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Measurement Campaigns Conducted

28 GHz Outdoor Cellular Measurement Campaign

73 GHz Outdoor Cellular Measurement Campaign

38 GHz Outdoor Cellular and Peer-to-Peer (P2P) Measurement Campaign

60 GHz Outdoor P2P and Vehicular Measurement Campaign

28 GHz and 73 GHz Indoor Measurement Campaign
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Measurement Hardware Description

• Transmitted signal
• Pseudorandom Noise (PN) sequence

• Spread spectrum sliding correlator method
• Mechanism

• PN sequences operated at slightly different 
clock speeds at the transmitter and receiver

• Advantage
• Superior multipath time resolution and 

dynamic range
• High processing gain at the receiver
• Wideband signals received by a 

narrowband baseband detector at the 
receiver

E. Ben-Dor, T. S. Rappaport, Y. Qiao and S. J. Lauffenburger, "Millimeter-Wave 60 
GHz Outdoor and Vehicle AOA Propagation Measurements Using a Broadband Channel 
Sounder," 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011), 
Houston, TX, USA, 2011, pp. 1-6. 3

Example 
block 
diagram in 
the 60 GHz 
measurement 
campaign



28 GHz Outdoor Cellular Measurement Campaign

G. R. Maccartney, T. S. Rappaport,
M. K. Samimi and S. Sun,
"Millimeter-Wave Omnidirectional
Path Loss Data for Small Cell 5G
Channel Modeling," in IEEE Access,
vol. 3, pp. 1573-1580, 2015.

• Environment
• Dense urban microcell (UMi) environment (downtown 

Manhattan around NYU main campus)
• One scenario: base station-to-mobile scenario

• Single directive rotatable horn antennas (24.5 dBi gain, AZ. 
HPBW 10.9°, and EL. HPBW 8.6°) were used at both TX 
and RX

• 3 TX locations
• TX-COL1 - 7 m
• TX-COL2 - 7 m
• TX-KAU  - 17 m

• 27 RX locations
• RX antenna was set as 1.5 m above ground level 

(AGL) around typical sidewalks on the NYU campus

• 74 TX-RX location combinations
• 6  line-of-sight (LOS) TX-RX combinations
• 68 non-line-of-sight (NLOS) TX-RX combinations

T. S. Rappaport, G. R. MacCartney, M. K.
Samimi and S. Sun, "Wideband Millimeter-
Wave Propagation Measurements and
Channel Models for Future Wireless
Communication System Design," in IEEE
Transactions on Communications, vol. 63,
no. 9, pp. 3029-3056, Sept. 2015.

T. S. Rappaport et al.,
"Millimeter Wave Mobile
Communications for 5G
Cellular: It Will Work!"
in IEEE Access, vol. 1, pp.
335-349, 2013.
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73 GHz Outdoor Cellular Measurement Campaign

G. R. MacCartney and T. S. Rappaport,
"73 GHz millimeter wave propagation
measurements for outdoor urban mobile
and backhaul communications in New
York City," 2014 IEEE International
Conference on Communications (ICC),
Sydney, NSW, 2014, pp. 4862-4867.

• Environment
• Dense urban microcell (UMi) environment (downtown Manhattan 

around NYU main campus)
• Two scenarios: base station-to-mobile and base station-to-backhaul 

scenarios

• Single directive rotatable horn antennas (27 dBi gain, AZ. HPBW 7°, and 
EL. HPBW 7°) were used at both TX and RX

• 5 TX locations
• TX-COL1 - 7 m
• TX-COL2 - 7 m
• TX-KAU  - 17 m
• TX-KIM1 - 7 m
• TX-KIM2 - 7 m

• 27 RX locations
• Base station-to-mobile scenario: RX antenna set as 2.00 m AGL
• Base station-to-backhaul scenario: RX antenna set as 4.06 m AGL

• 74 TX-RX location combinations
• 36 for mobile scenario with 5 LOS and 31 NLOS location 

combinations 
• 38 for backhaul scenario with 4 LOS and 34 NLOS location 

combinations

S. Sun, G. R. MacCartney, M. K. Samimi,
S. Nie and T. S. Rappaport, "Millimeter
wave multi-beam antenna combining for
5G cellular link improvement in New York
City," 2014 IEEE International Conference
on Communications (ICC), Sydney, NSW,
2014, pp. 5468-5473.
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38 GHz Outdoor Cellular Measurement Campaign

Base Station-to-Mobile Scenario

T. S. Rappaport, et al., "Broadband Millimeter-
Wave Propagation Measurements and Models
Using Adaptive-Beam Antennas for Outdoor
Urban Cellular Communications," in IEEE
Transactions on Antennas and Propagation,
vol. 61, no. 4, pp. 1850-1859, April 2013.

• Environment
• Urban macrocell (UMa) and UMi environment (University 

of Texas at Austin campus)
• One scenario: base station-to-mobile scenario

• Single directive rotatable horn antennas were used at both TX and 
RX

• TX antenna: 25 dBi gain and AZ. HPBW 7.8°
• Narrowbeam RX antenna: 25 dBi gain and AZ. HPBW 7.8°
• Widebeam RX antenna: 13.3 dBi gain and AZ. HPBW 49.4°

• 4 TX locations
• ECJ - 8 m
• WRW - 23 m
• ENSA – 36 m
• ENSB – 36 m

• 37 RX locations
• RX antenna was set as 1.5 m AGL around the northeastern 

corner of UTA campus.

• TX-RX location combination
• 43 location combinations for narrowbeam scenario
• 22 location combinations for widebeam scenario

T. S. Rappaport, et al., "Cellular broadband
millimeter wave propagation and angle of
arrival for adaptive beam steering systems
(invited paper)," 2012 IEEE Radio and
Wireless Symposium (RWS), Santa Clara, CA,
2012, pp. 151-154.
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Peer-to-Peer Scenario

38 GHz Outdoor P2P Measurement Campaign

T. S. Rappaport, E. Ben-Dor, J. N. Murdock and Y.
Qiao, "38 GHz and 60 GHz angle-dependent
propagation for cellular & peer-to-peer wireless
communications," 2012 IEEE International Conference
on Communications (ICC), Ottawa, ON, 2012, pp.
4568-4573.

E. Ben-Dor, T. S. Rappaport, Y. Qiao and S. J. Lauffenburger, "Millimeter-
Wave 60 GHz Outdoor and Vehicle AOA Propagation Measurements Using a
Broadband Channel Sounder," 2011 IEEE Global Telecommunications
Conference (GLOBECOM 2011), Houston, TX, USA, 2011, pp. 1-6.

• Environment
• A pedestrian walkway 

courtyard in UTA 
campus

• One scenario: peer-to-
peer

• Single directive rotatable horn 
antennas (25 dBi gain and AZ. 
HPBW 7.8°) were used at 
both TX and RX

• 1 TX and 10 RX locations 
both with TX and RX antenna 
heights of 1.5 m AGL

• Obstructions
• Lamp poles
• Handrails
• Garbage cans
• Sparse foliage 7



60 GHz Outdoor P2P and Vehicular Measurement Campaign

Peer-to-Peer Scenario
• The 60 GHz P2P measurements consisted of the same environment and TX and RX locations as in 

38 GHz outdoor P2P measurement campaign

Vehicular scenario 

E. Ben-Dor, T. S. Rappaport, Y. Qiao and S. J. Lauffenburger, "Millimeter-Wave 60 GHz
Outdoor and Vehicle AOA Propagation Measurements Using a Broadband Channel
Sounder," 2011 IEEE Global Telecommunications Conference (GLOBECOM 2011),
Houston, TX, USA, 2011, pp. 1-6.

• Environment
• A parking lot on the UTA campus

• Single directive rotatable horn antennas (25 dBi gain, HPBW 7.3°) 
were used at both TX and RX

• 2 RX sites
• Antenna height:  head level of a seated passenger in a 

standard-sized sedan automobile
• Antenna location

• The driver position
• A rear passenger position

• 3 TX sites
• Antenna height: 1.5 m AGL
• Antenna location

• 4 m away from RX location: a single lane of traffic
• 12 m away from RX location: a two-way street
• 23 m away from RX location: a multilane highway 8



28 GHz and 73 GHz Indoor Measurement Campaign 

G. R. MacCartney, T. S. Rappaport, S. Sun and S. Deng, "Indoor
Office Wideband Millimeter-Wave Propagation Measurements
and Channel Models at 28 and 73 GHz for Ultra-Dense 5G
Wireless Networks," in IEEE Access, vol. 3, pp. 2388-2424,
2015.

Environment: A typical single-floor office environment (9th floor of 2 MetroTech
Center in downtown Brooklyn, New York)

• Environment scenarios
• Corridor environment
• Open-plan environment
• Closed-plan environment

• Single directive rotatable horn antennas 
were used at both TX and RX

• 28 GHz: 15 dBi gain, AZ. 
HPBW 28.8° and EL. HPBW 
30°

• 73 GHz: 20 dBi gain, AZ. 
HPBW 15° and EL. HPBW 15°

• 5 TX locations
• TX antenna was set as 2.5 m AGL

• 33 RX locations
• RX antenna was set as 1.5 m AGL

• 48 TX-RX location combinations
• 10 LOS combinations
• 38 NLOS combinationsS. Deng, M. K. Samimi and T. S. Rappaport, "28 GHz

and 73 GHz millimeter-wave indoor propagation
measurements and path loss models," 2015 IEEE
International Conference on Communication Workshop
(ICCW), London, 2015, pp. 1244-1250.
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