
ASD vs ASA 0.72 73 GHz: -0.257
28 GHz: -0.217
ASD vs K -0.16 73 GHz: 0.162
N T on 28 GHz: -0.069
73 GHz: -0.428
[52, 205]
DS v K 046 28 GHz: -0.133
: 73 GHz: -0.449
28 GHz: -0.278
SF vs K -0.03 73 GHz: 0.029
28 GHz: -0.480
ZSA vs SF 0.16 73 GHz: -0.327
28 GHz: 0.077
ZSA vs K -0.37 73 GHz: -0.105
28 GHz: 0.347
ZSA vs DS 0.44 73 GHz: 0.144
28 GHz: 0.042
ZSA vs ASD 0.95 73 GHz: -0.027
o en - 28 GHz 0.323

73 GHz: 0.081
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Table 6.12: Cross-correlation coefficients in the UMa scenario for frequencies from
0.5 GHz to 100 GHz [52, 66, 205]. Note: For 3GPP UMa and frequencies below
6 GHz, use f. = 6 when determining the values of the frequency-dependent LSP
values [66].

Parameter Name LOS NLOS
ASD vs DS 0.4 0.4
ASA vs DS 0.8 0.6
ASA vs SF -0.5 0
ASD vs SF 0.5 -0.6

DS vs SF 04 -0.4
ASD vs ASA 0 0.4
ASD vs K 0 N/A
ASA vs K 02 N/A
DS vs K 0.4 N/A
SF vs K 0 N/A
3GPP [66] ZSD vs SF 0 Y
ZSA vs SF 0.8 04
ZSD vs K 0 N/A
ZSA vs K 0 N/A
ZSD vs DS 0.2 0.5
7ZSA vs DS 0 0
ZSD vs ASD 05 0.5
7ZSA vs ASD 0 0.1
ZSD vs ASA 0.3 0
ZSA vs ASA 04 0
ZSD vs ZSA 0 0
28 GHz: -0.051
ASD vs DS 0.32 73 GHz: 0.021
28 GHz: 0.153
ASA vs DS 0.49 73 GHz: 0.264
28 Gz -0.637
ASA vs SF 0.54 73 GHz: 0.044
28 GHz: 0.051
ASD vs SF -0.04 73 GHz: 0.008
28 GHz: -0.508
DS vs SF 0.35 73 GHz: -0.187
28 GHz: 0.405
ASD vs ASA 0.72 73 GHz: -0.257
28 GHz: -0.217
ASD vs K -0.16 73 GHz: 0.162
N T on 28 GHz: -0.069
73 GHz: -0.428
[52, 205]
DS v K 046 28 GHz: -0.133
: 73 GHz: -0.449
28 GHz: -0.278
SF vs K -0.03 73 GHz: 0.029
28 GHz: -0.480
ZSA vs SF 0.16 73 GHz: -0.327
28 GHz: 0.077
ZSA vs K -0.37 73 GHz: -0.105
28 GHz: 0.347
ZSA vs DS 0.44 73 GHz: 0.144
28 GHz: 0.042
ZSA vs ASD 0.95 73 GHz: -0.027
o en - 28 GHz 0.323

73 GHz: 0.081
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Table 6.13: Simulation settings for comparing channel eigenvalues and spectral
efficiencies between the 3GPP channel model [66] and NYUSIM [51, 223].

Parameter Setting
Carrier Frequency 28 GHz
Transmit Power 46 dBm for all UEs in the cell
95% Cell-Edge SNR 5 dB

uniform rectangular array consisting of N

BS Antennas . .
cross-polarized elements in the x-z plane

BS Antenna Spacing half wavelength
BS Antenna Element Gain 8 dBi [66]
Model 2, Page 18 in 3GPP

TR 36.873 Release 12 [225]
uniform rectangular array consisting of Ny

BS Antenna Element Pattern

MS Antennas . .
cross-polarized elements in the x-z plane

MS Antenna Spacing half wavelength
MS Antenna Element Gain 0 dBi
MS Antenna Element Pattern omnidirectional
Receiver Noise Figure 10 dB

Key channel modeling parameters for generating SSPs in NYUSIM are also given
by Table 6.9 and Table 6.10 in comparison with those in the 3GPP channel model
for UMi and UMa scenarios, respectively.

It is worth noting from Tables 6.9 and 6.10 that the number of clusters and the
number of rays per cluster in the 3GPP channel model have fixed values, whereas the
number of time clusters, the number of subpaths per time cluster, and the number
of spatial lobes (both departure and arrival) do not hold particular values but
follow certain distributions and can vary in each channel realization. Furthermore,
the numbers of clusters in the 3GPP model are much higher as compared to the
measured numbers of time clusters (around 3 to 4 on average) and spatial lobes
(about 2 on average) in NYUSIM. Those differences lead to a significant difference
in channel sparsity predicted by the two channel models, and have a huge impact on

spectral efficiency evaluation, as will be demonstrated later by simulation results.
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6.1.7 Cross-Correlations

Cross-correlation coefficients between various channel modeling parameters in both
3GPP and NYUSIM are displayed in Table 6.11 and Table 6.12 for the UMi street

canyon scenario and the UMa scenario, respectively.

6.1.8 Eigenvalues of HH?

Eigenvalues represent power gains of uncorrelated parallel sub-channels, which
are directly related to spectral efficiency. The downlink Ng x Nt MIMO channel
matrix H is generated using both 3GPP [66] and NYUSIM [51, 52, 205, 223] channel
models, for a system operating at 28 GHz with 100 MHz RF bandwidth, and 256
BS antennas and 16 MS antennas, composing a URA in the x-z plane on each side.
Simulation settings are detailed in Table 6.13. OFDM-like modulation [230, 231]
is assumed. Due to the significantly large bandwidths, it is speculated that the
nature of the mmWave propagation channel will be wideband (e.g., 1 GHz RF
bandwidth), and this wide bandwidth is likely to be aggregated over RF channels
which are 100 MHz wide and which use many OFDM sub-carriers that are each
narrowband (flat-fading) in nature [48, 230]. Although the channel coefficients in
H over the 100 MHz usually vary with carrier frequency, mean values and statistics
of the eigenvalues of HH” are generally frequency-independent over the 100 MHz
bandwidth. To justify this, mean values of the singular values obtained by SVD
of the matrix H averaged over 3000 random channel realizations are plotted in
Fig. 6.3 against the narrowband (75 kHz RF bandwidth as envisioned for initial
5G systems [6]) sub-carriers [231] from 27.95 GHz to 28.05 GHz in increments of

10 MHz assuming OFDM-like modulation (actual OFDM modulation has much
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Figure 6.3: Mean values of the largest four singular values of the channel matrix H
averaged over 3000 random channel realizations versus the narrowband (75 kHz RF
bandwidth as envisioned for initial 5G systems [6]) carrier frequency from 27.95
GHz to 28.05 GHz in increments of 10 MHz assuming OFDM-like modulation
(actual OFDM modulation has much smaller sub-carrier spacings, e.g. 15 kHz for
4G LTE and 75 kHz for 5G pre-trial [6]; here 10 MHz is used purely for plotting
purposes). s; denotes the mean value of the i-th largest singular value of H.

smaller sub-carrier spacings, e.g. 15 kHz for 4G LTE and 75 kHz for 5G pre-trial [6];
here 10 MHz is used purely for plotting purposes), where the singular values of H
are the square root of the corresponding eigenvalues of HH” . Tt is evident from
Fig. 6.3 that the mean values (statistics) of singular values vary little with carrier
frequency over the 100 MHz RF' bandwidth. In other words, the narrowband flat
fading will be identical in statistics at any sub-carrier in the 100 MHz RF channel
bandwidth, so for simplicity, the channel impulse response from the 3GPP channel
model and the NYUSIM channel model, respectively, is used and the resulting
narrowband complex channel gain/channel state at the center frequency sub-carrier
of 28.000 GHz is applied when investigating eigenvalues and spectral efficiency.

The eigenvalues of HHY are calculated and normalized eigenvalue magnitudes
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are obtained as follows:

n;
SR )

where 7; denotes the ith largest normalized eigenvalue of HH*, 1} is the ith largest

i = (6.4)

eigenvalue of HH| and Ny denotes the number of receive antennas.

Fig. 6.4 depicts the cumulative distribution functions (CDFs) of the largest four
channel eigenvalues of HH# for both 3GPP [66] and NYUSIM [51, 52, 223] for each
individual user in a single-cell three-user MIMO system in the UMi scenario. It is
observed from Fig. 6.4 that the highest two eigenvalues in NYUSIM are larger than
those in 3GPP, while the third and fourth eigenvalues are smaller most of the time.
This indicates that NYUSIM yields only a few but strong dominant eigenmodes,
whereas the 3GPP model generates more eigenmodes with weaker powers. The
number of dominant eigen channels (i.e., the channel rank) in NYUSIM is statistical
and can vary over the range of 1 to 5, where 5 is the maximum number of spatial
lobes [52], with an average and typical value of 2 as shown by Tables 6.9 and 6.10
and over numerous simulations.

Fig. 6.5 illustrates the average normalized eigenvalue magnitude of HH as a
function of the eigenvalue index for both 3GPP [66] and NYUSIM [51, 52, 223]
models, where the normalized eigenvalue magnitude is obtained by dividing the
eigenvalue by the sum of all the eigenvalues in linear scale of a channel matrix. As
shown by Fig. 6.5, the first two dominant eigen channels of 3GPP and NYUSIM
channel models are roughly equal in normalized magnitude. Furthermore, all the
eigenvalues of the 3GPP channel are within 25 dB of the largest eigenvalue. On the
contrary, for NYUSIM, only four normalized eigenvalues are greater than -25 dB,
and the non-dominant eigenvalue magnitudes decrease rapidly. This indicates the

sparse feature of the mmWave channel such that the number of available spatial
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Figure 6.4: CDFs of the largest four channel eigenvalues at 28 GHz in 3GPP and
NYUSIM channel models for each individual user in a single-cell three-user MIMO
system in the UMi scenario. The transmit and receive antenna arrays are uniform
rectangular array composed by 256 and 8 cross-polarized elements, respectively.
The carrier frequency is 28 GHz with an RF bandwidth of 100 MHz and narrowband
frequency-flat fading sub-carriers. Each BS antenna element has a radiation pattern
as specified in Table 7.3-1 of [66] with a maximum gain of 8 dBi, and each RX
antenna element possesses an omnidirectional pattern. The total transmit power is
46 dBm.

multiplexing streams is relatively limited. This is likely caused by the small number

of clusters and narrow angular spreads modeled in mmWave channels by NYUSIM.

6.2 Examples and Applications

6.2.1 Mobile System Coverage and Performance Studies

This is fundamental to mobile research in the ability to design and predict coverage
for different morphologies.

Let us assume a single-cell MU-MIMO system operating at 28 GHz with an
RF bandwidth of 100 MHz and narrowband frequency-flat fading sub-carriers with

OFDM modulation in the UMi street canyon scenario. The BS is equipped with
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Figure 6.5: Comparison of normalized channel eigenvalues at 28 GHz in 3GPP
and NYUSIM channel models for each individual user in a single-cell three-user
MIMO system in the UMi street canyon scenario. The normalized eigenvalue
magnitude is obtained by dividing the eigenvalue by the sum of all the eigenvalues
in linear scale of a channel matrix. The transmit and receive antenna arrays are
URAs composed by 256 and 8 cross-polarized elements, respectively. The transmit
and receive antenna arrays are uniform rectangular array composed by 256 and 8
cross-polarized elements, respectively. The carrier frequency is 28 GHz with an RF
bandwidth of 100 MHz and narrowband frequency-flat fading sub-carriers. Each BS
antenna element has a radiation pattern as specified in Table 7.3-1 of [66] with a
maximum gain of 8 dBi, and each RX antenna element possesses an omnidirectional
pattern. The total transmit power is 46 dBm.
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Nt cross-polarized antenna elements comprising a URA (where Nt/2 elements

are +45° slanted, and the other Ny /2 are —45° slanted). There are three UEs in
the cell, and each UE has eight cross-polarized omnidirectional antenna elements
constituting a URA (where four elements are +45° slanted, and the other four are
—45° slanted). Cross-polarized antenna elements are considered herein since they
can effectively reduce the physical size while making use of different polarization
components. Each BS antenna element has a radiation pattern as specified in Table
7.3-1 of [66] with a maximum gain of 8 dBi, and each RX antenna element possesses
an omnidirectional pattern. In the simulations, it is assumed that 95% of the area
in the cell has an SNR larger than or equal to 5 dB, and the upper bound of the
T-R separation distance (i.e., cell radius) is calculated based on this assumption by

using the following equation:

PL(fC, dmax){dB] = 1010g10NT + PT + GT — NO — SNRceH—edge (65)

where Pt represents the transmit power in dBm, G is the gain of each TX antenna
element in dB, N, denotes the noise power in dBm, and SNRcejiedge 15 the cell-edge
SNR in dB, which is 5 dB in the simulations. The most vital term in Eq. (6.5) is
PL(f., dmax), which denotes the large-scale path loss in dB at the cell edge dpax,
and should correspond to an SNR no smaller than the cell-edge SNR 95% of the
time statistically. This is realized through the shadow fading term in PL(f., dimax)-

For instance, when using the CI path loss model, PL(f,, diax) is expressed as:

PL(f., dmax ) [dB] = 32.4 + 10nlog; (dmax) + 20log;o(fe) + 2 * osp (6.6)
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Figure 6.6: Maximum coverage distance of the BS as a function of the BS antenna
elements in a single-cell three-user MIMO system operating at 28 GHz with an RF
bandwidth of 100 MHz and narrowband frequency-flat fading sub-carriers in the
UMi street canyon scenario, using both 3GPP and NYUSIM channel models. The
BS is equipped with N cross-polarized antenna elements comprising a URA, and
each UE has 0 dB antenna gain. Each BS antenna element has a radiation pattern
as specified in Table 7.3-1 of [66] with a maximum gain of 8 dBi, and each RX
antenna element possesses an omnidirectional pattern. The total transmit power is
46 dBm which is equally shared by the three users.

where ogr represents the shadow fading standard deviation in dB. Since shadow
fading is a zero-mean Gaussian random variable [67, 232] hence having a probability
density function (PDF), z is a constant that splits the area under the PDF into
two parts such that the two parts occupy 95% and 5% of the total area under the
PDF, respectively, and z is calculated to be 1.645 via the Q-function [232].

For the UMi street canyon scenario, the upper bound of the T-R separation
distance, i.e., the maximum coverage distance of the BS, is calculated based on the
above assumption for varying number of BS antenna elements using both 3GPP
and NYUSIM channel models, where the number of BS antenna elements ranges
from 16 to 1024, and the carrier frequency is 28 GHz with an RF bandwidth of
100 MHz and narrowband frequency-flat fading sub-carriers. The BS is equipped

with a URA with cross-polarized antenna elements, and each UE has 0 dB antenna
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gain. Each BS antenna element has a radiation pattern as specified in Table 7.3-1
of [66] with a maximum gain of 8 dBi, and each RX antenna element possesses
an omnidirectional pattern. The total transmit power is 46 dBm which is equally
shared by the three users in a cell. The maximum coverage distances calculated
using Egs. (6.5) and (6.6) are illustrated in Fig. 6.6, which shows that NYUSIM
predicts 1.0%-14.1% greater cell radius compared to 3GPP. For example, when
there are 256 BS antenna elements, the maximum coverage distance is 281.4 m and
308.3 m predicted by 3GPP and NYUSIM, respectively, where the latter is 9.6%

greater than the former.

6.2.2 Simulation Results and Analysis

The HBF algorithm proposed in [117] for the fully-connected architecture is em-
ployed to investigate the spectral efficiency in a single-cell SU-MIMO mmWave
system, using the simulation settings in Table 6.13 with 256 and 16 BS and UE
antenna elements, respectively. The CDF's of the spectral efficiency of the single-cell
SU-MIMO system are depicted in Fig. 6.7 for different numbers of RF chains
and data streams using both 3GPP [66] and NYUSIM [51] channel models. The
number of RF chains in the legend denotes both the transmit and receive RF
chains. Fig. 6.7(a) depicts the case of one data stream, which shows that regardless
of the number of RF chains, the spectral efficiency yielded by NYUSIM is (up to
42%) larger than that generated by the 3GPP model when only one data stream is
transmitted, due to the larger dominant channel eigenvalue produced by NYUSIM
and is consistent with the results in [208] for the one-stream case. Furthermore, the
spectral efficiency using the HBF algorithm is closer to the digital beamforming

performance utilizing NYUSIM than using the 3GPP model. More importantly,
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for the 3GPP model, there is a noticeable increase in the spectral efficiency as the

number of RF chains increases from 1 to 2, while the spectral efficiency increase
is very trivial for NYUSIM. Fig. 6.7(b) illustrates the case of four data streams.
Several observations can be drawn from Fig. 6.7(b). First, the digital beamforming
spectral efficiency using NYUSIM is larger as compared to the 3GPP channel model
in most cases, since the sum of the highest four channel eigenvalues in NYUSIM is
greater than that in the 3GPP channel model. Second, for CDF points lower than
90%, the spectral efficiency gap between the digital beamforming and HBF is more
significant for NYUSIM than for the 3GPP model, which indicates that the product
of the analog and digital hybrid beamforming matrices can not be made sufficiently
close to the optimal digital beamforming matrix as required in [117]. This is
probably because in some channel realizations the number of MPCs produced by
NYUSIM is smaller than four, such that there are not large enough antenna array
response vector basis from which the analog steering directions can be selected [117].
Moreover, for the 3GPP channel model, the spectral efficiency increases when the
number of RF chains increases from 4 to 8, likely due to the fact that the number of
clusters in the UMi scenario in the 3GPP channel model is 12 for LOS and 19 for
NLOS, thus increasing the RF chains from 4 to 8 can make better use of the channel
spatial dimensions. As a comparison, the spectral efficiency yielded by NYUSIM
remains almost unchanged for 4 and 8 RF chains, since the number of spatial lobes
does not exceed 5 with an average number of 2 so that increasing the number of
RF chains from 4 to 8 is unlikely to provide extra multiplexing gain. Therefore,
the 3GPP model suggests that spectral efficiency can be enhanced by increasing the
number of RF chains, while NYUSIM indicates that there is no need to increase

the RF chains beyond five or so as the spectral efficiency will not be improved. The
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Figure 6.7: CDF's of the sum spectral efficiency of the single-cell SU-MIMO system
using the HBF algorithm proposed in [117] for different numbers of RF chains using
both 3GPP [66] and NYUSIM [51] channel models. The number of RF chains
in the legend denotes both the transmit and receive RF chains. The number of
data streams between the BS and UE is one, four, and 16 in (a), (b), and (c),
respectively.

spectral efficiency CDF's corresponding to 16 data streams and 16 RF chains are
displayed in Fig. 6.7(c), which reveals that the 3GPP model yields higher spectral
efficiency for both HBF and digital beamforming. This is because of the increased
number of data streams hence increased multipath richness that makes the 3GPP
channel closer to a Rayleigh channel, thus resulting in larger spectral efficiency.
Table 6.16 shows that for the three-cell MU-MIMO using the HBF algorithm
proposed in this chapter with two streams per user, NYUSIM predicts larger per-

user and sum spectral efficiencies than the 3GPP channel model, probably because



200

‘e
t zl
B 2 7 et
- e o
sl Dap BS
- ol
" e e :@'gé %5
2 [y
. o
__ G iggi T .
_— *\/ :’@,@?‘i

- -

Figure 6.8: An example of the HBF architecture diagram with various hardware
units at the BS (the MS side can be derived similarly), with Npg antenna elements
composing a URA, Ni& RF chains, and Ng data streams. Adding one RF chains
entails the addition of one extra DAC/ADC at the BS/MS, one extra power amplifier
(PA) and low-noise amplifier (LNA) at the BS/MS, as well as Ngg/Nys extra phase
shifters at the BS/MS, which significantly increases the hardware complexity, cost,
and power consumption.
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Table 6.14: RF hardware needed for the 3GPP channel model [66] and NYUSIM [51,
223] to achieve the same or similar spectrum efficiency in the single-cell SU-MIMO
case using the HBF' algorithm proposed in [117] for the UMi scenario. The carrier
frequency is 28 GHz with an RF bandwidth of 100 MHz and narrowband frequency-
flat fading sub-carriers. The BS is equipped with 256 cross-polarized antenna
elements comprising a URA, and each UE has 16 cross-polarized omnidirectional
antenna elements constituting a URA. Each BS antenna element has a radiation
pattern as specified in Table 7.3-1 of [66] with a maximum gain of 8 dBi, and each
RX antenna element possesses an omnidirectional pattern. The total transmit
power is 46 dBm. In the simulations, it is assumed that 95% of the area in the
cell has an SNR larger than or equal to 5 dB, and the upper bound of the T-R
separation distance is calculated based on this assumption.

# of

f(])grerfl?rll-g Channel SA;:’(S(:':I‘gael # of #T)(()Lf T{)(;f Sfl)l?fi(iis Pﬁs(;fl';-
Approach Model Efficiency | Streams RF. RF. at NAs at
(bps/Hz) Chains| Chains TX/RX TX/RX
Digital [117] 3GPP 15.1 1 256 16 256 / 16 | 256 / 16
NYUSIM 19.0 1 256 16 256 / 16 256 / 16

3GPP 12.8 1 1 1 256 / 16 1/1

NYUSIM 18.0 1 1 1 256 / 16 1/1

3GPP 22.8 2 6 6 1536 / 96 6/6

HBF [117] NYUSIM 22.9 2 2 2 512 / 32 2/2

3GPP 29.6 3 6 4 1536 / 64 6/4

NYUSIM 29.6 3 3 3 768 / 48 3/3

3GPP 35.2 4 8 4 2048 /64 | 8 /4

NYUSIM 35.3 5 5 5 1280 / 80 5/5

of the stronger two dominant eigen channels per user, and the smaller AoA spread
per user such that channels among different users are less correlated leading to
less interference when compared to the 3GPP model. The evaluation performance
of the 3GPP and NYUSIM channel models for various spatial multiplexing and
beamforming scenarios is summarized in Table 6.17.

Table 6.14 compares the number of RF chains needed for both 3GPP and

NYUSIM channel models to achieve the same or similar spectral efficiency using the
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Table 6.15: RF hardware needed for the 3GPP channel model [66] and NYUSIM [51,
223] to achieve the same or similar spectrum efficiency in the single-cell SU-MIMO
case using the HBF algorithm proposed in [117] for the UMi scenario. The carrier
frequency is 28 GHz with an RF bandwidth of 100 MHz and narrowband frequency-
flat fading sub-carriers. The BS is equipped with 256 cross-polarized antenna
elements comprising a URA, and each UE has 16 cross-polarized omnidirectional
antenna elements constituting a URA. Each BS antenna element has a radiation
pattern as specified in Table 7.3-1 of [66] with a maximum gain of 8 dBi, and each
RX antenna element possesses an omnidirectional pattern. The total transmit
power is 46 dBm. In the simulations, it is assumed that the receive SNR is 10 dB.

# of

Average # of # of # of
f(])?;-erzgﬁ- Channel | Spectral # of TX RX Sfl)l?fatlz‘js PAs/L-
Approafh Model Efficiency | Streams RF RF at NAs at
(bps/Hz) Chains| Chains TX /RX TX/RX

3GPP 9.1 2 2 768 / 32 3/2

HEF 17 |NYUSIM 9.1 2 512 /32 | 2/2
3GPP 10.0 4 10 10 2?23/ 10 / 10

NYUSIM 10.1 4 4 4 1024 / 64 4/4

HBF algorithm proposed in [117]. In Table 6.14, the spectral efficiency is averaged
over all the user locations in a cell with a cell-edge SNR of 5 dB. Alternatively, the
spectral efficiency can be calculated with a fixed receive SNR (i.e., 10 dB) at all
user locations, which is shown in Table 6.15. Note that for HBF, adding one RF
chains entails the addition of one extra DAC/ADC at the BS/MS, one extra power
amplifier (PA) and low-noise amplifier (LNA) at the BS/MS, as well as Ngg/Nus
extra phase shifters at the BS/MS, as shown in Fig. 6.8, which significantly increases
the hardware complexity, cost, and power consumption, especially for large Ngg
and Ny that are likely to be the case in mmWave systems. It is evident from
Tables 6.14 and 6.15 that the 3GPP model necessitates more RF chains, i.e., higher
hardware complexity, cost, and power consumption, to achieve comparable spectral

efficiency to NYUSIM. For instance, as shown by Table 6.14, when only one data
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Table 6.16: Sum spectral efficiency in bps/Hz in multi-cell multi-user MIMO systems
for both types of base station HBF architecture shown in Fig. 8.3 using 3GPP [66]
and NYUSIM [51, 52] channel models. There are three cells with one base station
and three users per cell, the total transmit power per cell is 46 dBm, and the
number of antennas is 256 per base station and eight per user. The number of data
streams per user is two, and the number of total RF chains per base station is six.
The 10%, 50%, and 90% points denote the corresponding points in the CDF of the
sum spectral efficiency.

Sum
Spectral 10% 50% 90%
Efficiency Point | Point | Point
(bps/Hz)

Structure 1 3GPP 14.0 29.5 41.0
(Fig. 8.3(a)) NYUSIM 38.1 56.9 79.0

Structure 2 3GPP 27.1 52.1 65.3
(Fig. 8.3(b)) NYUSIM 56.9 77.3 98.1

Table 6.17: Summary of the evaluation performance on spectral efficiency/capacity
of the 3GPP channel model [66] and NYUSIM [51, 223].

Scenario Model Predicting Larger Capacity
3GPP (due to increased multipath richness in the
3GPP model)
3GPP (due to increased multipath richness in the
3GPP model although Frr makes the channel

Spatial Multiplexing Based on H

Spatial Multiplexing Based on

HE g correlated)
3GPP (with a large number of data
Digital Beamforming streams) or NYUSIM (with a small

number of data streams) (shown by Fig. 6.7)
NYUSIM (due to channel sparsity and larger
dominant eigenvalue in the NYUSIM model and
HBF processing that changes the channel
properties as seen by the RX; shown by
Fig. 6.7(a))

NYUSIM (due to channel sparsity and larger
dominant eigenvalue in the NYUSIM model and
HBF processing that changes the channel
properties as seen by the RX; to be shown by
Figs. 8.11 and 8.13 in Chapter 8)

HBF for Single-Cell Single-User
Single-Stream

HBF for Multi-Cell Multi-User
Multi-Stream
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stream is transmitted, the average spectral efficiency yielded by the 3GPP model

even with the maximum possible RF chains (256 TX RF chains and 16 RX RF
chains) is still smaller than the NYUSIM spectral efficiency with the minimum
possible RF chains (one TX RF chain and one RX RF chain), due to the much
stronger dominant eigen channel in NYUSIM as shown in Fig. 6.4. When two data
streams are transmitted, the 3GPP model needs three times as many RF chains
and phase shifters to yield similar spectral efficiency to that of NYUSIM. When
four or more data streams are transmitted, NYUSIM can generate similar spectral
efficiency with comparable or fewer total RF chains as compared to the 3GPP
model, but more data streams are required since the third and latter eigen channels

in NYUSIM are much weaker than those in the 3GPP model.

6.3 Concluding Remarks

This chapter provided a comprehensive comparison of two representative channel
models, the 3GPP model and the NYUSIM model, and demonstrated the profound
impact of the models on 5G channel performance evaluation via simulations. Key
differences between the two channel models are the LOS probability model, path loss
model, and cluster/TCSL statistics, among which cluster/TCSL statistics matter
most. Analyses and simulation results show that channel model selection has a
huge influence on deployment decisions and on various metrics, such as spectrum
efficiency, coverage and performance, cell radius, and hardware/signal processing
requirements.

The 3GPP and NYUSIM channel models utilize different LOS probability models,

path loss models, cluster definitions, and large-scale and small-scale parameters,
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etc. Particularly, the number of clusters in the 3SGPP model is over two to four

times as large as the mazimum number of spatial lobes in NYUSIM, leading to
different channel sparsity levels in the two models. The difference in LOS probability
and path loss models gives rise to discrepant cell radius prediction results that
can differ by 50 m or so for around 500 transmit antenna elements. Compared
to NYUSIM, the larger cluster number (i.e., more rich multipath) in the 3GPP
model results in more eigen channels and more similar powers among those eigen
channels, thus is advantageous for spatial multiplexing. On the other hand, the
NYUSIM channel exhibits sparsity and has fewer but stronger dominant eigenmodes,
hence generating higher spectral efficiency when combined with appropriate HBF
procedures. For example, for the one-stream case in a SU-MIMO system using
the HBF algorithm in [117], the average spectral efficiency yielded by the 3GPP
model even with the maximum possible RF chains is still smaller than the NYUSIM
spectral efficiency with the minimum possible RF chains. Different channel models
can lead to substantially varied predictions on diverse channel performance metrics
and hardware requirements, thus it is vital to select an accurate channel model for

5G wireless system performance evaluation.
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Chapter 7

Millimeter Wave MIMO Channel
Estimation Based on Adaptive

Compressed Sensing

CSI is necessary to design precoding and combining procedures at transmitters
and receivers, and it can be obtained through channel estimation. Due to the facts
that large antenna arrays will be used in mmWave systems, and that mmWave
channels exhibit sparsity due to the limited number of dominant spatial lobes [51,
52, 205], conventional MIMO channel estimation methods may not be applicable in
mmWave systems, hence new channel estimation methods are required [118], and CS
techniques [120] can be leveraged to effectively estimate mmWave channels [121, 122].
Adaptive CS, as a branch of CS, yields better performance at low SNRs compared
to standard CS techniques, and low SNRs are typical for mmWave systems before
implementing beamforming gain [119]. Adaptive CS algorithms for estimating

mmWave channel parameters with the presence of antenna arrays were derived
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in [119] for both single-path and multipath scenarios, and it was shown that
the proposed channel estimation approaches could achieve comparable precoding
gains compared with exhaustive training algorithms [119]. However, in [119] and
the majority of existing work, standard basis pursuit (SBP) is used to construct
beamforming dictionary matrices, which renders the problem of basis mismatch so
that not all AoDs and AoAs can be estimated accurately. Therefore, more advanced
beamforming dictionary constructing approaches are needed to improve estimation
accuracy and hence spectral efficiency.

This chapter presents an enhanced approach to the creation of beamforming
dictionary matrices for mmWave MIMO channel estimation in comparison with the
one introduced in [119], based on adaptive CS concepts. The main novelty of the
proposed method here is the adoption of the CBP method instead of the conventional
grid-based (i.e., SBP) approach to build beamforming dictionary matrices [55].
This chapter shows that the proposed dictionary can significantly improve the
estimation accuracy, i.e., reduce the probability of estimation error, of AoDs and
AoAs. Furthermore, built on the CBP-based dictionary, two new multipath channel
estimation algorithms are proposed that have lower computational complexity
compared to the one introduced in [119], while offering better estimation accuracy
for various signal sparsities. NYUSIM [51, 52| was used in the simulation to
investigate the performance of the proposed algorithms.

The following notations are used throughout this chapter. N denotes the set
of natural numbers; tr(X) and vec(X) indicate the trace and vectorization of X,
respectively; The Hadamard, Kronecker and Khatri-Rao products between two

matrices are denoted by o, ®, and *, respectively.
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7.1 System Model

Let us consider a BS equipped with Ngg antennas and Nrp RF chains communicat-
ing with an MS with Ny antennas and Ngrr RF chains, where Ngp < Nyg < Nps.
System interference issues, such as co-channel interference from other BSs and
MSs, are intentionally not considered because of the limited interference found
in directional mmWave channels [118], and also, the focus of this chapter is to
quantify and compare the performance of channel estimation methods in a single
link [55]. System aspects are ongoing research topics. A carrier frequency of 28 GHz
with an 800 MHz RF bandwidth and narrowband frequency-flat fading sub-carriers
are assumed in the simulation settings in this chapter, but the CBP method and
proposed algorithms are applicable to any mmWave frequency and bandwidth. In
the channel estimation stage, the BS employs Mpg beamforming vectors to transmit
Mpg symbols, while the MS utilizes M);s combining vectors to combine the received
signal. The BS is assumed to implement analog/digital hybrid precoding with
a precoding matrix F = FrpFpgp, where Frp € CVs*Nre and Fpg € CVrexMas
denote the RF and baseband precoding matrices, respectively. Similarly, at the
MS, the combiner W also consists of RF and baseband combiners represented by
Wiy € CMisXNre and Wy € CVreXMuss | regpectively. The received signal at the
MS is given by [55]:

Y = WPHFS + Q (7.1)

where H € CMis*Nes denotes the channel matrix, S € CMss*Mss g a diagonal
matrix containing the Mpg transmitted symbols, and Q € CMvs*Mss represents
the complex Gaussian noise. The design of analog/digital hybrid precoding and

combining matrices have been extensively investigated [117, 148], and this topic
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is deferred to future work and channel estimation is focused on in this chapter.

Additionally, although CSI can also be obtained by uplink training and channel
reciprocity in TDD systems, this chapter focuses on the downlink training since
channel reciprocity usually does not hold for FDD systems, and even in TDD
systems if there exist non-linear devices that are not self-calibrated so as to incur
non-reciprocal effects.

The mmWave channel can be approximated by a geometric channel model with
L scatterers due to its limited scattering feature [2, 168, 184], and the channel

matrix can be written as

NpsNus <
H =/ =25 ) oaws (e 01)ais(01, 0) (7.2)

=1

where «; is the complex gain of the [** path between the BS and MS including the
path loss, where a path refers to a cluster of multipath components traveling closely
in time and/or spatial domains, ¢, ¢; € [0, 27) are the azimuth AoD and AoA of
the [*" path, 0,9, € [-7/2,7/2] are the elevation AoD and AoA. ags(¢y, ;) and
ays (i, U;) are the antenna array response vectors at the BS and MS, respectively.
The NYUSIM simulator produces a wide range of sample ensembles for (7.2) and
incorporates multiple antenna elements and physical arrays including ULAs [51].
Using a ULA, the array response vector can be expressed as (take the BS for
example)

1 .o . 27
[1, egTdcos(qﬁl)’ e ej(NBs—l)TdCOS(@)]T (7.3)
v/ Ngs

where the incident angle is defined as 0 if the beam is parallel with the array

aBS(¢l) =

direction, A denotes the carrier wavelength, and d is the spacing between adjacent

antenna elements.
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7.2 Formulation of the mmWave Channel Esti-

mation Problem

Considering the mmWave channel matrix given by (7.2), estimating the channel is
equivalent to estimating the AoD, AoA, and path gain of each path, and training
precoders and combiners are necessary to conduct the channel estimation. The
mmWave channel estimation can be formulated as a sparse problem due to its
limited dominant paths, e.g., on average 1 to 6 time clusters and 2 to 3 spatial
lobes were found from real-world measurements using a 10 dB down threshold,
as presented in [52]. Therefore, some insights can be extracted from the CS
theory. Assuming all transmitted symbols are equal for the estimation phase, i.e.,
S = \/ﬁIMBS (P is the average power per transmission) and by vectorizing the
received signal Y in (7.1) to y, the received signal can be approximated with a

sparse formulation as follows [119]

y = VPvec(WTHF) + vec(Q)
~ VB(E" @ W vee(H) + ng
= VPEFET @ WH)( Bs.p * Ams,p)Z + 1q
= VP(F"Ajsp, ® WAy p)z + nq

= \/I_DFTA*BSDZBS (%9 WHAMSDZMS + nqg (74)

where Aggp and Aygp denote the beamforming dictionary matrices at the BS
and MS, respectively. zgg € CV*! and zyg € CV*! are two sparse vectors that
have non-zero elements in the locations associated with the dominant paths, with

N denoting the number of measurements in the channel estimation stage, and



211

Z = ZRs * Z\S-

A beamforming dictionary based on angle quantization was proposed in [119],
where the AoDs and AoAs were assumed to be taken from a uniform grid of
N points with N > L where L denotes the number of paths, and the resulting
dictionary matrix is expressed as (take the BS side for example, the MS dictionary

matrix can be derived similarly)

Agsp = [aps(¢1), -+ ,aBs(on)] (7.5)

where ags(¢,) (n = 1,..., N) denotes the BS array response vector for the grid
point ¢,.

Given that the true continuous-domain AoDs and AoAs may lie off the center of
the grid bins, the grid representation in this case will destroy the sparsity of the signal
and result in the so-called basis mismatch [233]. This can be mitigated to a certain
extent by finer discretization of the grid, but that may lead to higher computation
time and higher mutual coherence of the sensing matrix, thus becoming less effective
for sparse signal recovery [120]. There are several approaches to mitigate the basis
mismatch problem. One promising approach, named CBP, is proposed in [233],
where one type of CBP is implemented with first-order Taylor interpolator, which
will be demonstrated shortly. Since the antenna array factor a(¢) is a continuous
and smooth function of ¢, it can be approximated by linearly combining a(¢;) and

the derivative of a(¢) at the point ¢y via a first-order Taylor expansion:

(6) =a(00 + (9= 9057|060 (76)

where ¢, = 27(k — 1)/N is the grid-point with minimal distance from ¢. This
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motivates a dictionary consisting of the original discretized array factors a(¢) and

its derivatives azg;s)’ i.e., a(¢) and 62—((;5) can be regarded as two sets of basis for the
dictionary. Therefore, the entire basis for the proposed dictionary matrix can be

formulated as

Bgs = [aBs(¢1), -, aps(¢n), bs(d1), - -+, bes(dn)] (7.7)

where bpg(¢,) = 2225(@)

o6 ‘ on? and the corresponding interpolator is given by

tBS: 17"'a]-7A¢7"'7A¢ (78)
N N
where A¢ denotes the angle offset from the angles on the grid, and [A¢| < &. The

proposed dictionary is hence written as

Agsp = Bgs * tgs =[aps(¢1), -, aps(dn), Adbps(dr),---, Adbps(dn)]
(7.9)

7.3 Multi-Resolution Hierarchical Codebook

The proposed hierarchical beamforming codebook is composed of S levels, where
each level contains beamforming vectors with a certain beamwidth that covers
certain angular regions [55]. Due to the symmetry of the antenna pattern of a ULA,
if a beam covers an azimuth angle range of [@,, ¢s], then it also covers 2 — [¢g, @]
In each codebook level s, the beamforming vectors are divided into K*~! subsets,
each of which contains K beamforming vectors. Each of these K beamforming
vectors is designed such that it has an almost equal projection on the vectors

aps(¢), where ¢ denotes the angle range covered by this beamforming vector, and
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zero projection on the array response vectors corresponding to other angles. Note

that there is no strict constraint on the number of sectors K at each stage, yet
considering practical angle-searching time, K = 3 or 4 is a reasonable choice. Once
the value of K is defined, the total number of estimation measurements N is 2K°.
The value of N should be minimized while guaranteeing the successful estimation
of angles, thus S should be neither too large nor too small. Through simulations,
it is found that S =3, K =4 (N = 128) and S = 4, K = 3 (N = 162) are two
sensible combinations [55].

In each codebook level s and subset k, the m'" column of the beamforming

vector [F(sx)l.m, m =1,..., K in the codebook F is designed such that [55]:

_ C, for ¢, € @B
[F(syk)]HmaBS(¢u) = L

3]

0, otherwise
[F o] 5brs(0u) = 0,Y ¢, (7.10)
with
0% 1 = (KRS — 1) + s — 1), 2 (K (K5 — 1) + )|
U [27 - %(K(kfs — 1) + mpg), 27 — ; (K (KPS = 1) + mps — 1)}

(7.11)

where C' is a constant such that each F(, ) has a Frobenius norm of K. The fact

that the product of [Fs)]?, and bps(¢,) is zero in (7.10) can be derived from (7.6)

to (7.9). The matrix F(,x) hence equals the product of the pseudo-inverse of ABS’D

and the (k x K — (K —1))™ to (k x K)™ columns of the angle coverage matrix
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G(s) with its m"™ column given by (7.12) [55]:

[G(S)]57m = LC/S and 0,5,7 07 T 70 T (712)
N N

BS

where C’s are in the locations @7 ,,,.

The combining matrix W, ;) in the codebook
W at the receiver can be designed in a similar manner. It is noteworthy that the
difference between the angle coverage matrix Gy in [119] and the one proposed
here is that the m'" column of the former contains only the first N rows without
the last N 0’s in (7.12), i.e., the former did not force [F(,x)]? bps(d.) to be zero,
hence failing to alleviate the leakage incurred by angle quantization [55].

Fig. 7.1 illustrates the beam patterns of the beamforming vectors in the first
codebook level of an example hierarchical codebook introduced in [119] and the
hierarchical codebook proposed in this chapter with N =162 and K = 3. Comparing
the two beam patterns, the codebook generated using the CBP-based dictionary
ABS’D in (7.9) produces a smoother (i.e., fewer ripples) pattern contour in contrast
to that yielded by the codebook introduced in [119], namely, the beams associated
with ABS’D are able to cover the intended angle ranges more evenly [55]. Due to
the more uniform projection on the targeted angle region, the beamforming vectors

generated using ABS,D can mitigate the leakage induced by angle quantization, thus

improving the angle estimation accuracy, as will be shown later.
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Figure 7.1: Beam patterns of the beamforming vectors in the first codebook level of
an example hierarchical codebook using the grid-based and CBP-based dictionaries
with N = 162, K = 3 [55].

7.4 Adaptive estimation algorithms for mmWave

MIMO channels

For single-path channels, there is only one non-zero element in the vector z in (7.4).
To effectively estimate the location of this non-zero element, and consequently
the corresponding AoD, AoA, and path gain, the following algorithm, which is an
improved version of Algorithm 1 in [119], is used in conjunction with the innovative
CBP-based dictionary matrices [55].

Algorithm 1 operates as follows. In the initial stage, the BS uses the training
precoding vectors of the first level of the codebook F. For each of those vectors, the
MS uses the measurement vectors of the first level of W to combine the received
signal. After the precoding-measurement steps of this stage, the MS compares the
power of the received signals to determine the one with the maximum received
power. As each one of the precoding/measurement vectors is associated with a

certain range of the quantized AoA/AoD, the operation of the first stage divides
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Algorithm 1 Adaptive Estimation Algorithm for Single-Path mmWave MIMO
channels [55]

Require: K, S, codebooks F and W, N = 2K*

— =
T

13:

14:
15:
16:

Initialization: kPS5 =1, kM5 =1
for s < S do
for mps < K do
BS uses [F( gps)).
for mys < K do
MS uses [W, pus)].
end for myg < K
end for mpg < K
end for s < S

, MBS

»yTMMS

for s < S do
Y () = VP [W (s THIF (o os) | + Q
{m*st mlt/IS} = argmax [Y( ) © Y(S)]mMSﬂTLBS
Vmpg,mms=1,...,K

Pean € DB 1, Pean € OYE,, %o @2, is given by Eq. (7.11), and @} can
be calculated similarly

kot = K(k® = 1) + mig, k335 = K(k)® — 1) + mys,
end for s < S
Acnps = [aBS(qgcan)] % Antenna array matrix for the candidate AoDs
A anms = [ams(Pean)] % Antenna array matrix for the candidate AoAs
7 = AgnﬁMSHAcamBs + Q % Received signal matrix corresponding to the
candidate AoDs and AoAs
(QAS, ) = argmax Z o Z* % Finding the optimal AoD and AoA that maximize
the Hadamard product of the received signal matrix
a= /240 Z(¢> )/(NBS « Nyis) % Estimated path gain magnitude associated

with the estimated AoD and AoA

Ensure: ¢,p, &
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the entire angle range [0, 27) into K partitions, and compares the power of the
sum of each of them. Hence, the selection of the strongest received signal implies
the selection of the range of the quantized AoA/AoD that is highly likely to contain
the single path of the channel. The output of the maximum power is then used to
determine the subsets of the beamforming vectors of level s +1 (1 <s <S5 —1)
of F and W to be used in the next stage. Since N must be even multiples of K
in order to construct the precoding and measurement codebooks, there are two
possible ranges of AoD/AoA selected out after Step 15 of Algorithm 1, which are
denoted as gzgcan and Qean. Step 16 is aimed at “filtering” out the AoD/AoA from
these two ranges. The MS then feeds back the selected subset of the BS precoders
to the BS to use it in the next stage, which needs only log, K bits.

Based on Algorithm 1 and inspired by the estimation algorithm in [119] for mul-
tipath channels (as opposed to single-path channels), two low-complexity algorithms
for estimating multipath channels are established, namely Algorithms 2 and 3, and
are explained below. In Algorithm 2, Igi) and I(l\;f) contain the precoding and
measurement matrix indexes of the i path in the s stage, respectively. Algorithm
2 operates as follows: A procedure similar to Algorithm 1 is utilized to detect the
first strongest path. The indexes of the beamforming matrices corresponding to the
previous detected [ (1 <[ < L — 1) paths are stored and used in later iterations.
Note that in each stage s from the second iteration on, the contribution of the
paths that have already been estimated in previous iterations are projected out
one path by one path before determining the new promising AoD/AoA ranges. In
the next stage s + 1, two AoD/Ao0A ranges are selected for further refinement, i.e.,
the one selected at stage s of this iteration, and the one selected by the preced-

ing path at stage s + 1 of the previous iteration. The algorithm makes L outer
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iterations to estimate L paths. Thanks to the sparse nature of mmWave channels,

the number of dominant paths is usually limited, which means the total number
of precoding-measurement steps will not be dramatically larger compared to the

single-path case.

Algorithm 2 Adaptive Estimation Algorithm for Multipath mmWave MIMO
channels [55]

Require: K, S, codebooks F and W, N = 2K*°

1: Initialization: Ig?sl) =[1,...,1]7, I(l\:/lls) =[1,..., 17, where I8 € NLx5 TMS ¢
NLXS 7 ’

2: Use Algorithm 1 to detect the AoD, AoA, and path gain for the first strongest
path

3: Repeat Algorithm 1 for the [** (2 < < L) path until Step 11 in Algorithm 1

4: For the s stage in the i (2 < i < L) iteration, project out previous path
contributions one path by one path
Y = \/PS[W(S’]CEQ\/IS)]HH[F(&]{ES)] +Q
Y(s) = VeC(Y(S)) ~ .
Vi) = F%;’Igi))[ABS,D]iIEi) ® ngl?iss))[AMs’D]“Imi) % Calculating the contri-

bution of previous paths in the form of Eq. (7.4)
Yo =¥ — Vo Viigye
5: Convert y(s) to the matrix form Y
6: Repeat Algorithm 1 from Step 12 to obtain the AoD, AoA, and path gain for
the i'" strongest path until all the L paths are estimated
Ensure: AoDs, AoAs, and path gains for the L dominant paths

Algorithm 3 is similar to Algorithm 2, but with an even lower complexity. The
major difference between Algorithm 3 and Algorithm 2 stems from the way of
projecting out previous path contributions: Algorithm 3 does not require storing
the beamforming matrix indexes, but instead, it utilizes the antenna array response
vectors associated with the estimated AoDs/AoAs to subtract out the contributions
of previously detected paths simultaneously. Therefore, compared with Algorithm
2, Algorithm 3 results in less computation and storage cost, and a higher estimation

speed (i.e., lower latency). When compared with the multipath channel estimation
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Algorithm 3 Adaptive Estimation Algorithm for Multipath mmWave MIMO
channels [55]

Require: K, S, codebooks F and W, N = 2K~

1:

2:

Initialization: IE,SU =[1,...,1]%, I(l\ff) =[1,...,1]7, where I8 € NLx5 TMS ¢
NLXS

Use Algorithm 1 to detect the AoD, AoA, and path gain for the first strongest
path

Repeat Algorithm 1 for the [** (2 <1 < L) path until Step 11 in Algorithm 1
For the s stage in the " (2 < i < L) iteration, project out previous path
contributions simultaneously

Ags = [ags(d)], Aus = [aus(@)] % ¢ and @ are the AoDs and AoAs of all the
previously detected paths, respectively

Y(s) = \/E[W(s,kzg’ls)]HH[F(&k?s)] + Q

Yo =vee(Ye)

Viis) = [Ws )| Ans Aflg[F (s 4os)] % Calculating the contribution of previous
paths in the form of Eq. (7.1)

V(i) = Vec(V(is)

Y(9) = ¥~ Vi) Vii ¥

Convert y (s to the matrix form Y

6: Repeat Algorithm 1 from Step 12 to obtain the AoD, AoA, and path gain for

the i'" strongest path until all the L paths are estimated

Ensure: AoDs, AoAs, and path gains for the L dominant paths
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presented in [119], the most prominent advantages of both Algorithm 2 and Algo-

rithm 3 are that they do not require the re-design of multi-resolution beamforming
codebooks for each stage when the number of dominant paths vary, and only a
single path is selected in each stage instead of L paths in [119], thus substantially

reducing the calculation and memory overhead [55].

7.5 Simulation Results

In this section, the performance of the proposed CBP-based dictionary and Algo-
rithms 1, 2, and 3 are evaluated in terms of average probability of estimation error
of AoDs and AoAs, and spectral efficiency, via numerical Monte Carlo simulations.
The channel matrix takes the form of (7.2), where the path powers, phases, AoDs,
and AoAs are generated using NYUSIM [51]. ULAs are assumed at both the BS
and MS with 64 and 32 antenna elements, respectively. All simulation results are
averaged over 10,000 random channel realizations, with a carrier frequency of 28
GHz and an RF bandwidth of 800 MHz and OFDM modulation with narrowband
sub-carriers. In calculating spectral efficiency, eigen-beamforming is assumed at
both the transmitter (with equal power allocation) and receiver. Other beamform-
ing techniques can also be employed, and the performance of the beamforming
dictionaries and algorithms were found to be similar.

The simulated probabilities of estimation errors of AoDs and AoAs as a function
of the average receive SNR, using Algorithm 1 and both grid-based and CBP-based
dictionaries for single-path channels, are depicted in Fig. 7.2 for the cases of N =
162, K = 3, and N = 128, K = 4, which are found to yield the best performance

via numerous trials. In Fig. 7.2, the probability of estimation error denotes the
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ratio of the incorrectly estimated angles to the total number of angles estimated
and is averaged over 10,000 random channel realizations. An estimation error is
considered to take place when the absolute difference between the estimated angle
(AoD or AoA) and the true angle is larger than % (e.g., 1.1° when N = 162 and
1.4° when N = 128). In actual cellular systems, if the angular spread of a cluster
(3GPP nomenclature) or spatial lobe (NYUSIM nomenclature) is larger than the
absolute difference between the estimated AoD/AoA and the true AoD/AoA, then
the estimation error will not cause significant degradation in spectral efficiency.
As shown by Fig. 7.2, the CBP-based approach renders much smaller estimation
errors, by up to two orders of magnitude. For the two cases considered in Fig. 7.2,
the grid-based method generates huge estimation error probability that is over
80% even at an SNR of 20 dB; on the other hand, the estimation error probability
of the CBP-based counterpart decreases rapidly with SNR, and is less than 0.5%
for N = 128, K = 4 and a 20 dB SNR. These results imply that the CBP-based
approach is able to provide much better channel estimation accuracy with a small
number of measurements compared to the conventional grid-based fashion, hence
is worth using in mmWave MIMO systems for sparse channel estimation and signal
recovery [55].

To explicitly show the effect of estimation error on channel spectral efficiency
using different beamforming dictionaries, the achievable spectral efficiency is plotted
and compared as a function of the average receive SNR for both the grid-based and
CBP-based dictionaries for single-path channels, as well as the spectral efficiency
with perfect CSI at the transmitter, for the case of N = 162, K = 3, and N = 128,
K =4, as described in Fig. 7.3. It is assumed that the angular spread of a path

(i.e., cluster (3GPP nomenclature) or spatial lobe (NYUSIM nomenclature)) is zero.
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Figure 7.2: Average probability of error in estimating AoD/AoA for single-path
channels, using both the grid-based dictionary and CBP-based dictionary [55].

As stated in the previous paragraph, the angular spread of a cluster or spatial lobe
in actual cellular systems is larger than zero, thus the resultant spectral efficiency
degradation will be smaller than in Fig. 7.3. It is evident from Fig. 7.3 that for both
cases considered, the CBP-based dictionary yields much higher spectral efficiency,
by about 2.7 bits/s/Hz to 13 bits/s/Hz, compared with the grid-based one over
the entire SNR range of -20 dB to 20 dB. Furthermore, the CBP-based method
achieves near-optimal performance over the SNRs spanning from 0 dB to 20 dB,
with a gap of less than 0.7 bits/s/Hz [55].

Fig. 7.4 illustrates the average probability of error in estimating AoDs/AoAs
for multipath channels with N = 162, K = 3, and N = 128, K = 4 for an average
receive SNR of 20 dB, using proposed Algorithms 2 and 3 for two to six dominant
paths, as well as Algorithm 2 in [119]. For the approach in [119], since all L paths
have to be estimated simultaneously in a multipath channel, it does not work for
L < K, thus no results are available for L = 2 when K = 3 or 4. The SNR denotes

the ratio of the total received power from all paths to the noise power. As shown
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Figure 7.3: Average spectral efficiency for single-path channels for the cases of
perfect CSI, grid-based dictionary and CBP-based dictionary [55].

in Fig. 7.4, both Algorithm 2 (Algo 2) and Algorithm 3 (Algo 3) produce lower
estimation errors than the approach in [119] in both multipath-channel cases; for
the case of N = 128, K = 4, Algorithm 3 yields the lowest estimation error, i.e.,
highest accuracy, and meanwhile enjoys the lowest computation expense among the
three algorithms. In addition, the estimation error tends to increase more slowly
and converge to a certain value as the number of dominant paths increase for all of
the three algorithms [55].

The spectral efficiency performance of the three algorithms above, with N =
162, K = 3, and L = 3, is displayed in Fig. 7.5, which reveals the superiority of
Algorithm 3 pertaining to spectral efficiency, followed by Algorithm 2, compared
with the approach in [119]. For instance, at an SNR of 10 dB, Algorithms 2 and
3 yield around 5 and 8 more bits/s/Hz than the approach in [119], respectively,
and the discrepancies expand as the SNR ascends. The proposed algorithms work
well for single-path channels, and significantly outperforms the approach in [119]

method for multipath channels, although there is still a noticeable spectral efficiency
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Figure 7.4: Average probability of error in estimating AoD/AoA for multipath
channels using the CBP-based dictionary [55]. [13] in the figure denotes [119] in
this technical report.

gap compared to the perfect CSI case, due to the non-negligible angle estimation
errors shown in Fig. 7.4 [55]. Further work is needed to improve Algo 2 and Algo 3

to more effectively estimate multipath channels.

7.6 Concluding Remarks

Based on the concept of adaptive compressed sensing and by exploiting the sparsity
of mmWave channels, this chapter presented an innovative approach for designing
the precoding/measurement dictionary matrices, and two new low-complexity algo-
rithms for estimating multipath channels. In contrast to the conventional grid-based
method, the principle of CBP was leveraged in devising the beamforming dictionary
matrices, which had lower mutual coherence due to the first-order Taylor interpola-
tion, and was shown to be more beneficial for sparse signal reconstruction [55].

Simulations were performed based on the open-source 5G channel simulator
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Figure 7.5: Average spectral efficiency for multipath channels with the CBP-based
dictionary using the approach in [119], and Algorithms 2 and 3 proposed in this
chapter, with N = 162, K = 3, and L = 3 [55]. [13] in the figure denotes [119] in
this technical report.
NYUSIM for broadband mmWave systems. Results show that the C'BP-based
dictionary renders up to over two orders of magnitude higher estimation accuracy
(i.e., lower probability of estimation error) of AoDs and AoAs, and more than 12
bits/s/Hz higher spectral efficiency, with a small number of estimation measurements
for single-path channels, as opposed to the grid-based approach, as shown in
Figs. 7.2 and 7.3. Moreover, the newly proposed two algorithms, Algorithm 2 and
Algorithm 3, can offer better estimation and spectral efficiency performance with
lower computational complexity and time consumption for multipath channels,
when compared with existing algorithms, as shown in Figs. 7.4 and 7.5 [55].
Interesting extensions to this work will be to improve the multipath estimation
algorithms to make them more effective, and to extend the multipath estimation
algorithms to the case where the number of dominant paths is unknown, as well as

to implement the proposed dictionary matrices and algorithms to other types of
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antenna arrays such as 2D arrays.
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Chapter 8

Multi-Cell Multi-User
Multi-Stream Hybrid

Beamforming

In this chapter, multi-cell multi-user multi-stream analog and digital HBF strategies
for mmWave MIMO systems are investigated, which has not been studied before
to my best knowledge. It is assumed that the TPs in different cells have full CSI
and can exchange the CSI among each other, such that they can take actions to
mitigate inter-cell interference, which corresponds to the coordinated beamforming
per the definition by 3GPP [161]. We first formulate a multi-cell communication
framework based upon today’s conventional three-sector BS antenna configuration,
where each 120° sector (i.e., cell, as defined in 3GPP parlance [161]) uses a URA
with 256 antenna elements (eight rows by 16 columns by two polarization states)
for each TP, similar to what is envisioned for 5G MIMO systems [230]. The spacing

between adjacent co-polarized elements is A\/2 in azimuth and A in elevation with
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A denoting the carrier wavelength (e.g., 10.7 mm at 28 GHz and 4.1 mm at 73

GHz), and the radiation pattern of each TP antenna element is given in Table 8.1,
which provides a HPBW resolution of about 8° in both azimuth and elevation in
the broadside direction of the URA at each TP. Note that the number of RF chains
used to feed the URA dictates the number of independent RF streams that may be
transmitted to all users in a cell. A number of (3 or 12 in this work) UEs, each
with an eight-element (two rows by two columns by two polarization states) URA
and four RF chains (for up to four streams per user), are randomly dropped in
each cell over distances of 10 m to the cell radius (e.g., 50 m or 200 m). URAs
are considered because they are able to form beams in both azimuth and elevation
dimensions, as exploiting the zenith characteristics of the propagation channel will
be essential for enhanced performance at mmWave frequencies [23]. 28 GHz carrier
frequency with 100 MHz RF bandwidth and OFDM modulation with narrowband
frequency-flat sub-carriers are assumed, and the calculation of the channel matrix
is given by Eqs. (2.8)-(2.11) and explained by the text around them. The main

contributions of this chapter are summarized as follows.

e Built on the multi-cell framework, eigenvalue distributions for channels after
RF precoding in a multi-cell multi-user system with a single stream per
user are investigated for both signal and interference channels, which has
not been studied before. HBF based on RZF is employed at each TP. The
channel matrices are generated using both the 3GPP TR 38.901 Release 14
channel model [66] and the NYUSIM channel model [51]. The eigenvalue
densities are approximated with a gamma distribution. The approximation of
eigenvalue densities is motivated by the fact that exact densities are extremely

challenging to derive so that the best "trade-off” approach is to approximate.
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e Leveraging the approximate channel eigenvalue densities of the 3GPP [66]

and the NYUSIM [51] channel models, for a single-stream multi-cell system
employing hybrid processing, a general methodology is given to derive tight
analytical approximations of the expected per-user SINR, and expected per-
cell sum spectral efficiency. Our analyses assume a bank of analog phase
shifters for the analog precoding and RZF processing for digital beamforming.
Due to the joint design of both analog and digital processing matrices, there
is tremendous analytical complexity involved in deriving the aforementioned
expressions. Hence, to the best of my knowledge, such general analysis of

mmWave systems have been missing from the vast literature.

e A novel coordination-based HBF approach containing leakage-suppression
and signal-maximization precoding (LSP) is proposed. Four multi-cell multi-
stream downlink HBF approaches, where three use coordinated beamforming
(including LSP) and one does not use any TP coordination (as a baseline),
are compared in terms of spectral efficiency under various conditions (e.g.,
different cell radii, user numbers, and stream numbers per user). Both
the 3GPP [66] and NYUSIM [51] channel models are adopted, and equal
power allocations are used for each stream (i.e. no power control or water
filling per stream). Numerical results demonstrate that benefits of multi-cell
coordination depend on the underlying channel model and the interference

levels, to be shown in Fig. 8.11.
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Table 8.1: Simulation settings using the 3GPP [66] and NYUSIM [51] models.

Parameter Setting
Carrier Frequency 28 GHz
Bandwidth 100 MHz [66]

Transmit Power
Without Array Gain

35.2 dBm per UE
(46 dBm for a cell with 12 UEs)

95% Cell-Edge SNR

5dB

BS Antennas

three panels for the three TP sectors, where each
panel is a uniform rectangular array consisting
of 256 cross-polarized elements in the x-z plane [66]

BS Antenna Spacing

half wavelength in azimuth; one wavelength in elevation

BS Antenna Element Gain

8 dBi [66]

BS Antenna Element
Pattern

Model 2, Page 18 in 3GPP
TR 36.873 Release 12 [225]

UE Antennas

uniform rectangular array consisting of eight
cross-polarized elements in the x-z plane [66]

UE Antenna Spacing

half wavelength in azimuth; one wavelength in elevation

UE Antenna Element Gain 0 dBi [66]
UE Antenna Element Pattern omnidirectional [66]
Receiver Noise Figure 10 dB

8.1 Multi-Cell System Layout and Hybrid Beam-

forming Framework

8.1.1 Multi-Cell System Layout

We consider an mmWave system with three adjacent cells (i.e., sectors), each having
one TP and multiple (e.g., 3 or 12) UEs. Only three adjacent cells are studied
herein since inter-cell interference among these three cells dominate the interference
due to the geographical proximity and use of mmWave frequencies, thus this case
is representative of homogeneous multi-cell networks with both intra- and inter-cell
interference. The four proposed HBF algorithms are applicable to general cases
with more cells. Fig. 8.1 depicts an example of the three-cell layout with three
users per cell. Throughout this chapter, a carrier frequency of 28 GHz is used,

with an RF bandwidth of 100 MHz, assuming OFDM modulation with narrowband
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TP1
TP2
TP3
UEin Cell 1
UEin Cell 2
O UEinCell3

o<<idq

Figure 8.1: An example of the three-cell layout where there is one BS URA and
three UEs per cell generated using MATLAB, where each cell is a sector with an
azimuth span of 120° served by one BS URA. The radius of each cell is 300 m.
The UEs in each cell are distributed uniformly and randomly with T-R separation
distances ranging from 10 m to 300 m [66]. It is assumed that 95% of the area in
a cell has an SNR larger than or equal to 5 dB, and the upper bound of the T-R
separation distance is calculated based on this assumption and rounded to 200 m
for both models for fair comparison.

frequency-flat fading sub-carriers as explained in detail in Chapter 6, reflecting
current thinking for 5G spectrum allocations [20, 230, 231]. Simulation parameter

are given in Table 8.1.

8.1.2 Base Station Antenna Array Configurations

A situation that is widely utilized in 5G system deployment is considered herein:
the TP in each sector is equipped with a two-dimensional antenna array consisting
of cross-polarized elements arranged in Ny rows by Ny columns by two polarizations,
for a total of 2N; Ny antenna elements. Two versions of array configurations have
been explored by researchers [230]: a single-panel version and a four-panel version,
as illustrated in Fig. 8.2 with a total of 512 elements comprising 16 rows by 16

columns by two polarizations. It is assumed in [230] that the array generates one
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Single Panel Array (512 antennas) Four Panel Array (512 antennas)

& 2 TXRUs || 5 |88

8 TXRUs

16

Figure 8.2: An example of hybrid antenna arrays configurations with a total of
512 elements comprising 16 rows by 16 columns by two polarizations [230]. Left:
single-panel version with two transceiver ports. Right: four-panel version with
eight transceiver ports.

RF beam per polarization per panel. Therefore, the single-panel array renders two
RF beams, i.e., two logical ports, while the four-panel array creates eight RF beams
associated with eight logical ports.

For MU-MIMO operation, the single-panel array generates multiple RF beams
per polarization per panel to serve multiple users simultaneously. Whereas in the
four-panel array, one RF beam is created per polarization per panel to serve a
maximum of four co-scheduled users with one user per panel. The simulation
results in [230] indicate that single-panel arrays can provide much higher gains in
performance compared to multi-panel arrays (130% versus 50%), primarily due
to the narrower RF beams with higher gains formed by the single-panel array
compared to the four-panel array, since the single-panel array has more antennas
than each panel in the four-panel array [230]. Therefore, this technical report
focuses on the single-panel array configuration due to its superior throughput

performance in MU-MIMO.
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Figure 8.3: Multi-cell HBF architecture at the TP in each cell (there are three TPs
in one BS, and one TP serves one cell). Ng denotes the number of data streams
per user in each cell, K is the number of users in each cell, NXF' represents the
total number of RF chains at each TP, and Nt denotes the number of TP antenna
elements in each cell, where Ng < NTE”F < Nr. In this multi-cell single-stream work,
Ng =1, K =3, N} =3 and Nt = 256.

8.2 Multi-Cell Multi-User Single-Stream Hybrid
Beamforming

This section investigates HBF for a multi-cell MU-MIMO system where each TP
communicates with each of its home-cell users via a single data stream. The HBF
architecture at each TP is illustrated in Fig. 8.3, where there are K baseband
digital precoding units with one for each user in the same cell, one data stream is
transmitted for each home-cell user, and each baseband precoding unit is connected
with NR¥ RF chains with N} = K. Each RF chain is connected to all of the Ny
TP antennas through Nt phase shifters, thus the total number of phase shifters
equals N}¥ Np. Each user is assumed to be equipped with only one antenna, or an
antenna array with analog beamforming only, for analytical simplicity.

As each TP communicates with each UE via a URA with Nt antennas, the

dimension is 1 x Ny for the channel matrix hy;;, and Np x NER¥ for Fgrr,. The
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1 x NRF effective channel Hk,l,z‘ after RF precoding is:

hys = hy i Fre, (8.1)

where Fgp, is designed based on Algorithm 1 in [170]. The K x N{F composite

effective channel from TP i to all the K users in cell [ is expressed as:

. - H - H ~ H
Hl,z’ = [hl,l,i7 h2,l,z‘a %) hK,zm]H (8-2)

where the superscript H denotes conjugate transpose. The received signal at user

k in cell [ can be formulated as:

Pr - Pr -
Ykl =A| 57— hy 18R, Sk + E Pl hy . ifeB,, ,Smi+ negr (8.3)
ML 1 ; L ~—~
N , (ma)#(k]) Noise
Y ~ ~~ -
Desired Signal Interference

where Pr represents the total transmit power in Watts at each TP, PLj;; denotes
the large-scale distance-dependent path loss in Watts, including shadow fading,
from TP i to user k in cell I. 1, = ||Frr,Fpg,||% is a scaling factor to satisfy the
total transmit power constraint ||/PrFrr,Fgg,/ Vi |2 = Pr, where F denotes
the Frobenius norm, and Fgp, = [fgB,,,...,f8B,,]. Sk represents the desired
transmitted signal for user k in cell [ with E[|sy|?] = 1, and ny; ~ CN(0, Np) is
complex Gaussian noise with variance Ny. The SINR of user k in cell [ is therefore

given by:

PT - 2
opre esifs, |

B
> o heifes,.,
(ma)Aky "

SINRy, =

2+ N
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The expected per-user SINR can be obtained by calculating E[SINRy,]. The

exact evaluation of E[SINRy |, however, is extremely unwieldy or even intractable.
Therefore, the first-order delta method expansion can be adopted, hence the

expected per-user SINR is approximated by [234]:

B[y f,, |
E[SINRk’l] ~ anL;,l,l Vvv k,l
ﬁTTM-EHhk,Z,ifBBm’i
(may#kD

(8.5)

2] + Ny

where 7, = E[n] and 7; = E[n;]. In what follows, the expected values in the
numerator and denominator of (8.5) are derived separately using approximated
densities for an arbitrary eigenvalue and a joint pair of arbitrary eigenvalues of
both signal and interference channels for the 3GPP and NYUSIM channel models.
The approximated density for an arbitrary eigenvalue is obtained via simulations,
followed by the derivation of the approximated density for a joint pair of arbitrary

eigenvalues, as detailed below.

8.2.1 Channel Eigenvalue Distribution

The eigenvalue distribution for uncorrelated and correlated Wishart matrices are
well known, as presented in [235, 236, 237, 238, 239]. Eigenvalue distributions
for channels after RF precoding in HBF, however, have not been investigated in
the prior literature. This is because joint processing of Frr and Fgp twice alters
both the magnitude and phase of the preferential channel directions, and therefore
the complexity of exact expressions is very high. While the computation of exact
eigenvalue densities with such complex channel models remains an open problem in
multivariate statistics, accurate approximations is employed in order to facilitate

the subsequent analysis. In this subsection, eigenvalue distributions of HH" for
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the 3GPP channel model and the NYUSIM channel model are studied, where H

denotes the effective channel matrix after TP RF precoding, i.e., H = HFgp. Below
are existing works on eigenvalue distributions and the rationale for deriving the

approximated eigenvalue distributions in this technical report.

e In the simplest case of uncorrelated scattering, the entries of H are i.i.d.
complex Gaussian random variables, widely known as Rayleigh fading, HH”
is an uncorrelated central complex Wishart matrix, and the corresponding
PDF of an arbitrary eigenvalue of HH* is derived in [235] via the orthogonal
basis expansion of HH” as it is non-trivial to compute the density of each

eigenvalue, even for the simplest case of Rayleigh fading.

e For the case of semi-correlated Rayleigh fading with spatial correlation at
either transmit or receive end of the link, HH* takes the form of a correlated
central complex Wishart distribution. The corresponding arbitrary eigenvalue
densities are derived in [153, 236, 238, 239, 240] for various types of spatial

correlation models.

e For an uncorrelated LOS channel, or an uncorrelated Ricean channel, which
corresponds to the case with the Ricean factor larger than 0 and the presence
of only one dominant multipath component in the two-wave with diffuse
power (TWDP) distribution [241] describing small-scale, local area fading
experienced by narrowband wireless receivers, HH follows an uncorrelated
non-central complex Wishart structure, whose eigenvalue densities were de-

rived in [237].

e As shown in [242], LOS components pointing in certain directions can be

regarded as inducing additional spatial correlation. The resultant HH” is a
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correlated non-central complex Wishart matrix, and the arbitrary eigenvalue
densities for such channels were derived in [238, 239] and extended in [242]

by exploiting the above fact.

e For a NLOS channel matrix combined with RF precoding and RF combining,
it is conjectured that this is akin to inducing spatial correlation at both ends
of the link in the direction of the boresight of the antenna (array). The
antenna elements of the array are closely located (e.g., half wavelength) hence
inducing spatial correlation as well. Furthermore, with a fixed number of
scattering clusters and subpaths within each cluster, the channel models
can be statistically treated as an arbitrary link gain pre-multiplied by a
correlated random variable dependent on the antenna array configuration and
the direction-of-departure/arrival distribution. Thus, the resultant arbitrary

eigenvalue density will be similar to the second point mentioned above.

Note that for the first four types of channels above, the underlying mathematical
form of the arbitrary eigenvalue density is a product of exponential functions with
a finite power of the arbitrary eigenvalue upper bounded by the minimum of the
transmit and receive antenna dimension. This is equivalent to the mathematical
form of the density of a gamma-distributed random variable [243]. Moreover, while
the exponential and chi-square distributions also exhibit the above mathematical
form, they are special cases of the gamma distribution with specific shape and scale
parameters. Furthermore, the gamma distribution results in the best Kolmogorov-
Smirnov (KS) test statistic among all other contending distributions'. Therefore, it

is reasonable to use the gamma distribution to approximate the eigenvalue density

!The KS test is a widely used measure in communications theory to determine the accuracy of
an approximate statistical distribution relative to a specific system related metric [244].
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distribution. In what follows, to obtain approximated eigenvalue distributions, the

PDF's of ordered eigenvalues are first plotted via simulations, and then the PDF
curves are fitted with the gamma distribution by optimizing its shape and rate
parameters.

It is worth mentioning that only NLOS mmWave channels are considered herein
because it can be regarded as a starting point, since LOS channels will have more
complicated eigenvalue distributions due to the extra channel correlation induced
by LOS paths as explained above. Furthermore, NLOS mmWave channels are of
greater research interest than LOS channels, as LOS propagation is always feasible
and predictable, while the feasibility and performance of NLOS propagation need
examination. Therefore, this work focuses on the eigenvalue densities of NLOS
channels only, and the eigenvalue densities for LOS channels and LOS-NLOS mixed
channels are worth future investigation.

For both the 3GPP and NYUSIM channel models, the approximated PDF of
the n-th largest eigenvalue, \,, of Hl,lf{fl in NLOS environments is found to be:

ben \an—Le=bnAn

frn ) RS =1 N (8.6)

where a,, and b,, are the shape and rate parameters to be determined via simulations.

When K = 3, for instance, a,, = 1+ =% and b, = o [, s! for the 3GPP channel

model, while a,, = 1+ 37 and b, = £ for NYUSIM. I'(-) denotes the complete
gamma function, and N is the smaller dimension of I:IM, which equals K for the

single-stream-per-user case considered in (8.3). Based on the PDFs f), (),) of the

. . . . o o
ordered eigenvalues, the approximated PDF of an arbitrary eigenvalue of H; ;H, , is
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derived and expressed as [236]:

banAab e —bnAarb
I

Fram (Narb) NE Z Ty — =LK (8.7)

n=1

The approximated joint density of the ordered eigenvalues A\ > ... > Ag of

PVIUIVIZ using the 3GPP channel model is given by [235]:

K K
f)\,ordered()\la ceey >\K) :Ail H f()\n) H()\n - )\j)27 >\1 Z 2 )‘K 2 O (88)
n=1 n<j

where A is a normalizing factor. The unordered eigenvalues then have the den-

sity [235]:
P, ) =(KTA) T T FO0) [T = )
n=1 n<j (89)

K
Note that [] (A, — A;) is the determinant of a Vandermonde matrix [235]. By ap-

n<j

plying the Gram Schmidt orthogonalization procedure to the sequence 1, A, ..., \f~1
in the space of real-valued functions with the orthogonality relationship:
/ Ga (N NA N = 5, (8.10)
0
Thus (8.9) can be transformed to:
PO, Ak CZ pMW“IM% n) 0, (An) A, (8.11)

where the sum is over all possible permutations «, 5 of {1, ..., K'}, and per(-) denotes
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the sign of the permutation. Integrating the right hand side of (8.11) over Ay, ..., A

results in:

FO0) =C Y (=16, ()5, ADAT [ ] G,

a,B n>2
K . | K
~1Y ) = E DS (007
p n=1 n=1
Z $n(M)) (8.12)

where the third equality follows from the fact that (gbn(/\l))zz\l_l integrates to unity

and hence C must equal 1/K!. Comparing (8.12) with (8.7), it is observed that

ban \an e—bn)\
n

¢n()‘) = F(an)

(8.13)

Integrating the right hand side of (8.11) over Ag, ..., Ak gives rise to the joint density
n (8.15):

f, Ag) =C Z 1P @ g (M) g5, (M)A daz (M) dss (Ao) Ay [ ] dans

:—<K§!2)' ST [ (60 (A))* (64002))” = 6a(M) B (M) by (Na)n(A2)]
e

:—K(Kl_ D ; qZI(AlAz)—l [(¢n<A1))2(¢q(A2))2 _ ¢n(A1)¢q(xl)¢n(A2)¢q(A2)}
q#n

(8.14)

where ¢, (A) is given by (8.13). The approximated joint density of two arbitrary
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unordered eigenvalues of H171H5 is given by:

fA,unord()‘lv )‘2) %;_ Z Z()‘l)‘Q)_l (¢n()\1)>2 (¢Q()‘2))2
K(K —1)
"
= Ba(A)64(M)Bn(2)64(X2)| (8.15)

where ¢, (\) is given by (8.13). The approximated PDF for the n-th largest
eigenvalue of ﬂﬁﬂlz (or equivalently ﬂlzﬁfi) (1 # 1), where PVILZ- represents the

effective other-cell interference (OCI) channel, is found to be:

der O.cn—le—dnan
n Yn

=1
Tlen)

fon(on) =

LK (8.16)

where ¢, = 1+ 13(())” and d, = 10171 for the 3GPP model, and ¢, = 1 + 30% and
d, = 6" 3 for NYUSIM, when K = 3. Note that there is variation with the
coefficients in (8.6) and (8.16) for the 3GPP and NYUSIM models. One reason for
this variation is the way the underlying channel impulse responses are generated
from the 3GPP and NYUSIM models that results in very different eigenvalues,
which will be shown later in Figs. 8.4, 8.5, and 6.4. The approximated PDF for an

arbitrary eigenvalue of HlI{ZHZZ is given by [236]:

K cn ~Cn—1 _—dno
1 dirogr e ndarb
fo (Carb) X — E rar ,n=1,... K 8.17
arb( b) F:’ — F(Cn) n ( )

Figs. 8.4 and 8.5 illustrate the PDFs of an arbitrary (unordered) eigenvalue of
HH" for both desired signal and interference channels generated by the 3GPP
and NYUSIM channel models, which show that the analytical expressions given
by (8.7) and (8.17) match the simulated PDFs very well.
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Figure 8.4: Probability density distribution of an arbitrary eigenvalue of HHA" for
the 3GPP channel model for three users per cell, where H denotes the effective
channel matrix after transmit RF precoding, i.e., H = HFgp. (a) is for desired
signal channels, while (b) is for interference channels.
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Figure 8.5: Probability density distribution of an arbitrary eigenvalue of Ha" for
the NYUSIM channel model for three users per cell, where H denotes the effective
channel matrix after transmit RF precoding, i.e., H = HFgp. (a) is for desired
signal channels, while (b) is for interference channels.
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In this chapter, the following integrals and special functions are often used when

computing expected signal power and expected interference power in the subsequent

analysis. Let

o] )\m—l—a—le—b)\
Jm,n@) = /0 Wd/\, where m,n € N, a,b >0

which can be solved by a change of variable A = x — £ to obtain

oe _ g)ymta—1=b(z—¢) 00 —bz
Jmn(§) = / (x=9) © dr = / (z — f)m-f—a—le_eb{dx
¢ ¢

x" x"

Applying the Taylor series expansion to (z — &)™~ ! at 0 yields

[m+a—1]
m+a—1 F(m + CL) _ \m+ta—s,.s
(ZE—f) * lN ; S'F(m—l—a—s)( 5) * r

Therefore, (8.19) can be recast as

[m+a—1]

e ['(m+a) mia s s€ e
n ~ o m-ra—s /h d
Tnn(&) /g Z sll(m +a — s)( 3 o O
s=0
(Iig)mﬂfufl
el I'(m+a) e
Z (_é—)erafsebﬁ / 25 e Ay
—~ sli(m+a—s) ¢
hn,6)

(8.18)

(8.19)

(8.20)

(8.21)

For the purpose of this chapter, two special cases of h(n,§) are of interest, n = 1

and n = 2, which will be frequently encountered in the following analysis. These

are given by (8.22), where E;(-) denotes the exponential integral and T'(-,-) is the
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B(b¢) if s=0

o et w=ox 1 ° — —
h(1,£) :/ T [ b sTlemvdw = )
¢ b =L(s,0¢) if s>1
and
—bE) (b)) + - if s=0
o et w=0x 1 o — —
h(2,€) =/ oo 2ty S 3_1/ w* e Vdw = E((b) if s=1
¢ 5= e
S T(s — 1,b6¢) if s> 2

(8.22)

upper incomplete gamma function.

8.2.3 Expected Per-User Signal Power

Throughout this chapter, 28 GHz carrier frequency with 100 MHz RF bandwidth
and narrowband OFDM sub-carriers are assumed; no power control or water filling

is assumed. The expected per-user signal power in (8.5) is:

Pr

ﬁlPLMJEHBk,l,ZfBBk,Z %] (8.23)

5k,l -

When RZF precoding is employed at baseband, the un-normalized RZF precoding
vector for user k in cell [, fgp, ,, is the k-th column of the NRF x K matrix Fpg,,

such that
S H o o H ~
Fgp, = H,(H, H;, + §1x) 7" (8.24)

The constant & > 0 represents the regularization parameter specific to TP [. In
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this work, & is set to the following value based on [156, 170]:

KNy
= 8.25
& P (8.25)

An eigenvalue decomposition leads to PVIUHZ = UAU2, The entries in U have
an isotropic distribution for NLOS conditions. For LOS conditions where there
is a dominant specular component, U is not isotropic, but the averaging over the
random AoDs/AoAs in the array steering vectors makes U retain its isotropicity.
Therefore, the expected value in (8.23) over the isotropicity of U can be expressed

as [153, 156, 242]:

2
. A
— E[|hy . fep, ) = E —|wal® 8.2
ok = E[|hy 1 fsp, ,|7] /\a+€l|w, | ) ] (8.26)

The expression in (8.26) can be further averaged over the entries of U and can be

>

reformulated as [153, 156]:

v B(S)] BE ] e

a=1

where E,[-] represents the expectation over the eigenvalues of IJIUI:IZ. Now the
expected values in (8.27) for 3GPP and NYUSIM channel models will be calculated

using the approximated PDFs of eigenvalues derived above. For the first expectation

2To facilitate the analytical study later on, an SVD or an economy-size SVD is first performed
such that Hy; = UAY2VT | which leads to H; I, = UAY2VIVAY2UT — UAU".
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term in (8.27), it can be recognized that

[(kf: " +&)2 EA[}é (Aﬁ &)2

22 () ()

(8.28)

We begin by evaluating the first term on the right-hand side of (8.28), yielding

o

A2 St
:K[/(A+§) Pram(N)d ] :Zo/mfAn()\)dA

(8.29)

K

> (vte)
A\ &

SZZEA

where fy, (-) denotes the approximated PDF for the n-th largest eigenvalue as
expressed in (8.6). s; in (8.29) can be solved using the special functions in (8.21)
and (8.22) with m = n = 2. By utilizing the joint density of two arbitrary

eigenvalues in (8.15), the second term on the right-hand side of (8.28) can be
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written as:
K K \
—F b
T ;Z(A +€z)(Ab+fl>
b#a
00 00 )\a )\b
=K(K -1 wnord (Aas Ap)dApd A,
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(8.30)
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which can be solved using the special functions in (8.21) and (8.22) with m =n = 1.

The second expectation in (8.27) equals:

:EA[ZK:(MJF&) } s (8.31)

k=1

Therefore, combining (8.29), (8.30) and (8.31), the expected signal power in (8.23)

is given by:

PT 281 + ¢
O = 8.32
ol <ﬁlPLk,l,l> {K(K + 1)} (8.52)
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in which [170]

oo

it = B{|FreFon, 2] ~ B — K / Gl (539

K A\
Z (A +&)2

k=1

where the approximation stems from the fact that the array response vectors of

Frr, become orthogonal to each other as Nt — oo, such that FgFlFRFl = INTRF

(see (21) in [170]). 7; in (8.33) can be solved using the special functions in (8.21)

and (8.22) with m = 1 and n = 2, yet an alternative approach can also be used

to compute 7); as explained below. Numerous numerical results reveal that the

eigenvalues of ILIUIV{Z are at least three orders of magnitude larger than &, thus
A oA

[eeraria vl % Consequently, (8.33) can be approximated as:

) 7oA
m = K/mf&ﬂb@)d/\
ban/\an—Q —bp A

~K/ < (NdX = Z/ o d)

Arnm

- ZK: (F(;n)T<“" —1, bn)\min>)

n=1

(8.34)

where A\yin = min(Aym), and T(an -1, bn)\min) is defined in (8.35). Plugging (8.34)
back into (8.32), the expected per-user signal power ¢, is solved and will be used

in (8.50) to calculate the expected per-user SINR.
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T(an — 1,00 Amin) i ay > 1

T(an—l,bn)\mm) _ By (bpAmin) if an =1

. (bn)\min)an—lefbn)\
\ an—1

" T (s bodnin) i 0 < <1
(8.35)

8.2.4 Expected Per-User Interference Power

The expected interference power at the kth user in cell [ in (8.5) is given by:

P )
1= =oo—E[hgfes, [

i PLi g
(i) 1R
Pr Pr
PLk“ZE|hk”fBBml’ +ZUPLkzz;E|hkthBmZ]
m;ék # B
Intra—Cell};terference Inter—CellElterference (836)

The first term on the right-hand side of (8.36) denotes the inter-user interference
(IUI) within the same cell, and can be evaluated as the difference between the total
(signal plus intra-cell interference) power from TP [ and the desired signal power
at user k in cell [ [234]. The expected total power from TP [ to user k in cell [ is

given by:

: ) [t o] S s
Vi = E[[[hg 1 Fes, 7] = {Z ()\T} = [Z WA ] == (8.37)

a=1

where s; is given by (8.29). Consequently, the intra-cell interference in (8.36) can
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be expressed as:

5 E[|hs i fp |2
s = 3 Ellbkuton,
m+£k
Pr Pr S 2s; + € Pr (K —1)s; — ¢
T PLey T Okt = P L [E T KK+ 1)} ~ WPL [ K(K +1) ]
(8.38)

where (8.32) is utilized to obtain the third equality. The second term in (8.36)

denotes the inter-cell interference, or OCI, and can be formulated as:

EHflk,z,ifBBm,i

“H o~
] :E[tr{hk‘,l,ihkyl»ifBBm,ingm,i}]

-0~ 1 S0~
=tr{E[hy; ;b1 |E[fss,, fip, ]} = ?tr{E[hk,l,ihk,l,i]E[FBBiFgBi]}
(8.39)

The second equality in (8.39) holds because flk“ and fgg,, , are independent, since

fgB,,, is only related to H” which is independent of ﬁkM when [ # ¢ according

to (8.2). Note that Fgp, = Ivifi(ﬂ”f{i +&Tx) ™!, the second expectation in (8.39)

can be recast as:

- H  _~ - H o~
E[FBBiFgBi] :E[H”(HHHH + SlIK) QHH]

—E[H,,(UAU" + 1) °H,,] = E[H,,U(A + &15) >UH, |
(8.40)

where the second equality stems from leﬂi — UAU”. For the case NR¥ = K

considered in this work, it follows from SVD that H;; = UAY2V¥. Conse-
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quently, (8.40) is transformed to:

E[Fps,Fip ] =E[VAY?UTU(A + g1) *UTUAYAVY]
= 1/2 —2 A 1/2x7H
=E[VA/2 (A + §lx) A"V (8.41)

For the first expectation in (8.39), let

-« v H - H ~ H
Hl,i = [Hl,l,z‘> H2,l,i> e HK,z,m}H (8-42)

one can denote ﬂﬁﬂ“ = Q”XQ, where ¥ = diag(oy, ...,0x), then the trace

in (8.39) becomes:

“H o~
; :tr{E[th’ihk,l,i}E[FBBiFgBi]}

1 - H - 1
:Etr{E[HﬁHM]E[FBBiFgBJ} = EE[U{QHZQVAI/ZM +&Lk) AV

K K
1 1 Ak
=—E[tr{VIQ'SQVA2(A + Ix) A%} = —E Oa|Wak|* 5
o Elerd K) =1 ;:1 ;1 IR
(8.43)

where w,  denotes the (a, k)-th entry of the unitary matrix QV. Let 7 = |w, 4 /|?,

then the PDF of r is given by [156]:
fr)=(K-1)1-r)%2 0<r<1 (8.44)
which implies

E[|wa x|?] r(K —1)(1 —r)*2dr = = (8.45)

I
O\H
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Therefore,
1 [ &RE A
My —— UQE a 2 b
K ; ; H k| ](}\ + 51)2
K K K K
1 Ak 1 Ak
=— Oq = —E, o, | E
K? ;; e +8&)2| K2 ; g ; (M + &)?
1 ~ 00
%Em Jfaarb (O‘)dO’
0 (8.46)

where the approximation follows from (8.33). Based on (8.17), the integral in (8.46)

can be recast as:

o0 K K
1 dérgen—le=dno 1 I(c, +1)
= . do = — § By e — E _m
w /O-f arb(o-) o K 1 /U F(Cn) o K . (Cn>
0 "=ty

n=l (8.47)
Plugging (8.47) and (8.34) into (8.46) results in:
L (8.48)
3 =—1j; :
(2 Knlw

Combining the results in (8.38), (8.39), and (8.48), the expected per-user interfer-



ence in (8.36) is expressed as:
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Pr [(K—1)s;—¢] Prs;
Skl == = ( s —& + Z L
mPLg | K(K+1) — 7iPLi 1
il
_ PT _(K—l)sl—el_ +i PT’rN]Zw
77ZPLI€,l,l L K(K + 1) i1 KﬁZPLk“
il
P [(K=1)s;—¢] +i Prw
PLi | K(K +1) 2 KPLy,
il (8.49)

which will be used in (8.50) to calculate the expected per-user SINR.

8.2.5 Expected Per-User SINR and Ergodic Per-Cell Spec-

tral Efficiency

Combining the expected per-user signal power J; in (8.32) and the expected per-
user interference power ¢ ; in (8.49), the expected per-user SINR in (8.5) can be

expressed as:

Ok,

E[SINRy ;| #~ ————
| kil Skt + No

(8.50)

The expected ergodic spectral efficiency for cell [ can be approximated from

E[SINRy,] in (8.50) as:

K K
E[R)] =E| > logy(1+SINRy) | ~ > log, (1 + E[SINR,,])

k=1 k=1

(8.51)

It is noteworthy that (8.51) arouses an approximation instead of an upper bound via
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Jensen’s inequality, as the value of E[SINRy ] is itself an approximation [234, 245].

The generality of the results derived above is worth mentioning. The analysis
methodology derived above is applicable for any link SNR and channel model,
including potential special cases such as the presence of a fixred LOS component in
the channel (as long as the necessary eigenvalue densities are known). If there is
a change in the transmit or the receive dimension, then the analytical approach
is still valid, however, the approximated gamma distributed eigenvalue densities
need to be re-fitted. This is because of the mathematical complexity of finding
closed—form expressions when using such an advanced channel model as well as the

additional presence of RF beamforming.

8.2.6 Numerical Results and Discussion

The accuracy of the derived expected per-user SINR in (8.50) and expected per-cell
spectral efficiency in (8.51) is evaluated in this subsection through comparison with
numerical results for the three-cell homogeneous network introduced in Section 8.1
with three users per cell, along with the HBF architecture in Fig 8.3. In the
simulations, the number of TP antennas was 256, the number of UE antennas was
one, the number of streams per UE is one, the number of RF chains at each TP was
three, and the cell radius was 200 m. For each channel model, 500 random channel
realizations were carried out for each set of parameter settings. It is assumed
that the carrier frequency is 28 GHz with a 100 MHz RF bandwidth and OFDM
modulation with narrowband frequency-flat fading sub-carriers.

The CDFs of simulated and approximated expected per-user SINR and per-cell
spectral efficiency are illustrated in Fig. 8.6. The expected SINR and spectral

efficiency curves denote (8.5) (for simulated CDF') or (8.50) (for approximated CDF)
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Figure 8.6: CDFs of (a) expected per-user SINR and (b) expected per-cell spectral
efficiency, with a cell radius of 200 m, a cell-edge SNR of 5 dB, and three users per
cell.
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m and three users per cell.
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and (8.51), respectively, where the expectation is taken over the small-scale fading

with the distribution representing the randomness in user location (i.e., large-scale
path loss and shadow fading). It is observed from Fig. 8.6 that the derived SINR
and spectral efficiency approximations closely follow the corresponding simulated
values over the entire probability range. Furthermore, the expected per-user SINR
as a function of the cell-edge SNR is illustrated in Fig. 8.7, where the average is
performed globally over both the link gains and the multipath fading. As shown by
Fig. 8.7, for both 3GPP and NYUSIM models, the analytical expressions remain
sufficiently accurate over the entire cell-edge SNR range investigated, revealing
the tightness and generality of the derived SINR approximations. The spectral
efficiencies between 3GPP and NYUSIM in Fig. 8.6 do not differ much because
there is only one stream per user, the difference will be larger for multi-stream per

user, as will be shown later in this chapter.

8.3 Multi-Cell Multi-User Multi-Stream Hybrid
Beamforming

In this section, multi-cell multi-user HBF schemes when multiple streams are
transmitted from each TP to each of its serving users are investigated. As the
analytical derivation for the expected per-user SINR is extremely cumbersome
and even intractable for the multi-stream-per-user case, numerical simulations
are utilized to evaluate the performance of various multi-cell HBF approaches.
Furthermore, it is found through simulations that the spectral efficiency obtained
by using the TP HBF architecture in Fig. 8.3 is lower than using the structure

shown in Fig. 8.8, as demonstrated in Table 6.16, due to the increased IUI in the
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N

Figure 8.8: Multi-cell HBF architecture at the TP in each cell. Ng denotes the
number of data streams per user in each cell, K is the number of users in each cell,
NR¥ represents the total number of RF chains at each TP, M3 is the number of
RF chains connected to the baseband precoder for one user, and Nt denotes the
number of TP antenna elements in each cell. In this multi-cell multi-stream work,
Ng varies from 1 to 4, K is either 3 or 12, ME¥ = 4 which equals the number of
RF chains at each UE, N}¥ = K MR which is either 12 or 48, and Ny = 256.

former. Therefore, the HBF architecture in Fig. 8.8 is used for multi-stream-per-user
beamforming, where at each TP the NR' RF chains are divided into K subsets
with MB¥ RF chains (fixed at four in this work due to channel sparsity [51]) in each
subset, such that the total number of TP RF chains is N = K M. Additionally,
there is a baseband digital precoder which is connected to a subset dedicated to a
user in the home cell. The URA architecture at each UE is illustrated in Fig. 8.9,
where there are Ny antennas and N§" RF chains at each UE, and all the RF chains
are connected to all the antennas.

For TP ¢ and user k in cell [, the Ng x Nt downlink channel is denoted as
Hj,; i, the Ny x MPF RF precoding matrix is Fgp, ,, and the MTF x Ng baseband
precoding matrix is Fpp, ;. The Ng x NIE”F RF combining matrix and the N}E”F X Ng

baseband combining matrix is Wgr, , and Wpgp, ,, respectively. The received signal
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Figure 8.9: Multi-cell HBF architecture at each UE. Ng denotes the number of
data streams per UE, NRF represents the number of RF chains at each UE, and
Ng denotes the number of UE antenna elements. In this multi-cell multi-stream
work, Ng varies from 1 to 4, N&* =4, and Ng = 8.

at user k in cell [ is formulated as:

P,
Y, =

H H
VT lWBBk,lWRpk,lHk,l,lFRFk,zFBBk,sz,l
A

S

~
Desired Signal

P
H H
+ ) Wi, Wik, HiFre,, Fos,, Smi
Gy | Pl

k
#(k,0)
Interference
H H
+ Wgg, , Wrr, , Dk, (8.52)
Noise

where P, represents the transmit power for each user in Watts, and is assumed to
be constant regardless of the number of users per cell and the cell radius. PLy;
denotes the large-scale distance-dependent path loss in Watts, including shadow
fading, from TP i to user k in cell [, 7y = ||Frr, ,Fas,,||% is a scaling factor to
satisfy the per-user transmit power constraint ||/ PFrr, ,Fgs,,/\/Tkill7 = Pr- Sk
represents the desired transmitted signal for user & in cell I with E[sys;))] = Ins,
and ng; ~ CN(0, NoIy,) is circularly symmetric complex Gaussian noise with
variance Ny. The spectral efficiency of user k in cell [ is calculated as in (8.53) [117],

where the interference term D in (8.53) is given by:
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P,
Mg PLi

1

Rk,l :10g2 INS + (WgBk’leFk,l<NOINR + D)WRFK,ZWBBk,l)i

) v H
H H
X Wgg, Hr ki Fes, Fop, Hi i Wes,,
(8.53)

P
p Nm,iP L i

H,.iFrr,, Fee, Fig, Fir, Hiu (8.54)
Note that the spectral efficiency in (8.53) is formulated based on Shannon theory
assuming ideal encoding and decoding functions and serves as an upper bound of
the achievable rate [246]. Non-ideal/more practical encoding and decoding may
be used in reality which results in lower spectral efficiency compared to (8.53).
Additionally, for all the multi-cell HBF approaches henceforth, it is assumed that

no power control is performed.

8.3.1 Baseline Case — No Coordination Among Cells

Let us first consider the interference-ignorant baseline case where there is no TP
coordination among cells. Assuming only local CSI is available at each TP, a
reasonable precoding scheme is eigenmode transmission [235]. User k in cell [
will be treated as the desired user in all the subsequent multi-cell HBF design.

RF RF
(CNR X M

Let us define the effective channel matrix I:Ik,l,k,l € for user k in cell

\/ﬁngk,lHkvlJFRFk,l’ where the RF precoding and combining matrices

[ as
Frr,, and Wgp,, are designed such that |[W{y Hy Frr,,||% is maximized to
enhance SNR. The RF beamforming approach in Eqgs. (12)-(14) proposed in [171] is

applied to obtain Frr,, and Wgp, ,, in which the codebooks for Frr, , and Wgp, ,
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consist of the TP and UE antenna array response vectors corresponding to the

angles-of-departure (AoDs) and angles-of-arrival (AoAs) associated with the desired
user, respectively [117]. The baseband precoding matrix Fgg, , is composed of
the dominant Ng right singular vectors obtained from the SVD of ﬁkﬁl,m and the
baseband combining matrix Wgg, , is constituted by the dominant Ng left singular

vectors obtained from the SVD of IV{k,LkJFBBkJ.

8.3.2 Leakage-Suppressing and Signal-Maximizing Precod-
ing

A coordinated scheduling/beamforming CoMP scheme named leakage-suppressing

and signal-maximizing precoding (LSP) is proposed herein, where the RF precoder

is aimed at mitigating the dominant leakage to all the other users while enhancing

the strength of the desired signal. The precoding matrix at TP [ for user k in cell [

is designed as follows. First, the cascaded leakage channel matrix consisting of all

the channel matrices except the one for user k in cell [ is obtained through CSI

exchange among TPs as:

Hy, = —1 HY l —1 Hf 1l —1 HZ 1l —1 H:,I;Ll
L 1717’“.’ 717’7 17»’.“’ s
VPLi1, VPLi 11 VPLivi VPLk L

(8.55)

The columns of RF beamforming matrices at each TP and UE are selected from
pre-defined beamforming codebooks that consist of antenna array response vectors
ar and ag at the TP and UE, respectively. The matrix At and Ag are composed
of ar’s and ag’s corresponding to the AoDs and AoAs associated with the desired

user, respectively [117]. The first column in the RF precoding matrix Fgg, , is

T
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chosen from A such that ||I:Ik,lFRFk7l (:,1)||% is minimized, whose physical meaning

is using the first RF precoding vector at TP [ to suppress the leakage to all the
other users in all the cells considered. The remaining M — 1 columns in Fgp, ,
are selected from A to maximize ||[Hy Frr,,(:,2 : MTF)|[%, the physical meaning
of which is utilizing the remaining MR — 1 RF precoding vectors to maximize the
desired signal power to user k in cell [. Then the baseband precoding matrix Fgg, ,
is designed by taking the SVD of Hy ;Frr, , and setting Fgp, , as V(:,1 : Ng) where
V(:,1: Ng) represents the first Ng dominant right singular vectors of Hy. 1 Frr,, -

For the design of the hybrid combining matrix at user & in cell [, first, the opti-
mum fully digital combining matrix is obtained by taking the SVD of H;.1Frr, Fss,
and setting the columns of the combining matrix to be the dominant Ng left singular
vectors. Then the RF and baseband combining matrices are designed according to
Algorithm 1 on Page 1505 of [117] based on the optimum fully digital combining
matrix.

As extensions of LSP, if sufficient channel diversity exists, more than one
precoding vector could be used for suppressing leakage when designing the precoding

matrix at each TP.

8.3.3 SLNR-Based Precoding

The third multi-cell HBF strategy is an SLNR-based scheme incorporating coordi-
nated scheduling/beamforming in CoMP. Directly maximizing the SINR over all
users in all cells involves a challenging optimization problem with coupled variables,
thus the SLNR is utilized as an alternative optimization criterion. In the SLNR-
based TP coordination, the effective channel matrix I:Im,i’k,l € CVE"™ M s defined

Wiy HyiFrr,,, and the (KL — 1)NEF x MEF leakage matrix for

S S
as \/ PLm,i,l
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TP [ communicating with user & in cell [ is given by:

T
~ - T - T - T - T
Hk,l = [Hl,Lk,la ) Hk:—l,l,k,l’ Hk-i—l,l,k,l: ey HK,L,k,l (8-56)

The RF precoding and combining matrices Frr, , and Wgy, , are designed such
that [[Wgg, ,HeFre,, |7 is maximized, where Fgp,, and Wgg, , are obtained in
the same manner as in the baseline case. The baseband precoding matrix Fgg, , is

designed to maximize the SLNR as follows [157]. The expected received signal power

. . . o H o
prior to the baseband combining process is E[%skHngBk Hi e Hek i Fo, Sk,

o H o

the expected leakage power is IE[ > %sﬁngBk lHm%k’le%k,lFBBk’lskjl], and
(m.)# (kD) ’

the expected noise power is E[nﬁlWRFMWﬁFk lnk,l]- The SLNR is hence formu-

lated as in (8.57) [157],

o H o
P, HH
E [msk,lFBBkJ Hy e Heir:Fes,, Sk,l}

SLNR ~

o H o
§ P HpH '
; Mkl Sk»lFBBk,l Hm:i7k7ZHm7l,k,lFBBk,l Sk,l
(mﬂ)?é(kJ)

E + E [nkH,lWRFk,lngk,lnk,l}

W
b pH
tr (nk,z FBBk,l H’fvl,kylHk:l’k»lFBBk,z)

v H )
tr ( ( )Z;é(k l) %FgBk,lHm,i,k,leaiakvlFBBk,l) _|— Notr (WRFk,lWRHFk’l>

v H ¥}
H
tr (FBBMHk:,l,k:,lHkJ,kJFBBk,l>

~ H ~

H Mk, 1 H
tr (FBBk,ZHk,sz,lFBBk,z) + 5 Notr(Wer, Wiy, )
v H v}

H

tr (FBBMHk,l,k,lHkJ,k,lFBBk,l>

~ H ~
tr (FSBM (HMHM + VIM¥F> FBBM)

(8.57)

The SLNR in (8.57) is used as an optimizing criterion to calculate the optimal
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baseband precoding matrix Fpp, ,, where ICIM is given by (8.56), and the second

equality in (8.57) holds since E[sysi,] = Ing and E[ngmy’;] = Noln,,. And v
satisfies:

Nk,

t
The optimal Fgp,, that maximizes the SLNR in (8.57) can be derived similarly to
the precoding matrix in [157] and is composed of the leading Ns columns of Ty
o H o ~ -
which contains the generalized eigenvectors of the pair {Hk,l,k,lHk,l,k,la HkH’lH]gJ +

I M¥F}. Whap, , is designed as a matched filter at the receiver [157]:

H, ..F
__HiiniFes,, (8.59)
|[Hy 1, FBB,, || F

Wi, ,

8.3.4 Generalized Maximum-Ratio Precoding

The fourth HBF strategy is generalized maximum-ratio (GMR) transmission that
belongs to coordinated scheduling/beamforming in CoMP, and has the same RF
precoding, RF' combining, and baseband combining procedures as the baseline. In
contrast to conventional maximum ratio (MR) transmission where the precoder
is designed based on the channel matrix H, GMR transmission uses the effective,
RF-filtered channel HF gy to design the baseband precoder. In the GMR-based
approach, the effective channel for user k in cell [ after RF precoding and combining

is denoted as the NEF x MEF matrix H,,;;,; defined as
. 1

Hm ikl = T =/
AV PLm,i,l

and the KLNEY x MRF concatenated effective channel matrix is:

WII){FWL,iHmviJFRFk,l (8.60)

- T T . T T
Hk,l = [Hl,l,k,h ceey Hk,l,k)7l7 ceey HK,L,k,l] (861)

If Ng = N{¥, then the baseband precoding matrix can be set as the Ng(K (I —
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1)+ k — 1) + 1th to the Ng(K (I — 1) + k)th columns of Fgg yielded by the GMR

transmission matrix:

- =~ H

Or equivalently

Fos,, = Hy 1), (8.63)
Eq. (8.63) shows that GMR essentially requires no coordination among TPs. How-
ever, it should be noted that GMR only works for the situation where Ng = NE¥,
and will not work otherwise due to matrix dimension mismatch. All the other
proposed algorithms work for any situations where Ng < N{F. In practice, the

dimension issue is easily accounted for by turning off the unnecessary RF chains.

8.3.5 Feasibility of Zero-Forcing Precoding

Another popular multi-user precoding method besides maximum ratio is ZF [247,
248], thus it is reasonable to consider whether ZF precoding is feasible in the
system setup herein. Analogous to GMR introduced in the previous subsection,
let us assume the RF precoding, RF combining, and baseband combining schemes
are the same as those in the GMR-based HBF method, and that Ng = NFF,
then the baseband precoding matrix for user & in cell [ Fpp, , is composed of the
Ns(K (I —1) 4k —1) + 1th to the Ng(K (I — 1) + k)th columns of Fgg given by the
generalized ZF matrix:

—_ ~H  ~ ~H. _
Fgp = H,(H;,Hy,) ' (8.64)

where Hy, is given by (8.61) with the dimension K LNEF x MEF hence I:Ik,lI:I,Zl
has the dimension K LNFF x KLNEF with a rank of MRF which is smaller than

KLNEFF. Therefore, ﬂk,lﬂkH,l is rank deficient thus not invertible, hence ZF precod-
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ing is not feasible for the proposed multi-cell system due to dimension constraints.

Alternatively, the rank deficiency problem will not exist if ZF is done at the receiver
side, which, however, requires that each user has the CSI of all TPs to all users,
and this is too much overhead for the user hence not feasible, either.

While RZF can be used to avoid the rank deficiency issue in ZF, the optimal
regularization parameter remains to be solved for multi-cell multi-stream scenarios,
which is outside the scope of this technical report. Further, the performance of
RZF approximates MR for low SNRs and ZF for high SNRs, thus it is sufficient to
study MR and ZF.

8.4 Simulation Results and Analysis

Using the multi-cell MU-MIMO HBF procedures proposed above and the system
layout and settings demonstrated in Section 8.1, spectral efficiency is studied using
both the 3GPP [66] and NYUSIM [51] channel models via MATLAB simulations.
It is assumed that there are N RF chains at each UE, and each TP communicates
with each UE via Ng (Ns < NEF) data streams. For each channel model, 400
random channel realizations were carried out where 27 channel matrices were
generated in each channel realization for the three-user-per-cell case (hence resulting
in 10800 channel matrices in total), which represent the channel matrices between
each TP and each UE in the three cells; while 100 random channel realizations were
carried out where 108 channel matrices were generated in each channel realization
for the 12-user-per-cell case (hence resulting in 10800 channel matrices in total).
In each channel realization, UE locations in each cell are randomly and uniformly

generated with T-R separation distances ranging from 10 m to the cell radius.
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The cell radius is set to 50 m and 200 m, respectively, where the 200 m radius is

obtained by assuming that 95% of the area in each cell has a signal-to-noise ratio
(SNR) larger than or equal to 5 dB, and the upper bound of the T-R separation
distance is calculated based on this assumption and is rounded to 200 m for both
models for fair comparison [51, 66], while the 50 m radius is chosen for comparison
purposes.

Beam patterns generated by the baseline, LSP, and SLNR-based precoding
matrices in an example channel realization are illustrated in Fig. 8.10, where the
cell radius is 50 m, there are three users per cell and two streams per user. [t is seen
from Fig. 8.10 that the SLNR-based precoding is able to generate siz distinct main
beams each for one stream at one user. In the baseline and LSP beam patterns,
however, some of the main beams are much weaker than in the SLNR case, and
some main beams are accompanied with a side beam that may cause interference to
other streams or other users, hence reducing spectral efficiency. The difference in
beam patterns will give rise to difference in spectral efficiency to be analyzed below.

The CDFs of per-user spectral efficiency in the three-cell MU-MIMO system
using both 3GPP [66] and NYUSIM [51] models are illustrated in Fig. 8.11 for
different cell radii and user numbers with two steams per user. Fig. 8.11 shows that
for both 3GPP and NYUSIM models, the SLNR-based HBF outperforms all the
other HBF schemes, revealing its effectiveness in suppressing both intra-cell and
inter-cell interference and noise. Another distinguishing feature is that LSP does
not outperform the baseline case for the 3GPP model, which is probably due to
the fact that LSP spends part of the transmit power on suppressing leakage, thus
leaving less power for signal transmission compared to the baseline case. While for

NYUSIM, LSP renders comparable performance relative to the baseline case as
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Figure 8.10: Beam patterns in an example channel realization generated by the
(a) baseline, (b) LSP, and (c) SLNR-based precoding matrices at one TP. The cell
radius is 50 m, there are three users per cell and two streams per user.
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Table 8.2: Multi-cell per-user spectral efficiency at the 50% CDF point in Fig. 8.11
using the SLNR-based HBF.

Per-User Spectral Efficiency 50 m Cell Radius 200 m Cell Radius
(bps/Hz) (3GPP/NYUSIM) | (3GPP/NYUSIM)

3 UEs Per Cell 8.8 /10.2 53 /838

12 UEs Per Cell 2.6 /3.0 14 /26

compared to the 3GPP model, since the NYUSIM channel has a stronger dominant
eigenchannel than 3GPP (see Fig. 6.4), thus LSP appears to be much more effective
when using the NYUSIM channel model, since the dominant leakage is stronger.
Furthermore, using NYUSIM leads to higher spectral efficiency as compared to
the 3GPP model, likely due to the stronger two dominant eigenmodes per user
yielded by NYUSIM channel matrices. This implies that it is important to design
a proper beamforming approach (e.g., the SLNR-based approach) to make CoMP
superior to the non-CoMP case, since some coordinated beamforming methods
(e.g., LSP) may not yield higher spectral efficiency than the baseline. Table 8.2
summarizes the per-user spectral efficiency at the 50% CDF point in Fig. 8.11 using
the SLNR-based HBF, which shows that NYUSIM can provide up to 86% more
spectral efficiency than the SGPP channel model.

When comparing Figs. 8.11(a) and 8.11(b), or Figs. 8.11(c) and 8.11(d), it is
noticeable that for the same cell radius, the spectral efficiency gap between the
SLNR approach and the baseline decreases as the user number increases. This
phenomenon can be explained by Fig. 8.12 which depicts the average signal power
and interference power (averaged over users) for different user numbers using the
SLNR method and the baseline for the 50 m cell radius as an example. Fig. 8.12
shows that for either the SLNR approach or the baseline, when the user number

increases from three to 12, the average signal power remains almost the same, while
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Figure 8.11: CDFs of the spectral efficiency per user with (a) a 50 m cell radius
and 12 users per cell, (b) a 50 m cell radius and three users per cell, (¢) a 200 m cell
radius and 12 users per cell, and (d) a 200 m cell radius and three users per cell,
in the three-cell multi-user MIMO system using the HBF algorithms proposed in
this chapter for 3GPP [66] and NYUSIM [51] channel models. Baseline means no
coordination among TPs, LSP denotes leakage-suppressing and signal-maximizing
precoding, and SLNR represents SLNR-based precoding. There is one TP per
cell, and the users in each cell are distributed uniformly and randomly with T-R
separation distances ranging from 10 m to the cell radius [66]. There are four RF
chains and two streams per user, and 48 and 12 TP RF chains for 12 and three

users per cell, respectively.
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Figure 8.12: Average signal power and average interference power generated from
the NYUSIM channel model for the three-cell system with a cell radius of 50 m,
where the average is taken over users. There are two streams and four RF chains
per user, and 48 and 12 TP RF chains for 12 and three users per cell, respectively.

the average interference power increases, and the ratio of the interference power in
the baseline to that in the SLNR scheme is smaller in the 12-user case than in the
three-user case (about 16 versus 140), since the interference power in the SLNR
method approaches zero for the three-user case. Therefore, the corresponding SINR
gap and hence the spectral efficiency gap is smaller in the 12-user case.

Moreover, it is observable by comparing Figs. 8.11(a) and 8.11(c), or Figs. 8.11(b)
and 8.11(d), that for the majority (about 70%-90%) of the users, the spectral
efficiency for the 200 m cell radius is lower than the 50 m cell radius for any of the
proposed HBF schemes with the same user number per cell and the same transmit
power per user, except for the peak spectral efficiency. This indicates that the effect
of interference does not dictate the spectral efficiency, but rather coverage/SNR

matters most, since the 200 m cell radius corresponds to weaker interference but
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has lower spectral efficiency in most cases.

Next, the case where each TP communicates with each of its home-cell users
via one and four data streams is considered, along with the two-stream-per-user
case. As Ng = NE¥ in the four-stream-per-user case, GMR is tractable hence is
considered herein. Fig. 8.13 depicts the 10%, 50%, and 90% CDF points of spectral
efficiency for both 3GPP and NYUSIM models for one-stream, two-stream, and
four-stream cases with a cell radius of 50 m and three users per cell. As unveiled
by Fig. 8.13, SLNR yields the highest spectral efficiency except for the 10% CDF
point in Fig. 8.13(c), where GMR outperforms all the other HBF schemes since
GMR intrinsically maximizes the received signal power hence is more efficient when
the SNR is low. For the single-stream case in Fig. 8.13(a), RZF is inferior to the
baseline at low and medium SNRs (represented by the 10% and 50% CDF points)
but outperforms the baseline at high SNRs (represented by the 90% CDF point),
because the RZF method demonstrated in Section 8.2 is more like ZF due to the
small regulation factor in (8.25) (on the order of 1071%), hence the RZF method is
more efficient in high SNR regions since it focuses more on mitigating interference
instead of noise. Interestingly, the eigenmode beamforming scheme in the baseline
case exhibits better performance as the number of streams increases, especially
for the 3GPP channel model, likely due to its capability to focus all the transmit
power onto strongest eigenmodes, and that the third and fourth eigenmodes in the
3GPP model are mostly stronger than those in NYUSIM (see Fig. 6.4). Figs. 8.11
and 8.13 indicate that the spectral efficiency performance of the four HBF strategies
proposed in this chapter depend upon the interference and SNR level. Furthermore,
TP coordination (e.g., SLNR) generally provides higher spectral efficiency than the

no-coordination case (e.g., up to 67% more spectral efficiency for the weakest 5%
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Figure 8.13: CDFs of the per-user spectral efficiency of the three-cell multi-user
MIMO system using the HBF algorithms proposed in this chapter for 3GPP [66]
and NYUSIM [51] channel models for the cases of (a) one stream, (b) two streams,
and (c) four streams per user. Baseline means no coordination among TPs, LSP
denotes leakage-suppressing and signal-maximizing precoding, SLNR represents
SLNR-based precoding, RZF refers to regularized zero-forcing for the single-stream-
per-user case, and GMR represents generalized maximum ratio precoding. The
users in each cell are distributed uniformly and randomly with T-R separation
distances ranging from 10 m to 50 m.
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of users), thus is worth using in mmWave multi-cell networks.

8.5 Concluding Remarks

This chapter focused on multi-cell multi-user communication in mmWave systems,
derived analytical expressions for expected SINR and spectral efficiency for the
single-stream-per-user case, and proposed and compared four HBF algorithms
for the multi-stream-per-user case based on the assumption that base stations
in different cells have full CSI and can exchange the CSI, but not the user data,
among each other, such that they can take into account both intra-cell and inter-cell
interference when designing precoding matrices.

Numerical results show that the derived multi-cell analytical expected SINR and
spectral efficiency have good accuracy and analytical tractability, and the analysis
framework is applicable to any link SNR and channel model, as long as the necessary
eigenvalue densities are known. SLNR-based CoMP generally provides higher
spectral efficiency than the no-coordination case (e.g., up to 67% higher spectral
efficiency for the weakest 5% of users), thus is worth using in mmWave multi-cell
networks. LSP shows minimal improvement over the baseline. Furthermore, the
behaviors of the four proposed multi-stream HBF approaches are affected by the
interference and SNR level, which are themselves influenced by the cell radius,
the number of users per cell, and the number of streams per user. Specifically,
a smaller cell radius and fewer users per cell usually give rise to higher per-user
spectral efficiency given a constant transmit power for each user. Moreover, it is
critical to maintain coverage in mmWave systems when the cell radius is relatively

large (e.g., 200 m).
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Chapter 9

Conclusions and Future Work

9.1 Thesis Summary

The technical report has focused on investigation and comparison of 5G channel
models, and multi-cell multi-user analog-digital HBF approaches for mmWave
MIMO systems. Channel models have a penetrating impact on numerous aspects
of wireless systems ranging from system design to performance evaluation, and
different channel models can lead to substantially varied predictions on diverse
channel performance metrics and hardware requirements, thus it is critical to de-
velop and use an accurate channel model able to generate realistic temporal and
spatial channel responses. This technical report has presented a novel 5G channel
simulator, NYUSIM, including its underlying channel model, the development
of GUI, generation of output files, and its diverse applications. Then the tech-
nical report systematically compared the 3GPP and NYUSIM channel models,
demonstrated their different evaluation results, and analyzed the reason for the

discrepancies. Furthermore, a general analytical framework has been provided to
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study the multi-cell spectral efficiency performance in the presence of both intra-cell
and inter-cell interference. Particularly, eigenvalue distributions for channels after
RF precoding in a multi-cell multi-user system with a single stream per user are
investigated for both signal and interference channels in NLOS environments, which
has never done in the prior literature, and tight analytical approximations of the
expected per-user SINR, and expected per-cell sum spectral efficiency, under the
condition of a bank of analog phase shifters for the analog precoding and RZF
processing for digital beamforming. Numerical results for multi-cell multi-stream
networks show that benefits of multi-cell coordination depend on the underlying

channel model and the interference and noise levels.

9.2 Future Work

The work conducted throughout the technical report motivate further investigations
in unexplored research fields directly related to the contents of the technical report,

which are identified and discussed below:

e Currently NYUSIM only contains the channel models for UMi, UMa, and
RMa scenarios, without indoor scenarios. It is worth developing a channel
model for indoor environments, such as the indoor office, and integrating it

into NYUSIM.

e The eigenvalue densities in the multi-cell multi-user systems are developed
for NLOS channels only in this technical report (Chapter 8). It is worth
investigating the eigenvalue densities for LOS and LOS-NLOS combined
channels. As indicated in [242] and Chapter 8 of this technical report, LOS

paths are likely to induce additional spatial correlation to eigenvalue densities,
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thus the eigenvalue densities for LOS and LOS-NLOS combined channels can

be obtained by adding extra correlation terms to the eigenvalue densities for

NLOS channels.

The eigenvalue densities in the multi-cell multi-user systems are developed
for a transmission point antenna array with 256 elements and a single receive
antenna in Chapter 8. If there is a change in the transmit or the receive
dimension, then the analytical approach is still valid, but the approximated
gamma distributed eigenvalue densities need to be re-fitted. This can be done

using the eigenvalue density fitting method in Chapter 8.

The analytical framework for the multi-cell system is done in Chapter 8 for
the situation with a single stream per user. It will be valuable to explore the
possibility of conducting similar analysis for the multi-stream-per-user case,
although this is highly challenging since it involves an optimization problem

with coupled variables and matrices.
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