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Motivation

 Why is mmWave penetration loss important?
 Sub-6 GHz wireless communications rely heavily on low penetration losses

o Indoor WiFi coverage between rooms

o Outdoor-to-indoor UMi and UMa coverage

 Penetration loss models are used to predict coverage:
 Into buildings; between floors; through partitions; and for outdoor-to-indoor 

scenarios [11]

 Models can be used to supplement ray-tracing, coverage, 
propagation, and site-planning tools
 SMT PLUS [1]

 SitePlanner [23],[24]

 LANPlanner [23],[24]

[1] R. R. Skidmore, T. S. Rappaport, and A. L. Abbott, “Interactive coverage region and system design simulation for wireless communication 

systems in multifloored indoor environments: SMT PLUS,” in Proceedings of the 5th IEEE International Conference on Universal Personal 

Communications, vol. 2, Sept. 1996, pp. 646–650.

[11] G. D. Durgin, T. S. Rappaport, and H. Xu, “Measurements and models for radio path loss and penetration loss in and around homes and trees

at 5.85 GHz,” IEEE Transactions on Communications, vol. 46, no. 11, pp. 1484–1496, Nov. 1998.

[23] T. S. Rappaport and R. Skidmore, “System and method for ray tracing using reception surfaces,” Dec. 2004, US Patent 10/830,445. [Online]. 

Available: https://www.google.com/patents/US20040259554

[24] Austin Business Journal, “Motorola buys wireless valley,” Dec. 2005. [Online]. Available:

http://www.bizjournals.com/austin/stories/2005/12/19/daily46.html 
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Motivation

 900 MHz to 18 GHz penetration loss does not increase monotonically/linearly 

with frequency for V-V polarization [16]

 Floor Attenuation Factors (FAF) at 800 & 2000 MHz in an underground garage:

 5.2 dB/m of depth [28] 

 914 MHz FAF in an office building: [5-7] 
 16.2 dB, 27.5 dB, and 31.6 dB through 1, 2, and 3 floors, respectively

 30 GHz to 50 GHz [21]: 
 Concrete slab: 4.50 dB/cm: (VV / HH); Solid wood: 4.19 dB/cm: (V-V) / 2.42 dB/cm (H-H)

 28 GHz [20]: 
 Clear glass: 3.6 dB to 3.9 dB; Tinted Glass: 24.5 dB to 40 dB

[5] S. Y. Seidel and T. S. Rappaport, “900 MHz path loss measurements and prediction techniques for in-building communication system design,” in 1991 Proceedings of the 41st IEEE Vehicular Technology Conference, 

May 1991, pp. 613–618.

[6] ——, “Path loss prediction in multifloored buildings at 914 MHz,” Electronics Letters, vol. 27, no. 15, pp. 1384–1387, July 1991.

[7] ——, “914 MHz path loss prediction models for indoor wireless communications in multifloored buildings,” IEEE Transactions on Antennas and Propagation, vol. 40, no. 2, pp. 207–217, Feb. 1992.

[16] Y. P. Zhang and Y. Hwang, “Measurements of the characteristics of indoor penetration loss,” in 1994 IEEE 44th Vehicular Technology Conference (VTC), vol. 3, June 1994, pp. 1741–1744. 

[20] H. Zhao et al., “28 GHz millimeter wave cellular communication measurements for reflection and penetration loss in and around buildings in New York city,” in 2013 IEEE International Conference on 

Communications (ICC), June 2013, pp. 5163–5167.

[21] A. K. M. Isa, A. Nix, and G. Hilton, “Impact of diffraction and attenuation for material characterisation in millimetre wave bands,” in 2015 Loughborough Antennas and Propagation Conference (LAPC), Nov. 2015, 

pp. 1–4.

[28] H. C. Nguyen et al., “A simple statistical signal loss model for deep underground garage,” in 2016 IEEE 84th Vehicular Technology Conference (VTC2016-Fall), Sept. 2016, pp. 1–5.
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Penetration Loss Measurement 
Hardware

Broadband Sliding Correlator

[33] G. R. MacCartney, Jr. and T. S. Rappaport, “A flexible millimeter-wave channel sounder with absolute 

timing,” IEEE Journal on Selected Areas in Communications, June 2017.

[34] G. R. MacCartney, Jr. et al., “A flexible wideband millimeter-wave channel sounder with local area 

and NLOS to LOS transition measurements,” in 2017 IEEE International Conference on Communications 

(ICC), May 2017, pp. 1–7
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Penetration Loss Setup

 20 dBi, 15º HPBW antennas at TX and RX

 1.5 m distance (5 Fraunhofer distances) on either side of material

 At 1.5 m distance, antenna spread upon material is a 40 cm x 40 cm cross-section

 Measured both co- and cross-polarized antenna configurations (XPD = 27.1 dB)

Material

𝑤

TX RX

1.5 m 1.5 m

NOT DRAWN TO SCALE
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Penetration Loss Setup

 21 TX-RX Locations to measure partition loss with primary ray through material

 Typical open plan office and hallway with labs: 65.5 m x 35 m

 Materials tested: Plasterboard Walls, Whiteboard Writing Walls, Clear Glass, Glass Doors, 

Closet Doors, Steel doors

Material Map 

Locations

Average

Thickness

Plasterboard 

Walls

3; 14; 17; 

21

13.7 cm

Whiteboard 

Writing Walls w/ 

Fiberboard

15; 18 21.4 cm

Clear Glass 2; 6; 19 1 cm

Glass Doors 1; 4; 5; 11; 

12

1cm

Closet Doors –

Medium Density 

Fiber (MDF)

7; 8; 9 7 cm

Steel Doors 10; 13; 16; 

20

5.3 cm

[3] G. R. MacCartney, Jr. et al., “Indoor office wideband millimeter-wave propagation measurements and models at 28 

GHz and 73 GHz for ultradense 5G wireless networks (Invited Paper),” IEEE Access, pp. 2388–2424, Oct. 2015.
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Examples of Materials

Glass Door

Location 1 Location 4 Location 5 Location 11 Location 12

Lights off; not tinted
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Examples of Materials

Clear Glass

Location 2 Location 6 Location 19

Lights off; not tinted
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Examples of Materials

Location 17 Location 3 Location 21

Plasterboard Walls
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Examples of Materials

Closet Door: Medium-Density Fibreboard (MDF)

Location 7

Location 8

Location 9
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Examples of Materials

Steel Door

Location 16 Location 13 Location 10
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Examples of Materials

Whiteboard Writing Walls

Location 15 Location 18
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Penetration Loss Calculation

 10 measured power delay profiles (PDPs) at each TX-RX location pair:
 5 redundant V-V measurements for consistency

 5 redundant V-H measurements for consistency

 Each measured PDP is an average of 20 PDPs to improve SNR

 Penetration Loss L (for fc = 73.5 GHz):

𝐿 dB = 𝑃𝑟,FS − 𝑃𝑟,meas.

𝑃𝑟,FS dBm = 𝑃𝑡 + 𝐺𝑡 + 𝐺𝑟 + 20 log10
𝑐

4𝜋𝑑𝑓𝑐

where: d: T-R separation distance (including material width) typically > 3m
Pt : Transmit power in dBm
Gt: TX antenna gain in dB
Gr: RX antenna gain in dB
c: Speed of light in air
fc: Carrier frequency
𝑃𝑟,FS: Theoretical received power in free space using Friis’ formula

[41] H. T. Friis, “A note on a simple transmission formula,” Proceedings of the IRE, vol. 34, no. 5, pp. 254–256, May 1946.
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Penetration Loss Calculation

 Received power is first arriving multipath component (MPC) of a single PDP; 

resolvable with not much additional MPC energy using 1 GHz RF BW

 Average penetration loss at each location determined through linear averaging of 5 

PDPs first MPC in milliwatts for both V-V and V-H

 Cross-polarization discrimination factor (XPD) was calculated and removed from V-H 

measurements:
 Farfield XPD determined with V-V and V-H comparison measurements from 2.6 m to 3.0 m in 

0.1 m increments

 All five XPD values measured were within 1.5 dB with an overall average XPD of 27.1 dB 

(averaged in linear and standard deviation under 1 dB)

 Penetration loss L [dB] for each material is the average of the 5 measurements

 Normalized penetration loss calculated for the material width at each location:

𝑁  dB
cm =

𝐿

𝑤
 Results are provided for common material types
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Glass Door Results

 5 glass door locations: 4 with steel frames; 1 entirely glass – 1 cm thick
 5.1 dB avg. penetration loss for all V-V measurements of glass doors

 23.4 dB avg. penetration loss for all V-H measurements of glass doors

 1.2 dB standard deviation across all V-V glass door measurements

 7.1 dB standard deviation across all V-H glass door measurements
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Clear Glass Results

 5 clear glass locations (internal windows) – 1 cm thick
 7.1 dB avg. penetration loss for all V-V measurements of glass doors
 18.3 dB avg. penetration loss for all V-H measurements of glass doors
 2.3 dB standard deviation across all V-V glass door measurements
 3.4 dB standard deviation across all V-H glass door measurements
 For 1 window: At 1.5 m distance, antenna spread upon material was greater than width of 

window



18

Plasterboard Wall Results

 4 walls constructed with plasterboard: ~ 14 cm thick
 10.6 dB avg. penetration loss over all V-V measurements of walls

 11.7 dB avg. penetration loss over all V-H measurements of walls

 5.6 dB standard deviation across all V-V wall measurements

 6.2 dB standard deviation across all V-H wall measurements
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MDF Closet Door Results

 3 closet doors measured – MDF / plywood material: 7 cm thick
 32.3 dB avg. penetration loss over all V-V measurements of closet doors

 16.3 dB avg. penetration loss over all V-H measurements of closet doors

 8.2 dB standard deviation across all V-V closet door measurements

 4.2 dB standard deviation across all V-H closet door measurements
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Steel Door Results

 4 steel door locations: ~ 5 cm thick
 52.2 dB avg. penetration loss over all V-V measurements of steel doors

 48.3 dB avg. penetration loss over all V-H measurements of steel doors

 4.0 dB standard deviation across all V-V steel door measurements

 5.6 dB standard deviation across all V-H steel door measurements
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Whiteboard w/ Wall Results

 2 whiteboards with wall: ~ 21 cm thick
 73.8 dB avg. penetration loss over all V-V measurements of walls

 58.1 dB avg. penetration loss over all V-H measurements of walls

 9.8 dB standard deviation across all V-V wall measurements

 3.0 dB standard deviation across all V-H wall measurements
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Conclusions and Tabulated Results

 Measurements conducted with 1 GHz RF BW

 Glass doors and clear glass are sensitive to 

polarization and exhibit similar loss

 Loss from walls is not polarization dependent: 0.8 

dB/cm

 Normalized MDF closet doors VV loss similar to glass: 

4.6 dB/cm 

 Highest penetration loss of 73.8 dB for whiteboard 

writing walls (much lower normalized loss)

 Thickness of doors (many cm) creates large overall 

penetration losses compared to thin glass layers ~ 1cm

 Normalized average attenuations can be used to 

represent common building materials in ray-tracing or 

site-planning simulations

 Large penetration losses can promote interference 

isolation

 Future work: Validate these values for use in primary-

ray based simulations and indoors site-planning tools
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