Radio Frame Design for 5G mmWave Systems

Sourjya Dutta, Marco Mezzavilla, Russell Ford, Menglei Zhang, Sundeepl Rangan, Michele Zorzi
{sdutta, mezzavilla, russell.ford, menglei, srangan}@nyu.edu; zorzi.dei.unipd.it

OBJECTIVE

- Design of the mmWave MAC layer frame structure and control signalling to achieve ultra-low latency, support large number of user devices, and efficient handling of heterogeneous data traffic.

MOTIVATION

- High degrees of freedom in mmWave systems.
- Large scale M2M communication.
- Ultra low latencies (≈ 1 ms).
- Massive MIMO and beamforming.

REFERENCE

FRAME DESIGN

- **TDD Subframe**
 - Fixed TTI
 - Flexible TTI

- **Radio Frame Design**

- **PHY Layer Control Messages**
 - SR/BSR
 - DL Grant
 - UL Grant
 - HARQ

- **Beamforming**
 - Analog
 - Hybrid
 - Low power
 - Digital

ANALYSIS

- **Control Overhead**: Fraction of the time used for PHY layer control messages.
- **Utilization**: Fraction of the allocated radio resources used.

PARAMETERS

- Beamforming gain at BS = 18 dB
- Beamforming gain at UE = 12 dB
- OFDM Symbol Duration = 4.16 µs
- Max TTI = 125 µs
- Bandwidth = 1 GHz

CONCLUSION

- Flexible frames better utilize allocated resources.
- Digital/Hybrid BF can considerably reduce control over heads.

RESULTS

- **Figure 1**: Control Overhead versus the number of users.
- **Figure 2**: Effect of RRC packets on data rate.
- **Figure 3**: Utilization vs. max TTI for full buffer TCP data (32 UEs)